ポリスチレンとそのオリゴマーの Θ 点近傍における 第 2 ビリアル係数ならびに回転半径膨張因子 溶媒依存性

吉崎 武尚

T. Yoshizaki

京都大学大学院工学研究科高分子化学専攻

1. はじめに

近年,山川ら^{1,2)}は,アタクチックポリスチレン(a-PS)およびそのオリゴマーのシクロヘ キサン(貧溶媒)中 Θ 点(34.5 °C)近傍における第2ビリアル係数 A_2 を測定し,らせんみみ ず(HW)高分子鎖モデルに基づく高分子溶液理論¹⁾を用いて,得られた実験結果に関する詳 細な解析,検討を行った.その結果,この系では, Θ 点以下で,ビーズ間二体クラスター積分 β が1- $\Theta/T \equiv \tau$ (T は絶対温度)の2次関数となることが明らかになった.これは,どのよ うな高分子 溶媒系でも, Θ 点の上下を問わず, Θ 点近傍では $\beta \propto \tau$ が成立するという従来の 定説を覆すものである(ポリメタクリル酸メチル/アセトニトリルのように, Θ 点の上下にお いて $\beta \propto \tau$ が成立する高分子 溶媒系も存在する³⁾.)さらに彼らは,新しく決定された β 値 に基づいて A_2 の排除体積パラメータ z 依存性ならびに回転半径膨張因子 α_S の分子内修正排 除体積パラメータ ž 依存性を検討し, A_2 から末端効果の寄与 $A_2^{(E)}$ を取り除いた $A_2^{(HW)}$ が Θ 点以下では二定数(TP)理論で説明できること,また α_S が準二定数(QTP)理論で説明でき ることを示した.本講では,他の貧溶媒中においてもシクロヘキサン中と同様の結果が得られ るかどうかを検討するために行った,酢酸メチル中での実験結果と解析結果を報告する⁴⁾.

2. 実験

先ず,重量平均分子量 M_w が 3.59×10^5 から 8.04 × 10⁶ の範囲の 5 つの a-PS 試料について,酢 酸メチル中における A_2 を光散乱法で決定した.図 1 から分るように,何れの試料の A_2 も 41.5 °C で 0 となるので, $\Theta = 41.5$ °C と決定した.

次に,この Θ 温度を挟む 30.0—50.0 °C の温度範囲において,4.74×10²(4量体) $\leq M_{\rm w} \leq 4.00 \times 10^4$ の範囲の9試料および $M_{\rm w} = 8.04 \times 10^6$ の試料について, A_2 を光散乱法で決定した. $M_{\rm w} \geq 10^3$ の試料については常法にしたがって測定,解析を行ったが, $M_{\rm w} \leq 10^3$ のオリゴマー試料については,密度散乱と光学定数の濃度依存性が大きいので,その影響を取り除くことができる測定,解析を行った.

 $M_{
m w} = 8.04 \times 10^{6}$ の試料については,光散乱法を 用いて平均二乗回転半径 $\langle S^{2} \rangle$ も決定し,得られた $\langle S^{2} \rangle$ の値から $\alpha_{S}^{2} = \langle S^{2} \rangle / \langle S^{2} \rangle_{\Theta}$ を評価した.ただ し, $\langle S^{2} \rangle_{\Theta}$ は Θ 点における $\langle S^{2} \rangle$ の値である.

-37-

3. 結果と考察

解析理論 $^{1,5)}$ HW 鎖の A_2 は,末端効果を考慮しない値 $A_2^{
m (HW)}$ と末端効果の寄与 $A_2^{
m (E)}$ の和,

$$A_2 = A_2^{(\text{HW})} + A_2^{(\text{E})} \tag{1}$$

で与えられる . $A_2^{
m (HW)}$ は

$$A_2^{(\rm HW)} = (N_{\rm A} c_{\infty}^{3/2} B / 2 M_{\rm L}^{2}) h \tag{2}$$

で与えられ, N_A はアボガドロ定数, $M_L = M/L$ は HW 鎖の鎖長 Lを分子量 M に換算するシフト因子, また c_∞ , B はそれぞれ次のように定義される量である.

