屈曲性高分子の動的構造因子一次キュムラント に対する排除体積効果¹⁾

吉崎 武尚・長 昌史 T. Yoshizaki, M. Osa 京都大学大学院 工学研究科 高分子化学専攻

1. はじめに

動的光散乱実験では、直接的な測定量であ る散乱光強度の時間相関関数から、動的構造 因子 S(k,t) を、散乱ベクトルの大きさ k (散 乱角 θ) と時間 t の関数として決定する。対 象が高分子希薄溶液の場合、得られた S(k,t)の初期減衰速度 — 一次キュムラント $\Omega(k) \equiv$ $-[d \ln S(k,t)/dt]_{t=0}$ から導かれる量 $\Omega/k_{\rm B}Tk^2$ は、 k^{-1} 程度の大きさ持つ溶質高分子部分鎖 の易動度を表す。ただし、 $k_{\rm B}$ は Boltzmann定 数、T は絶対温度である。

代表的な屈曲性高分子であるアタクチック ポリスチレン(a-PS)について、 $\Omega/k_{\rm B}Tk^2$ の k依存性を示したのが図1である.縦軸と横

図 1. $\lambda^{-1}\eta_0\Omega/k_{\rm B}Tk^2$ 対 $\lambda^{-1}k$ 両対数プロット

軸は、それぞれの量に $\lambda^{-1}\eta_0 \ge \lambda^{-1}$ を掛けて無次元化した量の対数である.ここで、 λ^{-1} は(静 的)剛直性パラメタ、 η_0 は溶媒の粘性係数であり、a-PSの λ^{-1} 値²⁾として 20.6 Åを用いた. と△はそれぞれ Han ら³⁾(シクロヘキサン中 35.0 °C)と綱島ら⁴⁾(*t*-デカリン中 20.4 °C)の 動的光散乱実験値を表す.また、□は Nicholson ら⁵⁾(重水素化ベンゼン中 30.0 °C)の中性子 スピンエコー実験値を表す.図中に、用いられた a-PS 試料の重量平均分子量 M_w を示した.最 後のデータは良溶媒中のものであるが、排除体積効果が顕著に現れる程には M_w が大きくない ので、何れのデータも非摂動 a-PS 鎖に関するものである.

kが小さく(k^{-1} が大きく)なり、高分子鎖の広がりに比べて k^{-1} が大きくなると、 $\Omega/k_{\rm B}Tk^2$ はkに依存しない一定値 — 高分子鎖全体の易動度 $D/k_{\rm B}T$ となる. Dは高分子鎖の並進摩擦係

数である.逆に, kが大きく (k^{-1} が小さく) なり,高分子鎖を構成する運動単位に比べて k^{-1} が小さくなる場合も, $\Omega/k_{\rm B}Tk^{2}$ はkに依 存しない一定値 — 運動単位の易動度となる. $M_{\rm w}$ が非常に大きい屈曲性高分子の場合(\bigcirc , \triangle),二つの一定値は大きく異なり,その中 間に $\Omega/k_{\rm B}Tk^{2} \propto k$ ($\Omega \propto k^{3}$)となる k^{3} -領域 が存在する.図中の鎖線はその中間領域に対 応する傾き1の直線である.

 k^{3} -領域の挙動を見るのに、図 2 に示す $\eta_{0}\Omega/k_{\rm B}Tk^{3}$ 対 $\langle S^{2} \rangle^{1/2}k$ プロットが用いられる. $\langle S^{2} \rangle$ は平均二乗回転半径である. $M_{\rm w}$ の非常に 大きい非摂動屈曲性高分子の場合、高分子の

図 2. $\eta_0 \Omega/k_{\rm B}Tk^3$ 対 $\langle S^2 \rangle^{1/2}k$ プロット

種類によらない普遍プロットとなることが,ガウス鎖理論で示されている.一方,高分子鎖の 固さと局所形態を考慮したらせんみみず(HW)理論^{2,6)}からは, $M_w \simeq 10^6$ の領域においても 普遍プロットとはならないことが予想されている.

