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Foreword

One of the rewards of academic life is the opportunity to meet and work
with talented individuals from all over the world. In 1961 Hiromi Yamakawa
came to the University of Chicago to work in my laboratory. We had a
fruitful collaboration and I learned much from him. I have followed his
subsequent work with interest; there are, for me, few pleasures that can
compare with the witnessing of the intellectual evolution and continuing
contributions of former colleagues.

It is in this spirit that I welcome the writing of this book by Professor
Hiromi Yamakawa. He has made many contributions to the theory of
polymer solutions, and writes from the balanced point of view of research
worker and teacher. I believe this book complements those dealing with
polymer solutions already published. No other text available so consistently
includes the effect of excluded volume on the properties of dilute polymer
solutions, and no other so fully develops the distribution function theory
approach. For these reasons I recommend the text to research workers and
students. Although the presentation is concise, and continuous effort is
required to extract all the information implicit in the theory, the reward for
such concentration is large.

Stuart A. Rice





Preface

It is well known that statistical mechanics provides a tool for the
description of the relationship between the macroscopic behavior of sub-
stances and their atomic and/or molecular properties. Clearly, the same
principles apply to polymer science as to the study of small molecules.
However, polymeric systems are too complicated to treat rigorously on
the basis of molecular mechanics, because polymer molecules have an
exceedingly great number of internal degrees of freedom, and thereby
also very complicated intramolecular and intermolecular interactions.
Thus, it is only for dilute solutions that a molecular theory of poly-
mers can be developed in the spirit of, for instance, the equilibrium
and nonequilibrium statistical mechanical theory of simple fluids. In
fact, the physical processes which occur in dilute polymer solutions
can be described in terms of only a few parameters using the random-
flight model. The major purpose of this book is to give a systematic
description of the advances made during the past two decades in the
distribution-function theory of random-flight models for dilute polymer
solutions; this is indicated directly by the title of the book.

The modern theory of polymer solutions has depended on the ad-
vances made since the 1940s in the statistical mechanical theory of
systems of simple molecules. The random-flight model, which was first
investigated by Lord Rayleigh, can now be treated very conveniently
by the methods of Markoff and of Wang and Uhlenbeck. Specifically,
the latter method has facilitated several advances in the theory of the
excluded-volume effect. Except in an ideal state, now called the theta
state, all equilibrium and nonequilibrium properties of dilute polymer
solutions are influenced by the excluded-volume effect. A large part of
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this book is concerned with the excluded-volume effect.
The most elementary treatment of the interactions between chain

units which leads to the excluded-volume effect is an application of the
statistical mechanics of many-particle systems, e.g., the cluster theory
of Mayer and McMillan and also the equilibrium theory of liquids. The
nonequilibrium properties of the solution are treated by an application
of the theory of Brownian motion, or in other words, on the basis of
generalized diffusion equations of the Fokker–Planck type. The modern
theory of polymer solutions may be classified from the point of view of
methodology into these two main subdivisions. Another classification of
the several problems is given in Chapter I. We shall consistently empha-
size the dependence of dilute-solution properties on polymer molecular
weight, as this is an important experimental observable.

The writing of this book was suggested by Professor S. A. Rice in
1961 when the author visited the Institute for the Study of Metals, now
the James Franck Institute, of the University of Chicago. Drafts of the
first few chapters were written during 1961—1963, but the final draft
was not completed then. As in other active fields of science, a large
body of new results has accumulated so rapidly that the original design
of the book had to be modified. It now seems appropriate to provide
a coherent and comprehensive description of the theory of polymer
solutions. This does not mean that the theory has been completely
established. Rather the author hopes that the appearance of this book
at this time will stimulate new developments in the theory of polymer
solutions.

This book is not for the beginner, but rather for graduate students
and research workers. Much of the research presented has been devel-
oped by specialists, and probably has not been read in original form by
many research workers and nonspecialists. Thus, the book is intended,
on the one hand, to provide an understanding of the modern theory of
polymer solutions for these nonspecialists and, on the other hand, to
facilitate the research work of specialists in the field and also of physi-
cists and chemists who wish to enter the field. The derivations of most
mathematical equations are given in sufficient detail to elucidate the
basic physical ideas and the theoretical methods. Although as many
references as possible are cited, accidental omissions will occur and are
the author’s responsibility.

The text is written in the technical terms used in polymer science
and statistical mechanics, with only a few exceptions. For instance, the
term “configuration” is used instead of the term “conformation,” widely
employed by polymer chemists at the present time. We choose this
notation because this book does not deal with stereochemistry, and the
term “configuration integral” or “configurational partition function” is
ordinarily used in the statistical mechanics of many-particle systems.

There remains now only the pleasant task of thanking all those who
have rendered assistance to the author. The author is indebted to Pro-
fessor S. A. Rice for his suggestion of this project, constant interest and
encouragement for many years, and critical reading of the manuscript



Preface xiii

with corrections of the English in it. Thanks are also tendered to Pro-
fessor W. H. Stockmayer for his reading of the manuscript and his
lecture at Kyoto University in 1966, which influenced Chapter VI; and
to Professor B. H. Zimm for his valuable criticisms of Chapter I and II.

It is a great pleasure to thank Professor Emeritus I. Sakurada for his
guidance in polymer chemistry and his general interest and encourage-
ment for many years. The author has carried out much of the research
reported with Professor M. Kurata, and benefited from numerous dis-
cussions with him. His constant interest and encouragement over the
years must also be acknowledged. Professor H. Fujita provided valu-
able criticisms of the manuscript and ideas in Chapter VII, for which
the author wishes to thank him. Needless to say, the writing of this
book was made possible by the many papers published in many scien-
tific journals. The author is grateful to these journals and the authors
concerned.

Finally, it is a pleasure to acknowledge the assistance of Dr. G.
Tanaka who read the manuscript and prepared the figures and the
indices, and of Miss S. Sugiura who prepared the typescript and the
indices.

Hiromi Yamakawa
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Chapter One

Introduction

1. Survey of the Field

At the very outset of the study of the properties of polymer solutions,
in the 1920s, pioneering studies of solution viscosities were carried out
by Staudinger. It was his intent to provide evidence supporting the
hypothesis that polymers are composed of simple low-molecular-weight
compounds connected linearly by covalent bonds. Indeed, the principal
objective of early investigations of polymer solutions was to establish
methods of molecular weight determination or molecular characteri-
zation, and theories of dilute polymer solutions which were developed
subsequently are related to this problem in many cases. Emphasis is fo-
cused on solution properties because polymer molecules cannot exist in
a gaseous state and the characterization of a single polymer molecule is
therefore possible only in solutions so dilute that the polymer molecules
are well separated from one another.

The first theoretical investigations of the properties of polymers
occurred in the 1930s. The foremost of these advances is a statis-
tical treatment of the configurational description of a polymer chain
developed independently by Kuhn and by Guth and Mark. These in-
vestigators arrived at the significant conclusion that the mean-square
end-to-end distance of the chain is proportional to the number of ele-
ments constituting it. This deduction provides the foundation for the
presently accepted random-flight model in the theory of dilute polymer
solutions. Further application of statistical mechanics to the study of
the properties of polymer solutions was delayed until the early 1940s.
The new developments evolved in two directions. First, there were a
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number of direct applications of the theory of random-flight statistics
to dilute solution properties. The notable results are represented by
the theory of light scattering (Debye and Zimm), the theory of intrin-
sic viscosities (Debye, Kirkwood, and others), and the theory of virial
coefficients (Zimm) based on the first general molecular theory of solu-
tions presented by McMillan and Mayer in 1945. The other direction
is represented by the lattice theory of polymer solutions, which was de-
veloped first by Flory and independently by Huggins in 1942 in order
to explain the very large deviations from ideality exhibited by polymer
solutions. The Flory–Huggins theory became a standard starting point
in the statistical thermodynamics of concentrated polymer solutions.
In 1949 and 1950, Flory introduced two new important concepts, now
called the excluded-volume effect and the theta state or theta point.
Both effects arise from the fact that two elements, possibly remote from
each other in sequence along the chain, interact with each other. For
example, two elements cannot occupy the same point in space at the
same time, thereby generating an excluded volume. The theta state
is defined as a sort of ideal state, in the sense that in that state the
volume effect apparently vanishes and the chain behaves like an ideal
random-flight chain. Thus, by the early 1950s, there had been estab-
lished the basic physical description of the polymer solution along with
the first step in the development of a theory of dilute polymer solutions.
The advances made during the last two decades have delineated the re-
lationship between the theory of polymer solutions and other branches
of the molecular sciences.

Now, the molecular weight of a given polymeric compound may vary
almost continuously from small to very large values, whereas a given
low-molecular-weight compound possesses a definite molecular weight
characteristic of that compound. In general, the properties of dilute
polymer solutions, or more generally polymeric systems, are dependent
on their molecular weight. This is an important aspect characteristic
of polymeric systems, which is never observed in systems consisting
of low-molecular-weight compounds. Thus the molecular weight is an
important variable which may in fact be regarded as continuous. This
is the reason why a single polymer molecule may be considered a sys-
tem of the statistical-mechanical ensemble; it is the most fundamental
system in the development of the theory. It should be noted that in
the theory of dilute polymer solutions the solvent is usually treated as
a continuous medium, and not on the molecular level. The principal
tool is, of course, classical equilibrium statistical mechanics; nonequi-
librium statistical mechanics has not yet been applied to the study of
the frictional properties of dilute polymer solutions.

The main part of the theory of polymer solutions consists of a group
of theories, now called the two-parameter theory. Within the frame-
work of the two-parameter theory, the properties of dilute polymer solu-
tions, such as average molecular dimensions, second virial coefficients,
and intrinsic viscosities, may be expressed in terms of two basic pa-
rameters; one is the mean-square end-to-end distance 〈R2〉0 of a chain
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in the theta state, and the other is the excluded-volume parameter,
which is usually designated by z. The parameter z is proportional to
the effective excluded volume for a pair of chain elements at infinite
dilution and also to the square root of the number of elements in the
chain. The excluded volume, and hence the parameter z, vanish at the
theta point. This is, indeed, the definition of the theta point or theta
state. The central problem in the theory is to derive interrelations be-
tween the dilute-solution properties and the parameters 〈R2〉0 and/or
z, in particular for linear flexible chains. Thus this group of prob-
lems is ultimately concerned with the exploration of the dependence of
dilute-solution properties on molecular weight.

There is another important group of problems. In these attention is
focused primarily on relationships between the chain structure and the
dilute-solution properties, especially the average molecular dimensions
in the theta state. The chain structure is considered on the atomic level
or on the subchain level. The description of the conformational statis-
tics of polymer chains belongs to the first case, in which the local chem-
ical structure of a chain is considered in detail; that is, restrictions on
the angles between successive bonds in the chain and steric hindrances
to internal rotation about the bonds are explicitly taken into account
in a calculation of the quantity 〈R2〉0 itself. Intramolecular interfer-
ences of this sort are of short-range nature, while the excluded-volume
effect is of long-range nature. In fact, there have been a number of
significant advances in the theory of conformational statistics as well
as in the two-parameter theory. For the second case, in which the chain
structure on the subchain level is considered, attention is focused on
the differences between the dilute-solution properties of linear flexible
chains and chains of other types, such as branched and ring polymers
and stiff chains.

In the first group of problems, many-body problems are often en-
countered, and also the self-consistency of theories is an important
factor to be discussed. Thus, these have the nature of purely phys-
ical problems. On the other hand, the second group of problems is
of importance for molecular characterization. It should be noted that
both groups of problems have been studied in order to emphasize their
interrelations.

2. Scope and Introductory Remarks

Many of the chapters of this book will be devoted to the description of
the two-parameter theory for linear flexible chain polymers. The reason
for this is that the two-parameter theory for linear flexible chains is
good enough to provide an understanding of the basic physical processes
in dilute polymer solutions and of the theoretical procedures. Studies
of the properties of branched and ring polymers and stiff chains will
be found in the sections of chapters entitled Remarks or Remarks and
Topics. The analysis of the effects of short-range interferences in a chain
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will be omitted, although not completely, since it must be discussed in
the study of conformational statistics. Thus, the basic molecular model
used in this book is the random-flight model or its modifications.