$$c_{\infty} = \left[4 + (\lambda^{-1}\tau_0)^2\right] / \left[4 + (\lambda^{-1}\kappa_0)^2 + (\lambda^{-1}\tau_0)^2\right], \qquad B = \beta / a^2 c_{\infty}^{3/2}$$
(3)

ここで, λ^{-1} は HW 鎖の剛直性パラメータ, $\kappa_0 \geq \tau_0$ はそれぞれ HW 鎖に付随する特性らせんの微分幾何学的曲率ならびに捩れ,aは鎖に沿ったビーズ間隔である.式(2)右辺に含まれる hは,|z|が小さい Θ 点近傍で

$$h = 1 - 2.865\tilde{\tilde{z}} + 8.851\tilde{\tilde{z}}^2 + 5.077\tilde{z}\tilde{\tilde{z}} - \cdots$$
(4)

のように \tilde{z} と分子間修正排除体積パラメータ $\tilde{\tilde{z}}$ の展開形で書くことができる. \tilde{z} および $\tilde{\tilde{z}}$ は

$$z = (3/2\pi)^{3/2} (\lambda B) (\lambda L)^{1/2}$$
(5)

で定義される zと, それぞれ次のように関係付けられる.

$$\tilde{z} = (3/4)K(\lambda L)z, \qquad \tilde{\tilde{z}} = [Q(\lambda L)/2.865]z$$
(6)

K, Q は還元鎖長 λL の関数であり, $\lambda L \to \infty$ のコイル極限でそれぞれ 4/3, 2.865 となり TP 理論 ($\tilde{z} = \tilde{\tilde{z}} = z$)を再現する. $\lambda L \leq 1$ の時, z, \tilde{z} , $\tilde{\tilde{z}}$ はともに $\simeq 0$ となるので, 近似的に h = 1と置いて良い. 一方, $A_2^{(E)}$ は次のように与えられる.

$$A_2^{(\mathrm{E})} = a_1 M^{-1} + a_2 M^{-2} \tag{7}$$

ここで, *a*₁, *a*₂ は末端ビーズ間あるいは末端ビーズと HW 鎖内部のビーズとの間の有効過剰二体クラスター積分に依存する係数である.

オリゴマー領域($\lambda L \lesssim 1$)においては h = 1 が成立するので,式 (2) より, $A_2^{(HW)}$ は M に依存せず,したがって次式が成立する.

$$(A_{2,i} - A_{2,j})/(M_i^{-1} - M_j^{-1}) = a_1 + a_2(M_i^{-1} + M_j^{-1})$$
(8)

ただし, $A_{2,i}$, $A_{2,j}$ は, それぞれ異なる二つの分子量 M_i , M_j を持つオリゴマー試料の A_2 である.式(8)より, オリゴマー試料に関する A_2 の測定結果を用いて, $M_i^{-1} + M_j^{-1}$ に対する $(A_{2,i} - A_{2,j})/(M_i^{-1} - M_j^{-1})$ のプロットをつくれば, その切片と傾きから, それぞれ a_1 , a_2 が評価できる.このようにして決定された a_1 , a_2 を用いれば, 式(7)より全分子量領域における $A_2^{(E)}$ が評価でき, A_2 の実測値と併せて式(1)を用いれば $A_2^{(HW)}$ が評価できる.さらに,対象とする高分子鎖の HW モデルパラメータが決定されている場合,得られた $A_2^{(HW)}$ の値を用いて式(2),(3)から β が評価できる.