これまで我々の研究室では、種々の非摂動屈曲性高分子のΩに関する実験的研究を行い、屈 曲性高分子に対する上のHW 理論予測が妥当性を検証してきた. 図2中, ●, ▲, ■, ◆はぞ れぞれ a-PS⁷ [$M_w = 8.04 \times 10^6$, シクロヘキサン中 34.5 °C (Θ)], アタクチックポリメタ クリル酸メチル⁷) (a-PMMA) [$M_w = 1.31 \times 10^7$, アセトニトリル中 44.0 °C (Θ)], アタク チックポリ (α -メチルスチレン)⁸) (a-P α MS) [$M_w = 5.46 \times 10^6$, シクロヘキサン中 30.5 °C (Θ)], ポリイソブチレン⁸) (PIB) [$M_w = 6.63 \times 10^6$, イソ吉草酸イソアミル中 25.0 °C (Θ)] の実験値である.また、太い実線は a-PS に、破線は a-PMMA と a-P α MS に、鎖線は PIB に対 応する HW 理論値である (a-PMMA と a-P α MS に対する HW 理論値はほぼ重なる). ガウス 鎖理論が予想するような普遍プロットとはならず、HW 理論が予想するように高分子の種類に 依存している. さらに、▽で示した、典型的な半屈曲性高分子であるポリ (n-ヘキシルイソシ アナート)⁹ ($M_w = 7.71 \times 10^5$, n-ヘキサン中 25.0 °C) の挙動の屈曲性高分子との違いも、同 理論 (細い実線) で説明できることを明らかにした.

本研究では、これまでの研究に引き続き、 Ω に対する排除体積効果について実験的検討を行う。過去に行われた多くの実験的研究は、そのほとんど全てが、 k^3 -領域の $\eta_0\Omega/k_BTk^3$ の値に関する Benmouna-Akcasu¹⁰のブロッブ理論予測の検証を目的としてきた。それに対し、本研究では、これまで検討されなかった、田中-Stockmayer¹¹の1次摂動理論予測について考察する。

2. 結果

図2に示した, a-PSとa-PMMA, a-P α MS, PIB 試料について, それぞれの良溶媒であるト ルエン(15.0°C), アセトン(25.0°C), トルエン(25.0°C), n-ヘプタン(25.0°C) 中にお ける動的光散乱測定を行った. また, a-PSとa-P α MSについては, Θ 溶媒であるシクロヘキサ ン中において, それぞれの Θ 温度(34.5°C, 30.5°C)近傍で温度を変えて測定を行った.

図3に良溶媒中における実験結果の $\eta_0\Omega/k_{\rm B}Tk^3$ 対 $\langle S^2 \rangle^{1/2}k$ プロットを示す. ●, ▲, ■, ◆ は,図2同様, Θ 温度における実験値であり,それぞれに対応する〇, △, □, ◇が良溶媒中 での実験値を表す.何れの高分子試料の場合も,平坦部(k^3 -領域)のデータ点は排除体積効果 により右上に移動している.右方向に移動するのは,主に $\langle S^2 \rangle$ に対する排除体積効果によって $\langle S^2 \rangle^{1/2}k$ が大きくなるためである.図4に, a-PSとa-PaMSの Θ 温度近傍における実験結果の

図 4. $\eta_0 \Omega/k_{
m B}Tk^3$ 対 $\langle S^2
angle^{1/2}k$ プロット

化繊講演集第64集

 $\eta_0 \Omega/k_{\rm B}Tk^3$ 対 $\langle S^2 \rangle^{1/2}k$ プロットを示す. a-PS については, Θ 温度以下(ピップ付き●)の31.0, 32.0, 33.0 °C と Θ 温度以上(ピップ付き○)の36.0, 38.0, 40.0, 45.0 °C の結果である. ま た, a-P α MS については, Θ 温度以上(ピップ付き□)の35.0, 40.0, 45.0 °C の結果である. 何れの場合も,平坦部(k^3 -領域)のデータ点は, Θ 温度から離れるにしたがって, Θ 温度にお けるデータ点(●, ■)から右上あるいは左下方向に移動していく.

3. 考察

kの小さい領域 kが小さいとき、 Ω は次のように k^2 の展開形で書くことができる.

$$\Omega = Dk^2 \left[1 + C \langle S^2 \rangle k^2 + \mathcal{O}(k^4) \right] \tag{1}$$

 $D \geq \langle S^2 \rangle$ への排除体積効果はよく分かっているので、係数Cへの排除体積効果が問題となる. 田中–Stockmayer 理論では、Cへの排除体積効果が無視できる程小さいことが予測されている. なお、Cへの排除体積効果がなくても、Dあるいは $\langle S^2 \rangle$ を通して Ω への排除体積効果がある ことを注意しておく、式(1)を次のように書き換える.

$$(\Omega/Dk^2 - 1)/\langle S^2 \rangle k^2 = C + \mathcal{O}(k^2)$$
⁽²⁾

これより, 左辺の量を k^2 に対してプロットすると, $k^2 \rightarrow 0$ の切片から *C* を評価することができる.