Chapter II presents in detail the mathematical foundation of the
statistics of ideal random-flight chains, and is also an introduction to
the later chapters. In Chapter III there is a detailed description of the
theory of the excluded-volume effect, including both the perturbation
theory and the other approximate treatments. The present status of
the theory is, of course, discussed in detail. No complete solution has
as yet been obtained, because the problem is similar to the many-body
problem in the theory of simple liquids. Chapter III is, indeed, the core
of this book. Chapter IV deals with the theory of virial coefficients on
the basis of the McMillan–Mayer general theory of solutions. In par-
ticular, the theory of the second virial coefficient is described in detail.
Chapter V covers the ordinary theory of light scattering (involving the
fluctuation theory), the distribution function theory, and some other
topics. Chapter VI deals with the theory of transport properties, such
as intrinsic viscosities and friction coefficients. Although the dynami-
cal properties are also discussed, the theory of viscosities is worked out
mainly for the case of steady shear rate. The theory of viscosity is very
difficult, and no available representation of the viscosity seems to be
satisfactory. In Chapter VII, a comparison of the two-parameter theory
with experiment is made. In doing this, a fundamental difficulty arises
from the fact that the parameter z is not directly observable. This
problem is discussed in detail.

The reader who wishes to learn some of the elementary concepts
of polymer chemistry, conformational statistics, or the fundamentals of
statistical mechanics is referred to some of the books listed below.

References

1. P. J. Flory, “Principles of Polymer Chemistry,” Cornell University
Press, Ithaca, New York, 1953.

2. H. Tompa, “Polymer Solutions,” Butterworths Scientific Publica-
tions, London, 1956.
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5. T. M. Birshtein and O. B. Ptitsyn, “Conformations of Macro-
molecules,” Interscience Publishers, New York, 1966.
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Chapter Two

Statistics of Ideal
Polymer Chains:
Random-Flight Problems

3. Introduction

The theory of dilute polymer solutions begins with a formulation of
the distribution for a single linear flexible polymer chain in an infinite
solvent medium. This simplified system may be realized at infinite di-
lution where all intermolecular interactions between solute polymers
may be neglected. Now, there exist many degrees of internal-rotational
freedom about the single bonds in the chain in addition to the irregular
translational and rotational motions of the entire molecule due to ther-
mal Brownian motion. As a consequence of this and the great number
of elements constituting the chain, an almost limitless number of chain
configurations may be realized by the polymer molecule. The instanta-
neous configuration of the entire chain can be specified by all internal
and external coordinates of the molecule. The Cartesian coordinates of
the centers of elements in the chain may be chosen as such coordinates.
We denote the coordinates of element j by Rj , assuming that the chain
is composed of n + 1 elements joined successively and the elements are
numbered 0, 1, 2, . . ., n from one end to the other. In this book, a
portion of the chain belonging to the representative point Rj will be
often referred to as the segment instead of the element. In the case of a
polymethylene chain, for example, Rj represents the coordinates of the
jth carbon atom and the methylene group is considered a segment.∗

It is evident that the statistical properties of an isolated chain are
independent of its external coordinates. Accordingly, suppose that seg-

∗In later chapters, by the term “segment” we do not necessarily mean that only
one carbon atom is contained in a segment of the backbone chain.
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ment 0 is fixed at the origin of the Cartesian coordinate system, as
depicted in Fig. II. 1. The configurational partition function Z for the
system under consideration may then be written in the form,

Z =
∫

exp

[
−U

({Rn}
)

kT

]
d{Rn} , (3.1)

where {Rn} is a shorthand notation for a set of coordinates R1, R2, . . .,
Rn, and U is the potential energy of the system and may be expressed
as

U
({Rn}

)
=

n∑

j=1

uj(Rj−1,Rj) + W
({Rn}

)
. (3.2)

The potential uj takes account formally of the fact that the j − 1th
and jth segments (or carbon atoms) are connected through a valence
bond, and therefore the potential W includes interactions of all other
types such as bond angle restrictions and steric hindrances to inter-
nal rotation, and also long-range interferences between segments. In
Eq. (3.1), it should be understood that integration over coordinates of
the solvent molecules has already been performed, and therefore that
W plays the role of the potential of mean force. The instantaneous
distribution P

({Rn}
)

for the entire chain is given by

P
({Rn}

)
= Z−1 exp

[
−U

({Rn}
)

kT

]
. (3.3)

It is often convenient to use, instead of the set of Rj , coordinates
rj called the bond vector and defined by

rj = Rj −Rj−1 . (3.4)

Further, we define a distribution function τj(rj) by

τj(rj) = exp
[
−uj(rj)

kT

]
(3.5)

with uj(rj) = uj(Rj−1,Rj). The zero of the potential uj is chosen in
such a way that τj is normalized to unity:

∫
τj(rj)drj = 1 . (3.6)

The function τj is referred to as the bond probability since τjdrj rep-
resents the probability that the (vector) length of the jth bond lies
between rj and rj + drj . Note that by definition uj and hence τj are
spherically symmetric, i.e., functions of rj = |rj | only. Equation (3.1)
may then be rewritten in the form,

Z =
∫ 


n∏

j=1

τj(rj)


 exp

(
−W

kT

)
d{rn} . (3.7)
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Fig. II.1. Configurations of a polymer chain with the 0th segment fixed at the

origin of a coordinate system.

The distribution function P (R) of the end-to-end distance R (≡ Rn)
can be obtained by integrating P

({Rn}
)

over {rn} under the restric-
tion,

n∑

j=1

rj = R . (3.8)

That is,

P (R) = Z−1

∫ 


n∏

j=1

τj(rj)


 exp

(
−W

kT

)
d{rn}
dR

, (3.9)

which is normalized as
∫

P (R)dR = 1 . (3.10)

In this chapter, we shall deal with the ideal case in which W = 0.
With this assumption, Eq. (3.9) becomes

P (R) =
∫ 


n∏

j=1

τj(rj)


 d{rn}

dR
(3.11)

with Z = 1. Thus the problem of evaluating P (R) of Eq. (3.11) is
equivalent to that of random flights or the Brownian motion of a free
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particle, which may be stated as follows: “A particle undergoes a se-
quence of displacements r1, r2, . . ., rn, the magnitude and direction
of each displacement being independent of all the preceding ones. The
probability that the displacement rj lies between rj and rj + drj is
governed by a distribution function τj(rj) assigned a priori. We ask:
What is the probability P (R)dR that after n displacements the posi-
tion R(= r1 +r2 + · · ·+rn) of the particle lies between R and R+dR.”
For this reason, a chain whose distribution can be determined in terms
of only τj ’s is called a random-flight chain. The statistical properties
of random-flight chains may be completely analyzed by the use of the
Markoff method (Section 4) and the Wang–Uhlenbeck method (Sec-
tion 6).

4. The Markoff Method for
the General Problem of Random Flights

Historically the problem of random flights was formulated first by
Pearson1 in terms of the wanderings of a drunkard, and the solution in
three dimensions was obtained for small and very large values of n, the
number of steps, by Rayleigh.2 In its most general form the problem was
formulated by Markoff3 and subsequently by Chandrasekhar.4 In this
section, we consider a slight generalization of the problem presented
in the last section and the method for obtaining its general solution,
which can readily be applied to other problems besides that of finding
P (R) in later sections. However, this formulation is less general than
that of Chandrasekhar.

Consider n, three-dimensional vectors,

φj = (φjx, φjy, φjz) (j = 1, . . . , n) , (4.1)

where the components are assumed functions of three coordinates in a
Cartesian coordinate system:

φjs = φjs(xj , yj , zj) (s = x, y, z) . (4.2)

Further, the probability that the xj , yj , zj occur in the range,

xj ∼ xj + dxj ; yj ∼ yj + dyj ; zj ∼ zj + dzj ,

is assumed to be given a priori by

τj(xj , yj , zj)dxjdyjdzj ≡ τj(rj)drj , (4.3)

τj satisfying the normalization condition of (3.6). That is, τj is inde-
pendent of all the preceding vectors rk with k < j, and the process
under consideration is just a simple Markoff process. Now the problem
is to find the distribution function P (Φ) of the resultant Φ of n original
vectors,

Φ =
n∑

j=1

φj , (4.4)
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that is, the probability P (Φ)dΦ that Φ lies between Φ and Φ + dΦ.
Obviously the probability that φj lies between φj and φj +dφj is equal
to the probability that rj lies between rj and rj +drj . In our notation,
P (Φ) may therefore be written as

P (Φ) =
∫ 


n∏

j=1

τj(rj)


 d{rn}

dΦ
, (4.5)

where d{rn} = dr1 . . . drn, and the integration goes over all magnitudes
and directions of all rj at constant Φ with the condition of (4.4).

The restriction on the integration of (4.5) can be removed by in-
troducing Dirichlet’s cutoff integral or a Fourier representation of a
three-dimensional Dirac delta function as follows,

P (Φ) =
∫

δ(r)




n∏

j=1

τj(rj)drj


 , (4.6)

where

r = Φ−
n∑

j=1

φj , (4.7)

δ(r) = (2π)−3

∫
exp(−ir · ρ)dρ . (4.8)

Equation (4.6) with (4.7) and (4.8) can be rewritten in the form,

P (Φ) = (2π)−3

∫
K(ρ) exp(−iΦ · ρ)dρ (4.9)

with

K(ρ) =
n∏

j=1

∫
τj(rj) exp(iρ · φj)drj . (4.10)

From Eq. (4.9) and the Fourier inversion formula, K(ρ) is seen to be the
three-dimensional Fourier transform of the distribution function P (Φ):

K(ρ) =
∫

P (Φ) exp(iρ ·Φ)dΦ . (4.11)

Thus, the advantage of the method introduced is that P (Φ) can be
obtained by an inverse transformation of K(ρ) which can be evaluated
from Eq. (4.10) without any restriction on the range of integration. In
general, the Fourier transform, K, of a distribution function is called
the characteristic function of that distribution function.

We now examine the properties of the characteristic function. Ex-
panding the exponential in Eq. (4.11), we have

K(ρ) =
∞∑

k=0

1
k!

∫
(iρ ·Φ)kP (Φ)dΦ . (4.12)
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If Φρ is the component of Φ in the direction of ρ, Eq. (4.12) becomes

K(ρ) =
∞∑

k=0

1
k!
〈Φ k

ρ 〉(iρ)k (4.13)

with
〈Φ k

ρ 〉 =
∫

Φ k
ρ P (Φ)dΦ . (4.14)

In particular, if P (Φ) is spherically symmetric, the integral of (4.14)
can be evaluated by using polar coordinates with the z axis in the
direction of ρ as follows,

〈Φ k
ρ 〉 =

1
k + 1

〈Φk〉 for k = 2p ,

= 0 for k = 2p + 1 , (4.15)

where

〈Φ2p〉 =
∫

Φ2pP (Φ)dΦ

=
∫ ∞

0

Φ2pP (Φ)4πΦ2dΦ . (4.16)

Equation (4.13) may then be rewritten in the form,

K(ρ) =
∞∑

p=0

(−1)p

(2p + 1)!
〈Φ2p〉ρ2p . (4.17)

Thus the expansion coefficients of the characteristic function yield the
moments, 〈Φ2p〉, of the distribution function (assuming spherical sym-
metry). In turn, when all the moments are given the distribution func-
tion can be determined completely.