データ解析と考察 30.0, 32.0, 35.0, 38.0, 41.5, 45.0, および 50.0 °C において得られた $4.74 \times 10^2 \le M_w \le 4.00 \times 10^4$ の範囲の 9 試料に関する A_2 の測定結果を,上述の方法にした がって解析し,各温度における β の値を決定した.β の評価に用いたモデルパラメータの値は $\lambda^{-1}\kappa_0 = 3.0$, $\lambda^{-1}\tau_0 = 6.0$, $\lambda^{-1} = 20.6$ Å, そして $M_L = 35.8$ Å⁻¹ である.また, PS の繰返し 単位 ($M_0 = 104$)が 1 個のビーズに対応するように a の値を選んだ.得られた β の τ に対す るプロットを図 2 に示す.比較のため,シクロヘキサン溶液に関する文献値²⁾ も示した.酢酸 メチル中における β の τ 依存性はシクロヘキサン中のものより小さいが,両溶媒中において Θ 点 ($\tau = 0$)以下で $\beta \propto \tau$ が成立しないことは明らかである.図中, $\tau < 0$ の範囲の太い曲線は酢酸メチル中のデータ点に対する最適 2 次曲線 $\beta = 15\tau - 250\tau^2$ (Å³)であり,また太い 破線は,太い直線で示した $\tau > 0$ の範囲のデータ点に対する最適直線 $\beta = 15\tau$ (Å³)を $\tau < 0$ の領域に延長したものである.以下,この内挿式から計算した β の値と上に述べた HW モデルパラメータの値を用いて式 (5) から計算した z の値を用いる.

図 3 に z に対する $A_2 M_w^{1/2}$ のプロットを示す. 図中,破線で書かれた直線は, $A_2^{(E)} = 0$ ($A_2 = A_2^{(HW)}$)と仮定して

$$A_2^{\rm (HW)} M^{1/2} = A_2^0 zh \tag{9}$$

において h=1 として計算した理論値を表す.ただし, A_2^0 は

$$A_2^0 = 4(\pi/6)^{3/2} N_{\rm A} (c_\infty / \lambda M_{\rm L})^{3/2}$$
(10)

で定義される量であり,上記の a-PS に対する HW モデルパラメータの値を用いれば 0.294 $\text{cm}^3 \text{mol}^{1/2}/\text{g}^{3/2}$ である.また,図中の点線は,式(4) において $\tilde{z} = \tilde{\tilde{z}} = z$ とおいた 1 次 TP 摂動理論値(h = 1 - 2.865z)を表す.図から,鎖の末端の影響によりデータ点が一本の曲線を形成しないことがわかる.

次に z に対する $A_2^{(\text{HW})} M_w^{1/2}$ を図 4 に示す.図中,大きな白丸が今回の結果を,他の小さな印がシクロヘキサン溶液についての文献値を表す.また,図中の破線と点線は図 3 と同じ意味を持つ.図より,溶媒の種類に依らずデータ点が1本の曲線を形成することがわかるが,これは, Θ 点以上とは対照的に, Θ 点以下では $A_2^{(\text{HW})}$ が TP 理論で説明できることを意味する.さらに, Θ 点以下の実験結果が1次摂動理論値によく一致していることがわかる.

最後に, β から評価した \tilde{z} に対する α_s^2 のプロットを図 5 に示す.この図においても,大きな白丸が今回の結果を,他の小さな印がシクロヘキサン溶液についての文献値を表すが,溶媒の種類に依らずデータ点が1本の曲線を形成することがわかる.これは, Θ 点以上と同様, Θ 点以下でも α_s^2 が QTP 理論で説明できることを意味する.図中の実線は α_s^2 に対する 1 次ならびに 2 次摂動理論値を表すが, Θ 点以下の広い範囲で実験結果が 1 次摂動理論値によく一致することがわかる.

以上,シクロヘキサン中と同様,酢酸メチル中においても,a-PSの Θ 点以下の $A_2^{(HW)}$ が TP 理論で,また α_s^2 が QTP 理論で説明できることが実験的に示されたが,それらの関数挙動の 理論的解明が問題として残されている.

文献

- 1) H. Yamakawa, "Helical Wormlike Chains in Polymer Solutions," Springer, Berlin, 1997.
- 2) H. Yamakawa, F. Abe, Y. Einaga, *Macromolecules*, 27, 5704, 1994.
- 3) F. Abe, Y. Einaga, H. Yamakawa, *Macromolecules*, 28, 694, 1995.
- 4) M. Yamada, T. Yoshizaki, H. Yamakawa, Macromolecules, 31, 7728, 1998.
- 5) H. Yamakawa, *Macromolecules*, **26**, 5061, 1993.