図3に示した四つの高分子試料に対する実験結果を用いて作った, $(\Omega/Dk^2 - 1)/\langle S^2 \rangle k^2$ 対 k^2 プロットを図5に示す. k^2 が小さくなると $(\Omega/Dk^2 - 1)/\langle S^2 \rangle k^2$ の実験誤差が大きくなるので, $k^2 \simeq 0$ のデータ点がばらついているが,何れの高分子試料の場合も,良溶媒中の値(白)は Θ 温度における値(黒)と実験誤差の範囲内で一致している.同様に,図4に示した a-PS と a-P α MS に対する結果から作ったプロットを図6に示す.図5の場合と同様,それぞれの Θ 温 度の近傍で温度を変化させて得られた値(ピップ付きの印)は Θ 温度における値(ピップの付 いていない黒印)と実験誤差の範囲内で一致している.以上の結果より,田中–Stockmayerの1 次摂動理論予測が,排除体積効果の小さい Θ 温度近傍のみならず,その適用限界を超えて,排 除体積効果の大きい良溶媒系に対しても妥当であることが分かる.さらに,図の切片の値*C*の みならず,実験を行った k^2 の全領域において, $(\Omega/Dk^2 - 1)/\langle S^2 \rangle k^2$ に対して排除体積効果が 現れないことは、非常に興味深い.

kの大きい領域 kが大きいときは、 k^3 -領域における $\eta_0\Omega/k_{\rm B}Tk^3$ 対 $\langle S^2 \rangle^{1/2}k$ プロットの平 坦部の高さに対する排除体積効果が問題となる。それに対する田中–Stockmayerの1次摂動理 論の結果は、準二定数理論²⁾の枠組で書き直すと、次のようになる。

$$(\eta_0 \Omega / k_{\rm B} T) / (\eta_0 \Omega / k_{\rm B} T)_0 = 1 + 2.11 \,\tilde{z} \, (\langle S^2 \rangle_0^{1/2} k)^{-1} + \cdots$$
(3)

添字0を付けた量は、排除体積効果のない非摂動状態(Θ 状態)における値を意味する、準二 定数理論の枠組では、ガウス鎖に基づく二定数理論に現れる排除体積パラメタzの代りに修正 排除体積パラメタ \tilde{z} を用いる、分子量があまり大きくない場合、高分子鎖を構成する繰返し単 位の衝突頻度は、鎖の固さの影響により、それを考慮していないガウス鎖で評価したものより 小さくなるため、二定数理論では排除体積を過大評価する、 \tilde{z} にはその影響が考慮されている、 分子量が大きくなると、 $\tilde{z} = z$ となり、準二定数理論の結果は二定数理論の結果に一致するが、 分子量百万程度までは両者の違いが残ることが知られている²⁾.

図 4 に示した a-PS と a-P α MS に対す る各温度の結果の最も k の大きいときの 値を用いて作った ($\eta_0\Omega/k_BT$)/($\eta_0\Omega/k_BT$)₀ 対 $\tilde{z}(\langle S^2 \rangle_0^{1/2} k)^{-1}$ プロットを図7に示す. 図中, 実線が式(3) で与えられる1次摂動理論値を 表す. kが小さい場合には妥当であった1次摂 動理論が, kが大きい場合には実験と一致し ないことが分かる. kが大きくなると, Ω は より小さな部分鎖の運動を反映するようにな る. そのような運動は高分子鎖の固さや局所 形態の影響を受けるが, それを考慮していな いガウス鎖では部分鎖の運動を適切に記述で きないことが原因であると考えられる.

文献

- 1) M. Osa, N. Sawatari, T. Yoshizaki, and H. Yamakawa, Polym. J., 38, 643 (2006).
- 2) H. Yamakawa, Helical Wormlike Chains in Polymer Solutions, Springer, Berlin, 1997.
- 3) C. C. Han and A. Z. Akcasu, *Macromolecules*, 14, 1080 (1981).
- 4) Y. Tsunashima, N. Nemoto, and M. Kurata, *Macromolecules*, 16, 1184 (1983).
- 5) L. K. Nicholson, J. S. Higgins, and J. B. Hayter, Macromolecules, 14, 836 (1981).
- 6) T. Yoshizaki, M. Osa, and H. Yamakawa, J. Chem. Phys., 106, 2828 (2006).
- 7) N. Sawatari, T. Yoshizaki, and H. Yamakawa, Macromolecules, 31, 4218 (1998).
- 8) M. Osa, H. Ueda, T. Yoshizaki, and H. Yamakawa, Polym. J., 38, 153 (2006).
- 9) N. Yoshida, T. Yoshizaki, and H. Yamakawa, Macromolecules, 33, 3254 (2000).
- 10) M. Benmouna and A. Z. Akcasu, *Macromolecules*, **11**, 1187 (1978); **13**, 409 (1980).
- 11) G. Tanaka and W. H. Stockmayer, Proc. Natl. Acad. Sci. USA, 79, 6401 (1979).