5. Distribution of the End-to-End
Distance and Related Quantities

It is evident that when we put Φ = R and φj = rj Eqs. (4.9) and
(4.10) become the basic equations from which the distribution function
of the end-to-end distance of a polymer chain can be evaluated. For
simplicity, we consider a polymer chain, an example of which is a vinyl
polymer, whose bond probabilities τj(rj) are identical for all j, and
omit the subscript j.∗ The basic equations may then be written in the
forms,

P (R) = (2π)−3

∫
K(ρ) exp(−iR · ρ)dρ , (5.1)

K(ρ) =
[∫

τ(r) exp(iρ · r)dr
]n

. (5.2)

To carry out the calculation the form of τ must be specified.
∗Most of the problems in this book will be discussed on the basis of this model.
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5a. Exact Expression for the Bond Probability

We may assume that each bond has a constant length a, neglecting the
deviation of the length of a valence bond from its mean value a due
to atomic vibrations in the spine of the chain. The constancy of bond
length may be taken into account by expressing the bond probability
in terms of a delta function;

τ(r) =
1

4πa2
δ
(|r| − a

)
. (5.3)

By using polar coordinates with the z axis in the direction of ρ, the
integral in Eq. (5.2) can then be easily evaluated to give

K(ρ) =
[
sin(aρ)

aρ

]n

. (5.4)

Substitution of Eq. (5.4) into Eq. (5.1) leads to

P (R) =
1

2π2R

∫ ∞

0

ρ sin(Rρ)
[
sin(aρ)

aρ

]n

dρ , (5.5)

where use has been made again of polar coordinates. Note that P (R) is
spherically symmetric. In general, if the bond probability is spherically
symmetric, so are both the characteristic and distribution functions,
provided φj and rj are in the same direction for all j.

We first evaluate the moments 〈R2p〉 of the distribution of (5.5)
from Eq. (5.4) by the method of cumulants. The logarithm of the
characteristic function of (4.13) may be expanded in the form,5, 6

ln K(ρ) = ln

[ ∞∑

k=0

µk

k!
(iρ)k

]

=
∞∑

k=1

κk

k!
(iρ)k (5.6)

with µk ≡ 〈R k
ρ 〉 the kth moment.∗ The coefficient κk is called the kth

cumulant (semiinvariant). The kth cumulant can be explicitly repre-
sented in terms of only the moments µj with j ≤ k, and vice versa.
Without proof, we use the result,7

µk = k!
∑
m

k∏

j=1

1
mj !

(
κj

j!

)mj

, (5.7)

where
∑

m means the summation over all sets of m1, m2, . . . compatible
with

k∑

j=1

jmj = k .

∗Sometimes the moment generating function M(�) ≡ K(�/i), the Laplace trans-
form of the distribution function, is used instead of the characteristic function.
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Now the logarithm of Eq. (5.4) can be expanded as

ln K(ρ) = −n

∞∑

l=1

Bl(2a)2l

(2l)!2l
ρ2l (5.8)

with Bl the Bernoulli numbers (Bl = 1/6, B2 = 1/30, . . .). A compar-
ison of Eq. (5.8) with (5.6) leads to

κk = (−1)l−1(2l)−1Bln(2a)2l for k = 2l ,

= 0 for k = 2l + 1 . (5.9)

Substituting Eq. (5.9) into Eq. (5.7) and recalling that 〈R2p〉 =
(2p + 1)µ2p, we obtain

〈R2p〉 = (−1)p(2p + 1)!
∑
m

p∏

l=1

1
ml!

[
−Bln(2a)2l

(2l)!2l

]ml

(5.10)

with
p∑

l=1

lml = p .

In particular, when p = 1, Eq. (5.10) yields the mean-square end-
to-end distance 〈R2〉 or root-mean-square end-to-end distance 〈R2〉1/2

as a measure of the average size of the random-flightchain,

〈R2〉 = na2 , (5.11)

or
〈R2〉1/2 = n1/2a . (5.12)

It is important to observe that the mean-square end-to-end distance is
proportional to the number of bonds or segments in the chain. This
characteristic will be referred to as the Markoff nature of a chain.

We now proceed to evaluate the integral in Eq. (5.5). This will be
done for three cases of interest.

5a(i). Exact Solution

The exact solution was obtained by Treloar,8 by Wang and Guth,9 by
Nagai,10 and by Hsiung et al.,11 the mathematical techniques being
different from one another. The evaluation is made conveniently using
the theory of functions.

Equation (5.5) may be rewritten in the form,

P (R) = − i

4π2a2R

∫ +∞

−∞
ξ exp

(
iRξ

a

)
·
(

sin ξ

ξ

)n

dξ (5.13)

with
ξ = aρ . (5.14)
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Using the development,

sinn ξ =
1

(2i)n

n∑
p=0

(−1)p

(
n
p

)
exp(inξ − 2ipξ) , (5.15)

Eq. (5.13) may be further rewritten in the form,

P (R) = − 1
2n+2in−1π2a2R

n∑
p=0

(−1)p

(
n
p

) ∫ +∞

−∞

ei(n−2p+R/a)ξ

ξn−1
dξ .

(5.16)
We now consider the integral,

I =
∮

eibξ

(ξ + iε)n−1
dξ (5.17)

with ε > 0. When b > 0, the contour of integration consists of a large
half circle of radius r in the upper complex plane and the real axis
between −r and r; when b ≤ 0, a large half circle of radius r in the
lower complex plane and the real axis between −r and r. When b > 0,
application of Cauchy’s integral formula leads to

∫ +∞

−∞

eibξ

ξn−1
dξ = lim

r→∞
ε→0

I = 0 (b > 0) . (5.18)

On the other hand, when b ≤ 0, application of Goursat’s theorem leads
to

∫ +∞

−∞

eibξ

ξn−1
dξ = − lim

r→∞
ε→0

I

= − lim
ε→0

2πi

(n− 2)!

[
dn−2

dξn−2
eibξ

]

ξ=−iε

= − 2πin−1

(n− 2)!
bn−2 (b ≤ 0) . (5.19)

Substituting Eqs. (5.18) and (5.19) with b = n−2p+R/a into Eq. (5.16)
and putting n− p = k, we obtain the result,

P (R) =
1

2n+1(n− 2)!πa2R

k≤(n−R/a)/2∑

k=0

(−1)k

(
n

k

) (
n− 2k − R

a

)n−2

.

(5.20)
Although Wang and Guth9 have also used the theory of functions to
arrive at Eq. (5.20), their procedure is incorrect.

The series displayed in Eq. (5.20) contains, as special cases, the
expressions derived by Rayleigh2 and Chandrasekhar4 for the first few
values of n. Since this series is not useful for practical computations
in our problems (with n large), we introduce some approximations to
obtain a closed expression.
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5a(ii). Case for n À 1

The asymptotic solution for large n can be obtained by the method
of steepest descents9 (see Appendix II A). Equation (5.13) may be
rewritten in the form,

P (R) =
1

4iπ2a2R

∫ +∞

−∞
ξ exp

[
nf(ξ)

]
dξ , (5.21)

where

f(ξ) = i

(
R

na

)
ξ + ln

(
sin ξ

ξ

)
. (5.22)

The integrand of Eq. (5.21) is analytic in the entire finite complex plane.
The saddle point, given by the condition

f ′(ξ) = 0 , (5.23)

can be shown to be the point ξ0 = iy0 on the positive imaginary axis
with

coth y0 − 1
y0

= L(y0) =
R

na
, (5.24)

where L is the Langevin function. Further, in the vicinity of the saddle
point, f(ξ) may be expanded as

f(ξ) = f(ξ0) + 1
2f ′′(ξ0)(ξ − ξ0)2 + · · · (5.25)

with
f ′′(ξ0) = cosech2y0 − 1

y 2
0

< 0 , (5.26)

and the contour of integration should therefore be the line through ξ0

and parallel to the real axis. Thus Eq. (5.21) can be approximated by

P (R) =
exp

[
nf(iy0)

]

4iπ2a2R

∫ +∞

−∞
(x + iy0) exp

[
1
2nf ′′(iy0)x2

]
dx

=
(

y0

4π2a2R

)[
− 2π

nf ′′(iy0)

]1/2

exp
[
nf(iy0)

]
. (5.27)

That is,

P (R) =

[L−1(t)
]2

(2πna2)3/2t
{
1− [L−1(t)cosech L−1(t)

]2}1/2

×
{

sinhL−1(t)
L−1(t) exp

[
tL−1(t)

]
}n

(5.28)

with
t ≡ R

na
,

where L−1 is the inverse Langevin function.
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It should be noted that Eq. (5.28) is valid over the whole range of
R, 0 ≤ R ≤ na (full extension). The problem was also solved by Kuhn
and Grün12 and by James and Guth13 in a different manner. Their
procedure is based on the fact that the problem is essentially equivalent
to that of finding the polarization of a gas due to the orientation of
permanent magnetic or electric dipoles in an external field of sufficient
strength to produce effects approaching complete orientation.

Now, expanding Eq. (5.28) for R/na ¿ 1 and renormalizing it, we
obtain

P (R) = C

(
3

2πna2

)3/2

exp
(
− 3R2

2na2

)(
1 +

3R2

2n2a2
− 9R4

20n3a4
+ · · ·

)
,

(5.29)
where C is the normalizing constant. This expansion is equivalent to
that obtained by Kuhn and Grün and by James and Guth. We note
that originally Eqs. (5.20), (5.28), and (5.29) were derived with the
aim of explaining the behavior of polymeric network systems (rubber
elasticity) at high extensions.14

5a(iii). Case for n À 1 and R/na ¿ 1

Equation (5.29) is, of course, valid for this case. However, the same
result can be obtained in a simpler manner, which we first describe.
Equation (5.8) may be rewritten in the form,

K(ρ) = exp
(− 1

6na2ρ2
)
exp

[
−n

∞∑

l=2

Bl(2a)2l

(2l)!2l
ρ2l

]

= exp
(− 1

6na2ρ2
) ·

[
1− 1

180
n(aρ)4 + · · ·

]
. (5.30)

Integration after substitution of Eqs. (5.4) and (5.30) into Eq. (5.5)
leads to

P (R) =
(

3
2πna2

)3/2

exp
(
− 3R2

2na2

)[
1− 3

20n

(
5− 10R2

na2
+

3R4

n2a4

)

+O(n−2)
]

. (5.31)

This equation satisfies the normalization condition of (3.10), and Eq.
(5.29) becomes identical with Eq. (5.31) when the normalizing constant
C is determined.

Evidently the expansion of (5.31) is valid under the present condi-
tions, and asymptotically approaches

P (R) =
(

3
2πna2

)3/2

exp
(
− 3R2

2na2

)
. (5.32)

This Gaussian asymptotic solution is originally due to Rayleigh.2 Now
we consider the moments of (5.10) in the limit of n → ∞. Recalling
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that the term with the highest power of n in the sum in Eq. (5.10)
corresponds to the set, m1 = p, m2 = · · · = mp = 0, we retain only
this term (for n →∞) to obtain

〈R2p〉 =
(2p + 1)!

6pp!
(na2)p . (5.33)

Substitution of Eq. (5.33) into Eq. (4.17) with Φ = R leads to

K(ρ) = exp(− 1
6na2ρ2) . (5.34)

The inverse Fourier transform of Eq. (5.34) just gives Eq. (5.32). These
results state the central limit theorem for the random-flight chain. Thus
Eqs. (5.33) and (5.34) yield the moments and the characteristic function
of the Gaussian distribution. Note that in the particular case of p = 1,
Eq. (5.33) reduces exactly to Eq. (5.11). When we approximate the
distribution function P (R) for the random-flight chain by Eq. (5.32),
it is sometimes called the Gaussian chain.

5b. Approximate Expression for the Bond Probability

Let us approximate the bond probability τ by a Gaussian function such
that it gives the correct mean-square length a2 of the bond; that is,

τ(r) =
(

3
2πa2

)3/2

exp
(
−3r2

2a2

)
. (5.35)

Then the Fourier transform of this function is exp(−a2ρ2/6) and the
characteristic function becomes equal to Eq. (5.34). Accordingly the
distribution function of the end-to-end distance becomes the Gaussian
function, Eq. (5.32). This implies that in the statistics of the Gaussian
chain the exact bond probability may be replaced by the Gaussian bond
probability. In fact, most of the problems in this book will be treated
on the basis of the Gaussian chain model with the use of Eq. (5.35).
Thus it is worthwhile to describe here further details pertinent to the
Gaussian chain.

Using Eq. (5.11), Eq. (5.32) may also be written in the form,

P (R) =
(

3
2π〈R2〉

)3/2

exp
(
− 3R2

2〈R2〉
)

. (5.36)

For illustrative purposes, the functions P (R) and 4πR2P (R) (the prob-
ability density that R lies between R and R + dR irrespective of the
direction of R) for a Gaussian chain with 〈R2〉1/2 = 300 (Å) are plotted
against R in Fig. II.2. The maximum of 4πR2P (R) occurs at

R∗ =
(

2
3

)1/2 〈R2〉1/2 , (5.37)

which represents the most probable value of R and is somewhat smaller
than the root-mean-square end-to-end distance.
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Fig. II.2. Gaussian distribution functions of the end-to-end vector R and the

end-to-end distance R of a polymer chain with the root-mean-square end-to-end

distance of 300 Å.

In Fig. II.3 a comparison is made of the Gaussian distribution func-
tion 4πR2P (R) (broken curve) and the corresponding exact distribu-
tion function from Eq. (5.20) (full curve) for a = 1 and n = 10. It is
seen that even for n = 10 the asymptotic Gaussian distribution gives
surprising accuracy over the whole range. It must however be recog-
nized that the Gaussian distribution has finite, although small, values
even for R > na, where the exact value is zero; Eq. (5.32) or (5.36)
becomes invalid at values of R approaching full extension of the chain.

In general, a linear chain may be considered to be composed of
subchains joined successively at their ends. It is then evident that these
subchains are mutually independent for the random-flight chain. Thus
the distribution function P (Rij) of the distance Rij between segments
i and j (j > i) in the Gaussian chain can readily be written as

P (Rij) =

(
3

2π〈R 2
ij 〉

)3/2

exp

(
− 3R 2

ij

2〈R 2
ij 〉

)
(5.38)

with
〈R 2

ij 〉 = (j − i)a2 , (5.39)

where segment i, instead of 0, may be supposed to be fixed at the
origin.

From the previous discussion, it seems quite adequate to approx-
imate the random-flight chain, which is a basic model for polymer
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Fig. II.3. Comparison of the distribution functions of the end-to-end distances

of an exact random-flight chain and of a Gaussian chain, each with a = 1 Å and

n = 10. Full curve: exact random-flight chain. Broken curve: Gaussian chain.

chains, by the Gaussian chain in the theoretical treatment of the prop-
erties of dilute polymer solutions. The reasons for this may be summa-
rized as follows: (1) the deviation of the Gaussian distribution from the
exact one is small over the range ordinarily of interest, (2) the Gaus-
sian distribution gives the exact value for the mean-square end-to-end
distance (the deviation at high extensions has no influence on average
chain dimensions), and (3) various calculations can be greatly simpli-
fied by the use of the Gaussian distribution, in particular, the Gaussian
bond probability.

6. The Wang-Uhlenbeck Method for
Multivariate Gaussian Distributions

This method is an extension of Markoff’s method in the particular
case for which the distribution function τj(rj) is given by the Gaussian
function,

τj(rj) =

(
3

2πa 2
j

)3/2

exp

(
−3r 2

j

2a 2
j

)
, (6.1)
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where all aj are assumed not to be equal, for convenience. Let us
consider ns, three-dimensional vectors φkj defined by

φkj = ψkjrj

(
j = 1, 2, . . . , n
k = 1, 2, . . . , s; s ≤ n

)
, (6.2)

where the ψkj are constants, and the components of each of these vec-
tors are just functions of xj , yj , and zj as before. The problem is to
find the multivariate distribution function P

({Φs}
)

= P (Φ1, . . . ,Φs)
or the simultaneous probability density of s resultant vectors,

Φk =
n∑

j=1

φkj =
n∑

j=1

ψkjrj (k = 1, 2, . . . , s) , (6.3)

each being a linear combination of n vectors rj . The problem in the case
of a one-dimensional rj was formulated first by Wang and Uhlenbeck,15

and the extension to the three-dimensional case was made by Fixman.16

Before solving this problem, we note that P
({Φs}

)
is normalized as

∫
P

({Φs}
)
d{Φs} = 1 , (6.4)

and that the distribution function P
({Φr}

)
of a subset {Φr} of the set

{Φs} is given by

P
({Φr}

)
=

∫
P

({Φs}
)d{Φs}
d{Φr} , (6.5)

Now we many write P
({Φs}

)
in the form,

P
({Φs}

)
=

∫ 


n∏

j=1

τj(rj)


 d{rn}

d{Φs} , (6.6)

which, by the use of Eq. (6.1) and s, three-dimensional Dirac delta
functions, reduces to

P
({Φs}

)
= (2π)−3s

∫ n∏

j=1

(
3

2πa 2
j

)3/2

exp
(
−3r 2

j

2a 2
j

)
drj

×
s∏

k=1

exp


iρk ·

( n∑

j=1

ψkjrj −Φk

)
 dρk . (6.7)

That is,

P
({Φs}

)
= (2π)−3s

∫
K

({ρs}
)
exp

(
−i

s∑

k=1

ρk ·Φk

)
d{ρs} (6.8)

with

K
({ρs}

)
=

n∏

j=1

(
3

2πa 2
j

)3/2 ∫
exp

(
−3r 2

j

2a 2
j

+i

s∑

k=1

ψkjρk ·rj

)
drj . (6.9)
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In this case, the characteristic function K
({ρs}

)
is the 3s-dimensional

Fourier transform of the distribution function P
({Φs}

)
;

K
({ρs}

)
=

∫
P

({Φs}
)
exp

(
i

s∑

k=1

ρk ·Φk

)
d{Φs} . (6.10)

The integral in Eq. (6.9) can be easily evaluated to give

K
({ρs}

)
= exp

[
− 1

6 〈a2〉
s∑

k=1

s∑

l=1

Cklρk · ρl

]
, (6.11)

where

Ckl =
n∑

j=1

ψkjψlj

a 2
j

〈a2〉 , (6.12)

〈a2〉 =
1
n

n∑

j=1

a 2
j . (6.13)

Substitution of Eq. (6.11) into Eq. (6.8) leads to

P
({Φs}

)
= (2π)−3s

∫
exp

[
−1

6
〈a2〉

s∑

k=1

s∑

l=1

Cklρk · ρl

−i

s∑

k=1

ρk ·Φk

]
d{ρs} . (6.14)

After an orthogonal transformation of the coordinates the integral in
Eq. (6.14) can readily be evaluated, and we obtain the final result (see
Appendix II B),

P
({Φs}

)
=

(
3

2π〈a2〉
)3s/2

|C|−3/2

× exp
[
−

(
3

2〈a2〉|C|
) s∑

k=1

s∑

l=1

CklΦk ·Φl

]
, (6.15)

where Ckl is the cofactor of the element Ckl of the s × s symmetric
matrix C, and |C| is the determinant of C. That is, P

({Φs}
)

is a
multivariate Gaussian distribution.

In the particular case of s = 1 and aj = a for all j, Eq. (6.15)
reduces to

P (Φ) =
(

3
2πCa2

)3/2

exp
(
− 3Φ2

2Ca2

)
(6.16)

with

Φ =
n∑

j=1

ψjrj , (6.17)
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C =
n∑

j=1

ψ 2
j . (6.18)

This result can also be obtained by direct application of Markoff’s
method. Further, if ψj = 1 for all j, then C = n and Eq. (6.16)
reduces to Eq. (5.32).

It will be seen that Eq. (6.15) is of considerable value in developing
the theories of the excluded-volume effect (Chapter III) and of the
second virial coefficient (Chapter IV), based on the cluster-expansion
method.

7. Distribution of a Segment About
the Center of Mass and Related Quantities

We now proceed to examine the distribution of segments about the
center of mass of a polymer chain. The results of this study provide
another important measure of the average molecular dimensions, di-
rectly related to the properties of dilute solutions. Evaluation of distri-
bution functions will be carried out on the assumption of the Gaussian
bond probability of Eq. (5.35). Needless to say, in the present case, the
molecular center of mass, instead of segment 0, may be considered to
be fixed at the origin.

7a. Distribution of a Segment About the Center of Mass

We first consider the distribution function Pj(Sj) of the distance Sj

from the center of mass to segment j. Obviously there is a relation
between Sj and the bond vectors rk,

Sj − Si =
j∑

k=i+1

rk for j > i ,

= −
i∑

k=j+1

rk for j < i . (7.1)

If all the segments have the same mass, by the definition of the center
of mass the sum of all the Sj must be zero,

n∑

i=0

Si = 0 . (7.2)

By summation of both sides of Eq. (7.1) over i, we obtain

Sj =
n∑

i=1

ψjiri (7.3)

with
ψji = H(j − i) +

i

n + 1
− 1 (7.4)
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where H(x) is a unit step function defined as

H(x) = 1 for x ≥ 0 ,

= 0 for x < 0 . (7.5)

The use of Eq. (6.16) with Φ = Sj and ψj = ψji leads to

Pj(Sj) =
(

3
2π〈S 2

j 〉
)3/2

exp
(
− 3S 2

j

2〈S 2
j 〉

)
(7.6)

with

〈S 2
j 〉 = a2

n∑

i=1

ψ 2
ji . (7.7)

Since n is large, the summation may be replaced by integration,∗ and
〈S 2

j 〉 can then be evaluated to be

〈S 2
j 〉 = 1

3na2

[
1− 3j(n− j)

n2

]
. (7.8)

Equation (7.6) with (7.8) is the formula obtained by Isihara17 and by
Debye and Bueche.18 It is seen from Eq. (7.8) that 〈S 2

j 〉 takes the
maximum value 1

3na2 at j = 0 or n, and the minimum value 1
12na2 at

j = 1
2n. In other words, the end segments are located, on the average,

at the positions most remote from the center of mass, while the middle
segment is nearest to the center of mass.

The function Pj(Sj) has the meaning of a specific distribution func-
tion, since Pj(Sj)dSj is the probability of finding a particular segment
(the jth segment) in the volume element dSj at the distance Sj from
the center of mass. On the other hand, a generic distribution function
ρ(s) is defined as

ρ(s) =
n∑

j=0

Pj(s) (7.9)

with the normalization condition,
∫

ρ(s)ds = n . (7.10)

That is, ρ(s)ds is the probability of finding any one of n segments in
the volume element ds at the distance s from the center of mass; in
other words, ρ(s) is the average segment density at s. This function is
referred to as the segment-density distribution function. It is sometimes
convenient to use the distribution function P (s) defined by

P (s) = n−1ρ(s) , (7.11)
∗The summations of a function of the indices i, j, . . . will be replaced by integra-

tions throughout the remainder of this book except where specified otherwise. In
addition, small numbers occurring in such a function will be suppressed compared
to n.
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so that P (s) satisfies the ordinary normalization condition, as defined
by Eq. (3.10).

Now P (s) may be written in the form,

P (s) =
1
n

∑

j

(
3

2π〈S 2
j 〉

)3/2

exp
(
− 3s2

2〈S 2
j 〉

)
. (7.12)

Using Eq. (5.33), the moments of P (s) can readily be expressed as

〈s2p〉 =
(2p + 1)!

6pp!n

∑

j

〈S 2
j 〉p . (7.13)

Substituting Eq. (7.8) into Eq. (7.13) and carrying out the summation
(integration), we have

〈s2p〉 =
(2p + 1)!

2p · 62p · p!

[
p∑

l=0

(
p
l

)
3l

2l + 1

]
(na2)p . (7.14)

The first three moments are

〈s2〉 = 1
6na2 = 1

6 〈R2〉 ,
〈s4〉 =

1
18

(na2)2 =
1
30
〈R4〉 ,

〈s6〉 =
29
972

(na2)3 =
29

3780
〈R6〉 . (7.15)

The form of the distribution function P (s) will be considered in Sec-
tion 8a.

7b. Radius of Gyration

We define the radius of gyration S of a polymer chain by the equation,∗

S2 =
1
n

∑

j

S 2
j . (7.16)

From Eq. (7.13), the mean-square radius of gyration can then be easily
obtained as19

〈S2〉 = 1
6 〈R2〉 = 〈s2〉 . (7.17)

This is an important relationship between the mean-square radius of
gyration and the mean-square end-to-end distance, indicating their in-
terchangeability. However, it is the former that has a direct relation
to the solution properties, as will be seen in later chapters. It must be
noted that the distribution function, P (S), of the radius of gyration is

∗The term radius of gyration is used in physics with a different meaning, namely,
the mean of the square of the radius of a body about an axis (not a center). However,
to avoid confusion, in this book we shall often use this incorrect nomenclature which
is widely used in the extant literatures. Note that S is a scalar.
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essentially different from the distribution function 4πs2P (s) of s; the
form of P (S) will be discussed in Section 8b. For convenience, s will
be called the quasi-radius of gyration.

Now we derive two other useful formulas for the radius of gyration.
From Eqs. (7.7) and (7.16), we have

〈S2〉 =
a2

n

∑

i

∑

j

ψ 2
ji . (7.18)

On performing the summation only over j after substitution of Eq. (7.4),
Eq. (7.18) becomes

〈S2〉 =
a2

n2

∑

i

i(n− i) . (7.19)

This is the formula derived by Kramers.20 The meaning of this formula
is the following: divide the chain at segment i into two parts, and 〈S2〉
can then be evaluated by summing up the product of the numbers of
segments contained in the two parts over all possible divisions. Of
course, summation over i in Eq. (7.19) recovers Eq. (7.17).

By definition, there holds the relation,
∑

i

∑

j

Si · Sj = 0 . (7.20)

On the other hand, from the rule of cosines,

Si · Sj = 1
2 (S 2

i + S 2
j −R 2

ij ) ,

we have
∑

i

∑

j

Si · Sj =
n

2

∑

i

S 2
i +

n

2

∑

j

S 2
j − 1

2

∑

i

∑

j

R 2
ij

= n2S2 − 1
2

∑

i

∑

j

R 2
ij . (7.21)

From Eqs. (7.20) and (7.21), we obtain

S2 =
1

2n2

∑

i

∑

j

R 2
ij =

1
n2

∑∑

i<j

R 2
ij . (7.22)

This is the formula derived by Zimm and Stockmayer.21 On performing
the summations after substitution of Eq. (5.39), Eq. (7.22) reduces to
Eq. (7.17).

It must be noted that both Eqs. (7.19) and (7.22) hold for branched
chains as well as linear chains when the segments are numbered in a
proper order (Section 9a). Further, application of Eq. (7.19) is confined
to polymer chains which obey random-flight statistics, whereas there is
no restriction in the application of Eq. (7.22).
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7c. Radii of Gyration with R Fixed

By the definition of a conditional probability, the distribution function
Pj(Sj |R) of Sj with the end-to-end vector R fixed is given by

Pj(Sj |R) =
Pj(Sj ,R)

P (R)
(7.23)

with the normalization condition,
∫

Pj(Sj |R)dSj = 1 . (7.24)

The bivariate distribution function Pj(Sj ,R) may be evaluated by
means of the Wang–Uhlenbeck theorem (Section 6). After a simple
algebraic calculation with the use of Eqs. (3.8) and (7.3) with (7.4), we
can readily obtain, from Eqs. (6.15) and (7.23),

Pj(Sj |R) =
[

3
2π(na2/12)

]3/2

exp
[
− 3L2

2(na2/12)

]
(7.25)

with

L = Sj +
1
2n

(n− 2j)R , (7.26)

where we have used Eq. (5.32).
Now suppose a Cartesian coordinate system (ex, ey, ez) to be fixed

in space, ex, ey, ez being the unit vectors in the directions of the x, y,
z axes, respectively. Then the mean-square component 〈(Sj · ex)2〉R of
Sj in the direction of the x axis with R fixed can be evaluated, from
Eq. (7.25) with (7.26), as

〈
(Sj · ex)2

〉
R

=
∫

(Sj · ex)2Pj(Sj |R)dSj

=
∫ [

(L · ex)2 +
1

4n2
(n− 2j)2(R · ex)2

]
Pj(Sj |R)dL

=
1
36

na2 +
1

4n2
(n− 2j)2(R · ex)2 . (7.27)

Defining the mean-square radius of gyration 〈S 2
x 〉R in the direction of

the x axis with R fixed by the equation,

〈S 2
x 〉R =

1
n

∑

j

〈
(Sj · ex)2

〉
R

, (7.28)

We obtain, from Eqs. (7.27) and (7.28),

〈S 2
x 〉R =

1
36

na2

[
1 +

3(R · ex)2

na2

]
. (7.29)



26 STATISTICS OF IDEAL POLYMER CHAINS: RANDOM-FLIGHT PROBLEMS

Since similar results apply to the y and z components, respectively, we
have for the mean-square radius of gyration 〈S2〉R with R fixed

〈S2〉R = 〈S 2
x 〉R + 〈S 2

y 〉R + 〈S 2
z 〉R

=
1
12

na2

(
1 +

R2

na2

)
, (7.30)

which reduces to Eq. (7.17), averaged over all values of R. Equations
(7.29) and (7.30) are the formulas derived by Hermans and Overbeek22

using a different method.
In particular, if the x axis is chosen in the direction of R, the three

components of 〈S2〉R become

〈S 2
x 〉R =

1
36

na2

(
1 +

3R2

na2

)
,

〈S 2
y 〉R = 〈S 2

z 〉R =
1
36

na2 (7.31)

with R = Rex. Thus, when the end segments are fixed, the distribution
of segments about the center of mass is no longer spherically symmetric,
but may be regarded as approximately ellipsoidal, the major axis of
this ellipsoid being in the direction of the end-to-end vector. In this
connection, Eq. (7.25) is also to be compared with Eq. (7.6) or (7.12).
At full extension of the chain (R = na), the component of 〈S2〉R in the
direction of R takes the value (na)2/12, which is the exact value for
〈S2〉 = 〈S 2

x 〉R of the rod of length na. The components perpendicular
to R are predicted to be independent of R, whereas the exact values
are zero for the rod. Clearly this discrepancy is due to the use of a
Gaussian bond probability.

8. Distribution of the Radius of Gyration

In this section, we shall discuss the forms of the distribution functions
P (s) and P (S). In anticipation of the results, however, we note that
closed expressions for neither P (s) nor P (S) can be derived, which are
valid over the whole range, even for the Gaussian chain.

8a. Distribution of the Quasi-radius of Gyration

The original discussion of the form of the distribution function P (s) of
the quasi-radius of gyration s is due to Debye and Bueche.18 Replacing
the summation by integration in Eq. (7.12), we obtain for P (s) the
series forms,

P (s) = 21/2

(
3

2π〈s2〉
)3/2

exp
(
−3t

4

)

×
[
1− 1

1 · 3
(

9t

2

)
+

1
1 · 3 · 5

(
9t

2

)2

− · · ·
]

for small t , (8.1)
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Fig. II.4. Comparison of the exact distribution and the approximate Gaussian

distribution of the quasi-radius of gyration of a polymer chain. Full curve: exact.

Broken curve: approximate.

P (s) = 21/2

(
3

2π〈s2〉
)3/2

exp
(
−3t

4

) (
2
9t

)

×
[
1 +

(
2
9t

)
+ 1 · 3

(
2
9t

)2

+ 1 · 3 · 5
(

2
9t

)3

+ · · ·
]

for large t , (8.2)

where

t ≡ s2

〈s2〉 =
6s2

na2
. (8.3)

The integration has also been carried out graphically, and the result is
displayed by the full curve in Fig. II.4. For comparison, the Gaussian
distribution of s,

(
3

2π〈s2〉
)3/2

exp
(
− 3s2

2〈s2〉
)

, (8.4)

the second moment of which coincides with that of P (s), is also plotted
in the figure.

As seen from Eqs. (8.1) and (8.2) and Fig. II.4, the distribution of
the quasi-radius of gyration is not strictly Gaussian in the same ap-
proximation which is employed in obtaining the Gaussian distribution
of the end-to-end distance and of the distance from the center of mass
to a particular segment. However, the agreement between the exact
distribution and the approximate Gaussian distribution is fairly satis-
factory except at large values of s. Thus the Gaussian approximation
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for P (s) will still be useful insofar as the dilute-solution properties are
described in a crude approximation.

8b. Distribution of the Radius of Gyration

The distribution function P (S) of the radius of gyration was first inves-
tigated by Fixman23 and by Forsman and Hughes.24 For convenience,
we describe the procedure of Fixman. However, it should be anticipated
that Fixman’s calculation involves some error, and the complete numer-
ical results have recently been obtained by Koyama,25 by Hoffman and
Forsman,26 and by Fujita and Norisuye.27 The conditional segment-
density distribution function with S fixed will also be discussed in Ap-
pendix II C. In this section, it is therefore convenient to begin with
a formulation of the bivariate distribution function Pj(Sj , S

2) rather
than the desired function P (S). The distribution function P (S2) of S2

can be obtained from

P (S2) =
∫

Pj(Sj , S
2)dSj . (8.5)

Evidently the probability P (S)dS that S lies between S and S + dS is
equal to P (S2)dS2, and we therefore have the relation,

P (S) = 2SP (S2) . (8.6)

Now, Sj is given by the linear combination (7.3) of n bond vectors
rj , while from Eqs. (7.3), (7.4), and (7.16) S2 is given by the quadratic
form,

S2 =
n∑

k=1

n∑

l=1

gklrk · rl (8.7)

with

gkl =
1
n

∑

j

ψjkψjl = glk

= n−2
{
n
[
kh(l − k) + lh(k − l)

]− kl
}

, (8.8)

where h(x) is a unit step function defined as

h(x) = 1 for x > 0 ,

= 1
2 for x = 0 ,

= 0 for x < 0 . (8.9)

The distribution function Pj(Sj , S
2) may be written in the form,

Pj(Sj , S
2) =

∫ 


n∏

j=1

τ(rj)


 d{rn}

dSjdS2
, (8.10)

where we assume the Gaussian bond probability. The range of S2 is
taken as −∞ < S2 < +∞ in the absence of an explicit demonstration
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that Eq. (8.10) yields the inevitable result, Pj(Sj , S
2) ≡ 0 for S2 < 0.

By a slight modification of the Wang–Uhlenbeck method, the integral
of (8.10) can be treated easily.

Introducing Fourier representations of the one-and three-dimensional
Dirac delta functions and using Eqs. (7.3) and (8.7), we may rewrite
Eq. (8.10) in the form,

Pj(Sj , S
2) = (2π)−4

∫
Kj(σ, ρ) exp(−iρS2 − iσ · Sj)dσ dρ (8.11)

with

Kj(σ, ρ) =
(

3
2πa2

)3n/2 ∫
exp

[
− 3

2a2

∑

k

r 2
k

+iρ
∑

k

∑

l

gklrk · rl + i
∑

k

ψjkσ · rk

]
d{rn} . (8.12)

A resolution of the rk and σ into x, y, and z components simplifies the
evaluation of the integral in Eq. (8.12). That is,

Kj(σ, ρ) =
(

3
2πa2

)3n/2 ∏
x,y,z

Γj(σx, ρ) (8.13)

with

Γj(σx, ρ) =
∫

exp

[
−

∑

k

∑

l

Aklxkxl + iσx

∑

k

ψjkxk

]
dx1 · · · dxn ,

(8.14)

Akl =
(

3
2a2

)
δkl − iρgkl , (8.15)

where δkl is the Kronecker delta. The integral of (8.14) is of a form
similar to that of Eq. (6.14), and therefore it can be easily evaluated
by an orthogonal transformation of the coordinates (Appendix II B).
If λk are the eigenvalues of the matrix A with elements Akl and ψj is
the column vector of the ψjk with transpose ψ T

j = (ψj1 · · ·ψjn), an
orthogonal transformation Q which diagonalizes A gives

Γj(σx, ρ) =
n∏

k=1

∫ +∞

−∞
exp

[−λkξ 2
k + iσx(ψ T

j Q)kξk

]
dξk . (8.16)

As shown below, the real parts of the λk are all positive, and hence the
integral in Eq. (8.16) is convergent. Thus we find

Γj(σx, ρ) = πn/2

(
n∏

k=1

λ
−1/2

k

)
exp

[
−σ 2

x

4

∑

k

λ −1
k (ψ T

j Q) 2
k

]
. (8.17)

From Eqs. (8.13) and (8.17), the characteristic function Kj(σ, ρ) is
obtained as

Kj(σ, ρ) = K(ρ) exp(−Wjσ
2) (8.18)
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with

K(ρ) = Kj(0, ρ) =
(

3
2a2

)3n/2 n∏

k=1

λ
−3/2

k , (8.19)

Wj =
1
4

n∑

k=1

λ −1
k (ψ T

j Q) 2
k

=
1
4

∑

k

λ −1
k

(∑

l

ψjlQlk

)2

, (8.20)

where the Qkl are the normalized components of Q. On substitution
of Eq. (8.18) into Eq. (8.11) and integration over σ, we have

Pj(Sj , S
2) = (16π5/2)−1

∫
K(ρ)W−3/2

j exp

(
−iρS2 − S 2

j

4Wj

)
dρ ,

(8.21)
and integration over Sj gives

P (S2) =
1
2π

∫ +∞

−∞
K(ρ) exp(−iS2ρ)dρ . (8.22)

Note that K(ρ) given by Eq. (8.19) is the characteristic function of
P (S2).

We now determine the eigenvalues of A and the normalized com-
ponents of Q. If x is an eigenvector of A, we have

Ax− λx = 0 , (8.23)

or
n∑

j=1

Aijxj = λxi , (8.24)

from which there must result n different λ’s, λk, and n different xi’s,
x

(k)
i . The orthogonal matrix Q may be composed of column vectors

x
(k)

i , which form a complete and orthogonal set for functions deter-
mined at n points, and

∑

k

x
(k)

i x
(k)

j =
∑

k

x
(i)

k x
(j)

k = δij . (8.25)

Now it proves convenient to convert Eq. (8.24) to an integral equation.
This treatment of i and j as continuous variables naturally gives an
infinite set of eigenvalues and eigenfunctions from which the proper set
may easily be extracted. With xi = x(z), Aij = A(z, y), and so on,
where z = i/n and y = j/n, Eqs. (8.8), (8.15), and (8.24) give

− 3
2X2

[∫ z

0

yx(y)dy + z

∫ 1

z

x(y)dy − z

∫ 1

0

yx(y)dy

]
= (a2λ− 3

2 )x(z)

(8.26)
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with
X2 ≡ 2

3 iρna2 . (8.27)

Equation (8.26) can be solved by two successive differentiations with
respect to z;

− 3
2X2

[∫ 1

z

x(y)dy −
∫ 1

0

yx(y)dy

]
= (a2λ− 3

2 )x′(z) , (8.28)

3
2X2x(z) = (a2λ− 3

2 )x′′(z) . (8.29)

Equation (8.29) has the solution,

x(z) = K1 exp
[
zX(2

3a2λ− 1)−1/2
]
+ K2 exp

[−zX( 2
3a2λ− 1)−1/2

]
.

(8.30)
Substitution of Eq. (8.30) into Eqs. (8.26) and (8.28) gives

x(1) = x(0) = 0 . (8.31)

The condition x(0) = 0 is satisfied by the choice K2 = −K1, and there
results

x(z) = K sin
[
izX(2

3a2λ− 1)−1/2
]
. (8.32)

The condition x(1) = 0 then establishes the eigenvalues from the rela-
tion,

iX(2
3a2λ− 1)−1/2 = kπ (k = ±1, ±2, . . .) , (8.33)

that is

λk =
3

2a2

(
1− X2

k2π2

)
. (8.34)

On transformation back from the continuous space of the eigenvectors
x(z) to the discrete space of xi, it is evident that the values k > n in
Eq. (8.33) are redundant for the expansion of functions on n points. Ac-
cordingly the original n×n matrix A has eigenvalues given by Eq. (8.34)
with k = 1, . . ., n. From Eqs. (8.32) and (8.34), we find for the eigen-
vectors

x
(k)

j = K sin
(

πjk

n

)
, (8.35)

which are just the components Qjk of the matrix Q. The constant K
can be determined from Eq. (8.25) as

1 =
n∑

j=1

K2 sin2

(
πjk

n

)
= 1

2nK2 , (8.36)

that is,

K =
(

2
n

)1/2

. (8.37)

The normalized components of Q are therefore given by

Qjk =
(

2
n

)1/2

sin
(

πjk

n

)
. (8.38)
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From Eqs. (8.19) and (8.34), we can now obtain for the characteristic
function K(ρ)

K(ρ) =
n∏

k=1

(
1− X2

k2π2

)−3/2

. (8.39)

It can be shown that the product in Eq. (8.39) may be extended to
k = ∞ without introduction of any significant error if n À 1. Then
Eq. (8.39) becomes

K(ρ) =
(

sin X

X

)−3/2

. (8.40)

Before proceeding to evaluate the distribution function P (S2), we com-
pute its moments. The logarithm of Eq. (8.40) can be expanded as

ln K(ρ) =
∞∑

j=1

23j−2Bj

3j−1(2j)!j
(na2)j(iρ)j , (8.41)

where Bj are the Bernoulli numbers (B1 = 1/6, B2 = 1/30, · · ·) as
before. We therefore have for the cumulants κj

κj =
23j−2(j − 1)!Bj

3j−1(2j)!
(na2)j . (8.42)

Substituting Eq. (8.42) into Eq. (5.7), we obtain for the moments µk =
〈S2k〉 of P (S2)

〈S2k〉 = k!(na2)k
∑
m

23k−2m

3k−m

k∏

j=1

1
mj !

[
Bj

j(2j)!

]mj

(8.43)

with
∑

j mj = m and
∑

j jmj = k. The first three moments are

〈S2〉 = 1
6na2 ,

〈S4〉 =
19
540

(na2)2 =
19
15
〈S2〉2 ,

〈S6〉 =
631

68040
(na2)3 =

631
315

〈S2〉3 . (8.44)

It is important to observe that the second moments of the distribu-
tions of the radius of gyration and of the quasi-radius of gyration are
identical, while the fourth and higher moments are different from each
other.

We now turn to the evaluation of P (S2). Substitution of Eq. (8.40)
into Eq. (8.22) leads to

P (S2) =
1
2π

∫ +∞

−∞

(
sin X

X

)−3/2

exp(− 1
4 tX2)dρ , (8.45)
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where

t =
S2

〈S2〉 =
6S2

na2
. (8.46)

Fujita and Norisuye27 transformed the integral of (8.45) to a contour
integral on the X complex plane, and evaluated it exactly, although
only in a series form. The derivation is so lengthy that we do not
reproduce it here. If P (S2) is transformed back to P (S), the result is

P (S) =
1

21/2π〈S2〉1/2t3

∞∑

k=0

(2k + 1)!
(2kk!)2

(4k + 3)7/2 exp(−tk)

×
[(

1− 5
8tk

)
K1/4(tk) +

(
1− 3

8tk

)
K3/4(tk)

]
, (8.47)

where Ks are the modified Bessel functions of the second kind and tk
is defined by

tk =
(4k + 3)2

8t
. (8.48)

If we use the asymptotic expansions of K1/4 and K3/4, we have an
expansion of P (S) valid for small t,

P (S) = 18
(

6
π〈S2〉

)1/2

t−5/2 exp
(
− 9

4t

)

×
(

1− 19
36

t +
105
1296

t2 − · · ·
)

(for small t) . (8.49)

The leading term of this expansion agrees with the result derived by
Fixman23 from Eq. (8.45) by the method of steepest descents.

On the other hand, it is impossible to derive an asymptotic form
of P (S) valid for large t from Eq. (8.47). Thus, Fujita and Norisuye
turned back to Eq. (8.45) and reevaluated the integral by the choice of
a proper contour. The result is

P (S) =
21/2π5/2

〈S2〉1/2
t exp

(
−π2t

4

)

×
[
1 +

9
4π2

(
1
t

)
+

8π2 + 15
32π4

(
1
t

)2

+ · · ·
]

(for large t) . (8.50)

The leading term of this expansion agrees with Forsman’s result24 de-
rived by a different method, but does not agree with Fixman’s result,23

P (S) =
π5/2e3/2

3〈S2〉1/2
t exp

(
−π2t

4

)
(Fixman) , (8.51)

which has been derived by the method of steepest descents. However,
the difference between the two results is rather small, since 21/2 = 1.414
and e3/2/3 = 1.494. The error in Fixman’s calculation arises from the
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Fig. II.5. Comparison of the exact and approximate distributions of the radius of

gyration of a polymer chain. Curve 1: exact. Curve 2: the Gaussian distribution.

Curve 3: the Flory–Fisk function.

fact that the condition under which the method of steepest descents
can be applied is not satisfied at the point he specified as the saddle
point for t À 1. Note that P (S) becomes a Gaussian function at large
S, although the numerical coefficients are different from those of the
usual Gaussian distribution function.

The values of 〈S2〉1/2P (S) as a function of t calculated from Eq. (8.47)
are in excellent agreement with those calculated by Koyama25 from
Eq. (8.45) by the use of a computer, and are shown in curve 1 in
Fig. II.5. For comparison, the Gaussian distribution of S is shown in
curve 2. It is seen that the exact distribution of S converges extremely
rapidly to zero at small S, and goes more rapidly to zero at large S
than does the Gaussian distribution, the former being sharper than the
latter. Flory and Fisk28 assumed as the closed form for P (S)

P (S) = const. 〈S2〉−1/2tm exp
[−(m + 1

2 )t
]
. (8.52)

The value 3 was assigned to m, since this choice reproduces fairly well
the exact moments of (8.44). Then the numerical constant in Eq. (8.52)
is found to be (343/15)(14/π)1/2. The normalized Flory–Fisk function
is shown in curve 3 in Fig. II.5. This function is seen to represent
fairly well the salient behavior of the exact distribution of S. Further
discussion of P (S) will be given in Chapter III.
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9. Remarks

In this chapter, so far, we have described the mathematical details of the
statistics of linear random-flight chains. Although the linear random-
flight chain is the basic model in the theory of dilute polymer solutions,
it is unrealistic and incomplete from the point of view of the structural
restrictions or the conformational statistics of polymer chains. Thus, in
this section, we shall describe the statistical properties of those chains
which are not placed in a category termed the linear random-flight
chain; that is, chains with short-range interferences, branches, or high
stiffness.

9a. Short-Range Interferences and Unperturbed Molecular
Dimensions

In order to make a random-flight chain model more realistic, account
should be taken of the fact that the valence angle between successive
bonds in the chain is actually a fixed quantity and the angle of rotation
about each bond is not uniformly distributed owing to steric hindrances
caused by interactions between atomic groups attached to the spine of
the chain. In the case of vinyl polymers, for instance, the direction of a
given C—C bond, for example, the jth bond, is most strongly affected
by the direction of its predecessor, the (j− 1)th bond, due to bond an-
gle restrictions, and is also influenced to some extent by the directions
of other neighbors, the (j − 2), . . ., (j − s)th bond, due to hindered
rotations. It is clear that one bond has no appreciable influence upon
the rotation of another bond when they are far apart, and therefore the
value of s is relatively small. This is the reason why such interactions
between bonds are referred to as the short-range interference. In the
study of this effect, it would be necessary to take into account a part
of the potential W in Eq. (3.2). Then the probability τj of each step
depends on the past s steps, and therefore the present problem corre-
sponds to that of random flights with correlations of order s, namely
the s-fold Markoff process. However, it is very difficult to derive gen-
erally the distribution function P (R) of the end-to-end distance of the
chain with short-range interferences. For convenience, we first evaluate
the mean-square end-to-end distance.

9a(i). Freely Rotating Chains

Squaring both sides of Eq. (3.8), we have the general expression for the
mean-square end-to-end distance of a linear polymer chain,

〈R2〉 =
n∑

i=1

〈r 2
i 〉+ 2

∑∑

1≤i<j≤n

〈ri · rj〉 . (9.1)

For the random-flight chain without correlations between any two bonds,
we have 〈ri · rj〉 = 0 for i 6= j and 〈r 2

i 〉 = a2 for all i. Thus we can
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Fig. II.6. Schematic representation of a repeating unit of a freely rotating chain.

recover Eq. (5.11). In this subsection, we consider a chain in which
the bond angles are restricted but rotations about single bonds are
unrestricted. Such a chain is called the freely rotating chain.

For convenience, suppose a chain composed of n/p repeating units,
each consisting of p bonds of lengths a1, . . ., ap joined successively with
angles θ1, . . ., θp, where the free rotation about every bond is permitted
(see Fig. II.6). Then it is evident that the first sum in Eq. (9.1) is given
by

∑

i

〈r 2
i 〉 =

n

p

p∑

i=1

a 2
i . (9.2)

By rearrangement of terms with account of the repeating nature, the
second sum in Eq. (9.1) may be rewritten as

∑ ∑

i<j

〈ri · rj〉 =
p∑

i=1

p∑

j=1

n/p−1∑

k=0
i<kp+j

(
n

p
− k

)
〈ri · rkp+j〉 . (9.3)

The averages of scalar products ri ·rj can be easily found. For example,
we have 〈r1 · r2〉 = a1a2γ1 and 〈r1 · rkp+1〉 = a 2

1 (γ1 · · · γp)k (k 6= 0),
where γi is defined as

γi ≡ − cos θi . (9.4)

Then by further rearrangement of terms, Eq. (9.3) may be reduced to
a sum of geometrical series. Thus we find

〈R2〉 =
n

p

p∑

i=1

a 2
i +

2n

p(1−∏p
i=1 γi)

×
p∑

i=1

[
a 2

i

p∏

i=1

γi + ai

i−1∑

j=1

aj

∏p
i=1 γi∏i−1

k=j γk

+ ai

p∑

j=i+1

aj

j−1∏

k=i

γk

]
+ C (9.5)

with
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TABLE II.1. PARAMETERS IN EQ. (9.5) FOR VARIOUS TYPES
OF POLYMERS

TYPEa p a1 a2 a3 a4 γ1 γ2 γ3 γ4

1 1 a — — — γ — — —
2 2 a a — — γ1 γ2 — —
3 2 a b — — γ1 γ2 — —
4 3 a a b — γ1 γ2 γ2 —
5 4 a a b b γ1 γ2 γ1 γ2

aType 1: vinyl polymer. Type 2: polyoxymethylene and polydimethylsiloxane.
Type 3: cis-1, 4’-polysaccharide (amylose) and cis-polypeptide. Type 4: cis-
polybutadiene. Type 5: polycarbonate.

C = −2(
∏p

i=1 γi)
[
1− (

∏p
i=1 γi)n/p

]

(1−∏p
i=1 γi)2

×
p∑

i=1

[
a 2

i + ai

i−1∑

j=1

aj∏i−1
k=j γk

+ ai

p∑

j=i+1

aj

j−1∏

k=i

γk

]
. (9.6)

When n is large, the term C becomes independent of n since |γi| < 1,
and it may therefore be suppressed in Eq. (9.5); thus 〈R2〉 becomes
proportional to n.

From Eq. (9.5), we can readily obtain expressions for 〈R2〉 of various
types of freely rotating chains. Some of polymers whose backbones
contain structural features such as double bonds or rings can also be
reduced to the above model, namely a linear sequence of freely rotating
“bonds.”For instance, vinyl polymer chains may be represented by the
following choice of the parameters: p = 1, a1 = a, and θ1 = θ. For this
case, we have

〈R2〉 = na2

[
1− cos θ

1 + cos θ
+

2 cos θ

n

1− (− cos θ)n

(1 + cos θ)2

]
, (9.7)

which, for large n, becomes

〈R2〉 = na2 1− cos θ

1 + cos θ
. (9.8)

Equations (9.7) and (9.8) are the formulas derived by Eyring,29 Wall,30

and Benoit.31 In Table II.1 are summarized the parameter assignments
for various types of polymers; Type 1: vinyl polymers; Type 2: poly-
oxymethylene and polydimethylsiloxane32; Type 3: cis-1,4′-polysac-
charide (amylose)31, 33 and cis-polypeptide34; Type 4: cis-polybuta-
diene30, 31, 33; Type 5: polycarbonate. We note that the expression
used by Schulz and Horbach35 for polycarbonates is incorrect.
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There are other types of polymers whose backbone structures can-
not be reduced to the above model. However, a similar principle can be
applied after use of a maneuver. In fact, calculations have already been
made for trans-1,4′-polysaccharide (cellulose and pectic acid),31, 33, 34

trans-polybutadiene,30, 31, 33 and trans-polypeptide.34 In any case, the
mean-square end-to-end distance of a freely rotating chain can be easily
evaluated when the geometrical structure of the backbone of the chain
is given.

9a(ii). Chains with Hindered Internal Rotations

For simplicity, we consider vinyl polymers with ai = a and θi = θ for
all i. It is convenient to choose rotation angles ϕ1, ϕ2, . . ., ϕn = {ϕn}
as the internal coordinates, assuming a and θ to be fixed quantities.
The configurational partition function of (3.1) may then be rewritten
in the form,

Z =
∫

exp

[
−U

({ϕn}
)

kT

]
d{ϕn} , (9.9)

where U is the energy of internal rotation (strictly the potential of mean
force). The problem is to express the scalar product ri · rj in Eq. (9.1)
in terms of {ϕn}, and then to evaluate its average. This can be done
by applying a method, originally suggested by Eyring.29, 30

Let us choose a set of Cartesian coordinate systems as follows: the
positive direction of the xj axis of the jth coordinate system coincides
with the vector rj , the positive direction of the yj axis makes an acute
angle with the vector rj−1 in the plane containing the two vectors
rj−1 and rj , and the zj axis constitutes a right-handed rectangular
coordinate system with the xj and yj axes. The angle between the two
planes containing rj−2 and rj−1, and rj−1 and rj , respectively, defines
the rotation angle ϕj about the (j−1)th bond, which is zero when rj−2

and rj are situated in the trans position with respect to each other and
takes a positive value when rj lies in the positive range of zj−1 in the
(j − 1)th coordinate system (see Fig. II.7). Then the jth coordinate
system is transformed into the (j− 1)th one by the orthogonal matrix,

Aj =



− cos θ sin θ 0
sin θ cos ϕj cos θ cos ϕj sin ϕj

sin θ sin ϕj cos θ sin ϕj − cosϕj


 . (9.10)

The vector rj which in its own coordinate system was given by rj =
(a 0 0) ≡ a (column vector) is expressed in the (j−1)th system by Aja.
By repeating this procedure, rj can be expressed in the ith coordinate
system. Thus the average of the scalar product ri · rj may be written
as

〈ri · rj〉 = aT

〈
j∏

k=i+1

Ak

〉
a , (9.11)



SEC. 9. Remarks 39

Fig. II.7. Transformation of a coordinate system associated with the jth bond

into a coordinate system associated with the (j−1)th bond.

where the superscript T indicates the transpose. The average on the
right-hand side is given by

〈
j∏

k=i+1

Ak

〉
= Z−1

∫ (
j∏

k=i+1

Ak

)
exp

(
− U

kT

)
d{ϕn} . (9.12)

The energy U may be decomposed as

U
({ϕn}

)
=

n∑

i=1

u1i(ϕi) +
n∑

i=1

u2i(ϕi, ϕi+1) + · · · . (9.13)

According to the assumed form of U , the theories may be classified into
three types;
1. independent rotation:

U =
n∑

i=1

u1i(ϕi) . (9.14)

2. pairwise independent rotation:

U =
n∑

i=1

u1i(ϕi) +
n/2∑

k=1

u2,2k(ϕ2k−1, ϕ2k) . (9.15)

3. interdependent rotation:

U =
n∑

i=1

u1i(ϕi) +
n∑

i=1

u2i(ϕi, ϕi+1) . (9.16)
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It is evident that the third type is most realistic and important since it
takes into account completely both first and second neighbor interac-
tions. In the discussion that follows, we assume u1i = u1 and u2i = u2

for all i.
We first consider the case of independent rotation. By assumption,

Eq. (9.12) becomes
〈

j∏

k=i+1

Ak

〉
=

∏

k

〈Ak〉 ≡ Aj−i , (9.17)

where A is the transformation matrix of (9.10) with η1 = 〈cos ϕ〉 and
η2 = 〈sin ϕ〉 in place of cos ϕj and sinϕj , respectively, where

〈cosϕ〉 =

∫ π

−π
cosϕe−u1/kT dϕ∫ π

−π
e−u1/kT dϕ

. (9.18)

The matrix A can be transformed into a diagonal matrix λ by a simi-
larity transformation with an appropriate matrix Q,

Q−1AQ = λ (9.19)

the diagonal elements λi of λ (eigenvalues of A) being the roots of the
characteristic equation of A,

|λE−A| = λ3 − c1λ
2 + c2λ− c3 = 0 (9.20)

with E the unit matrix. From Eqs. (9.1), (9.11), (9.17), and (9.19), we
then have

〈R2〉 = na2 + naT QΛQ−1a , (9.21)

where Λ is the diagonal matrix given by

Λ =
2
n

∑∑

1≤i<j≤n

λj−i . (9.22)

Since all of the eigenvalues λi are smaller than unity, the diagonal
elements of Λ become 2λi/(1−λi) for large n, and Λ may be expressed
as

Λ = K
[
λ + c3λ

−1 + (c3 − c2)E
]

(9.23)

with
K = 2/(1− c1 + c2 − c3) ,

where we have used the relations between the roots and coefficients of
the cubic equation of (9.20). Equation (9.21) then becomes

〈R2〉 = na2 + nKaT
[
A + c3A−1 + (c3 − c2)E

]
a . (9.24)

Thus after simple algebraic calculations, we obtain the result,36−39

〈R2〉 = na2 1− cos θ

1 + cos θ

(1 + η1)2 + η 2
2

1− η 2
1 − η 2

2

. (9.25)
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If the potential u1(ϕ) is an even function of ϕ, η2 vanishes and Eq. (9.25)
reduces to40−43

〈R2〉 = na2 1− cos θ

1 + cos θ

1 + η1

1− η1
. (9.26)

This is a well-known classical formula.
The case of pairwise independent rotation can in principle be treated

by the same procedure as above, and we do not reproduce the math-
ematical details. It is to be noted that calculations belonging to this
category have been made by many workers.38, 39, 44−46

We now consider the case of interdependent rotation. For this case,
it is convenient to introduce the assumption of discrete rotational en-
ergy levels or the so-called rotational-isomeric approximation. In this
approximation, the rotation angle ϕi is considered to take only a fi-
nite set of fixed values ϕ

(k)
i (k = 1, 2, . . ., s) corresponding to the

minima of the potential. In the following discussion we consider only
three available states, T (trans, ϕ = 0◦), G (gauche, ϕ = 120◦), and
G′ (another gauche, ϕ = −120◦), which are indicated by k = 1, 2, 3,
respectively. The partition function of (9.9) may then be rewritten in
the form,

Z =
∑

{ϕn}

n∏

i=1

p(ϕi, ϕi+1) (9.27)

with

p(ϕi, ϕi+1) = exp
{
−u1(ϕi) + u2(ϕi, ϕi+1)

kT

}
, (9.28)

where we assume ϕn+1 = ϕ1. The sum in Eq. (9.27) extends over all
possible values of ϕ1, . . ., ϕn. Thus the problem becomes equivalent to
that of a one-dimensional cooperative system, the Ising model.47 Let
us introduce the 3× 3 matrix p whose elements are

pkl = p(ϕ (k)
i , ϕ

(l)
i+1 ) , (9.29)

pkl being independent of i. Then p can be transformed into a diagonal
matrix Q−1pQ = Λ(λi) by a similarity transformation, where λi are
the eigenvalues of p, and Eq. (9.27) reduces to

Z = trace pn =
3∑

i=1

λ n
i

= λn (for large n) , (9.30)

where λ is the largest eigenvalue (assuming its nondegeneracy). Simi-
larly the average of product of functions fi(ϕi) may be expressed as

〈
j∏

k=i+1

fk(ϕk)

〉
= Z−1

∑

{ϕn}

[
j∏

k=i+1

fk(ϕk)

][
n∏

i=1

p(ϕi, ϕi+1)

]

= Z−1trace fi+1

[
j∏

k=i+2

(pfk)

]
pn−(j−i−1)
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= yf i+1

[
j∏

k=i+2

(λ−1pfk)

]
x (for large n) ,(9.31)

where fi is the diagonal matrix with diagonal elements fi(ϕ(k)) (k =
1, 2, 3), and x and y are the normalized right-hand and left-hand
eigenvectors associated with λ, respectively; i.e.,

px = λx , yp = λy , yx = 1 . (9.32)

Recalling that the element Ars of the product of the transformation
matrices Ak is a sum of terms of the form fi+1 · · · fj , we can readily
obtain, from Eq. (9.31),

〈Ars〉 = y
∑

t

· · ·
∑

v

art(λ−1patu) · · · (λ−1pavs)x , (9.33)

where aij is the diagonal matrix with diagonal elements aij(ϕ(k)) (k =
1, 2, 3) with aij(ϕ) the elements of the transformation matrix. In
matrix notation, Eq. (9.33) may be written as

〈
j∏

k=i+1

Ak

〉
= YTSj−i−1X (9.34)

with
S = λ−1PT , (9.35)

where T is the matrix with “elements” aij , and P, X, and Y are the
direct products,

P = p×E3 , X = x×E3 , Y = y ×E3 (9.36)

with Es the s× s unit matrix. From Eqs. (9.1), (9.11), and (9.34), we
obtain

〈R2〉 = na2
[
1 + 2eTYT(E9 − S)−1Xe

]
(9.37)

with e = (1 0 0) the unit bond vector. This is the equation derived
independently by Lifson48 and by Nagai.49 Equivalent expressions have
also been derived by Birshtein et al.50 and by Hoeve.51

We have described the method of evaluating the mean-square end-
to-end distance of a chain with hindered internal rotations for the sim-
plest types of molecules. For other types of molecules, suitable forms of
the potentials u1i, u2i, and so on in Eq. (9.13) must be chosen in order
to reflect the structure of the backbone and side groups or the stereo-
chemical structures of a given polymer chain. However, the evaluation
becomes very complicated, and numerical results cannot be obtained
without a computer calculation in most cases. In addition, there is some
ambiguity in the assignment of values to the energy parameters intro-
duced. The main reason for this is that, strictly, the energy of internal
rotation is the potential of mean force. For this reason we give only a
brief description of the numerical results obtained from Eq. (9.37) for
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polyethylene, which has the same backbone as do vinyl polymer chains,
and the result is quite significant. Now let us choose the potential
u1(ϕ(1)) in the trans state as the zero of energy, and assume the follow-
ing statistical weights for the conformations indicated: 1(T ), ω1(G,G′),
1(TT, TG, TG′, GT, G′T,GG, G′G′), and ω2(GG′, G′G). Then the ma-
trix p of (9.29) becomes

p =




1 1 1
ω1 ω1 ω1ω2

ω1 ω1ω2 ω1


 . (9.38)

Note that ω1 = exp(−∆u
(2)

1 /kT ) with ∆u
(2)

1 the difference between
energies in the gauche and trans states. The weight ω2 may be regarded
as very small because of the so-called pentane effect43, 52; the first and
fifth carbon atoms of n-pentane come within the range of repulsion for
the GG′ or G′G conformation. Nagai53 has obtained the value 8.0 for
〈R2〉/na2 of polyethylene (at 140◦C), assuming ω2 = 0 and adopting the
value 800 cal/mole for ∆u

(2)
1 estimated by Pitzer52 from heat capacity

data on gaseous n-butane. We note that in this case 〈R2〉 decreases
with increasing temperature since the transition T → G is caused by
an increase in temperature. Hoeve54 has also obtained the value 6.75
for the corresponding ratio (at 160◦C), assigning somewhat different
values to ∆u

(2)
1 and ω2. On the other hand, the corresponding value

of 〈R2〉/na2 estimated by Nagai53 from Eq. (9.26) for the independent-
rotation model is 4.4, which is much smaller than the above value for
the interdependent-rotation model. This difference is, of course, due to
the exclusion of the GG′ and G′G conformations in the latter.

In sum, the mean-square end-to-end distance of a polymer chain
with short-range interferences may be expressed in the form,

〈R2〉 = 〈R2〉fσ2 , (9.39)

where 〈R2〉f is the mean-square end-to-end distance of the chain in the
freely rotating state, and σ represents the effect of steric hindrances
to internal rotations. For the case of vinyl polymers with a tetrahe-
dral bond angle (cos θ = −1/3), we have 〈R2〉f = 2na2 from Eq. (9.8).
For polyethylene, we therefore have σ = 1.8 ∼ 2.0, assuming Nagai and
Hoeve’s values for 〈R2〉/na2. The parameter σ is referred to as the con-
formation factor. It is important to note that the factor σ depends gen-
erally on temperature and sometimes also on the solvent, whereas 〈R2〉f
is a geometrical quantity independent of thermodynamic variables. For
high-molecular-weight polymers of ordinary interest, 〈R2〉f is propor-
tional to n but σ is independent of n, and therefore the Markoff nature
of the chain is still preserved. The chain with only short-range interfer-
ences is called the ideal chain or unperturbed chain, and its molecular
dimension (〈R2〉 or 〈S2〉) is called the unperturbed dimension. By the
term “unperturbed,” we mean that the chain is not perturbed by long-
range interferences, namely the excluded-volume effect. We note that
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the unperturbed chain does not necessarily possess the Markoff nature;
it breaks down for short chains or stiff chains. The Markoff nature
of the unperturbed chain is rather the definition of flexible chains. In
other words, the unperturbed state of a flexible polymer chain is char-
acterized by the Markoff nature.

9a(iii). Distribution of the End-to-End Distance

We now consider the distribution function P (R) for a chain with short-
range interferences. Needless to say, it is impossible to derive an ex-
pression for P (R) which is valid for all values of n and R, and our
attention is directed to only the form of P (R) for large n. We have
already shown that 〈R2〉 is proportional to n for large n, and that the
sequence of bonds forms a Markoff process. From these facts, it may
be expected that P (R) is Gaussian for large n.

We first consider the freely rotating chain with identical bond lengths
and bond angles.55 Recalling that P (R) is spherically symmetric and
R is the resultant of the ri’s, we have, from Eq. (4.12), for the charac-
teristic function

K(ρ) =
∞∑

p=0

(−1)p

(2p)!

n∑

i=1

n∑

j=1

· · ·
n∑

s=1

n∑
t=1

Iij···st (9.40)

with
Iij···st =

〈
(ρ · ri)(ρ · rj) · · · (ρ · rt)

〉
, (9.41)

where the number of the indices i, j, . . ., t is 2p. When p = 1, Iij

can readily be obtained by means of the projection method used in
Section 9a(i); if ψ is the angle between ρ and ri, we have (for i ≤ j)

Iij = ρ2a2(− cos θ)j−i〈cos2 ψ〉 = 1
3ρ2a2(− cos θ)j−i . (9.42)

Obviously we have Iij···t = IijIkl · · · Ist for i < j < k < · · · < s < t
provided the difference between the nearest members of two adjacent
pairs of indices is not too small. The sum over indices may then be
written as

1
(2p)!

∑

i

∑

j

· · ·
∑

s

∑
t

Iij···st =
∑′∑′ · · ·

∑′

i≤j<···<s≤t

Iij · · · Ist , (9.43)

where the prime indicates that for i = j, Iij is to be replaced by Iij/2.
On the other hand, we have


1

2

∑

i

∑

j

Iij




p

=
∑′∑′

i≤j

· · ·
∑′∑′

s≤t

Iij · · · Ist

= p!
∑′∑′ · · ·

∑′

i≤j<···<s≤t

Iij · · · Ist , (9.44)

where in obtaining the second line we have retained only terms without
overlap of pairs of indices, since the contribution of overlapping terms
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is very small compared to that of nonoverlapping terms because of
| cos θ| < 1. From Eqs. (9.40), (9.43), and (9.44), we have

K(ρ) = exp


−1

2

∑

i

∑

j

Iij




= exp
(
−ρ2

6
na2 1− cos θ

1 + cos θ

)
(for large n) . (9.45)

This is the characteristic function of a Gaussian distribution whose
second moment is given by Eq. (9.8). Thus P (R) is Gaussian for large
n.

Next we consider a general case. The necessary and sufficient con-
dition under which the chain has the Markoff nature is that the sum
n−1

∑ ∑
i<j〈ri · rj〉 is convergent. When the chain is flexible, the cor-

relation between the ith and jth bonds must therefore vanish for some
value of j− i negligibly small compared to n. Suppose that i and n− j
are of order n, and that j − i is of order unity but is so large that
the correlation between ri and rj may be neglected. Then we have
n − j ' n − i for very large n, and the distribution function may be
written in the form,

P (n)(R) =
∫

P (i)(Ri)P (n−i)(R−Ri)dRi , (9.46)

where P (n) is the distribution of the end-to-end distance of the chain
of n bonds. Using Eq. (9.46) and the partition function for the chain
subject to an external force, Nagai56 has shown that P (R) becomes
Gaussian. However, the introduction of the external field is unneces-
sary, and the central limit theorem under consideration is a straightfor-
ward consequence of Eq. (9.46), as shown below. The integral of (9.46)
is of a convolution type, and there is the relation for the characteristic
function,

K(n)(ρ) = K(i)(ρ)K(n−i)(ρ) . (9.47)

Then the 2lth cumulant κ2l, as a function of n, satisfies the equation,

κ2l(n) = κ2l(i) + κ2l(n− i) . (9.48)

The solution of this equation is

κ2l = cln , (9.49)

where cl is a constant independent of n. From Eq. (5.7), the moment
〈R2p〉 is given by

〈R2p〉 = (2p + 1)!
∑
m

p∏

l=1

1
ml!

[
κ2l

(2l)!

]ml

(9.50)
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with
∑

l lml = p. Retaining only the term with the highest power of n
as in Section 5a(iii), we obtain (for large n)

〈R2p〉 =
(2p + 1)!

p!

(κ2

2

)p

. (9.51)

Noting that 〈R2〉 = 3κ2, we have

〈R2p〉 =
(2p + 1)!

6pp!
〈R2〉p . (9.52)

These are the moments of the Gaussian distribution; thus P (R) is
Gaussian for large n.

Thus, we introduce the postulate that the distribution of the un-
perturbed flexible polymer chain is Gaussian. This postulate alone is
insufficient to enable the development of the theory of dilute polymer
solutions; it is necessary to introduce a more restrictive postulate, the
concept of an equivalent chain.57 In this approximation, the unper-
turbed polymer chain is replaced by a random-flight chain which is
composed of N bonds of length A and has a mean-square end-to-end
distance equal to that of the unperturbed chain under consideration;
that is,

〈R2〉 = NA2 . (9.53)

Now the question that arises is: What is the number N? It may be
determined from Eq. (9.53) with the additional condition that both the
chains have the same end-to-end distance Rm at full extension,

Rm = NA; (9.54)

that is,

N =
R 2

m

〈R2〉 , A =
〈R2〉
Rm

. (9.55)

The bond length A given by Eq. (9.55) is called the Kuhn statistical
segment length. In the case of vinyl polymers, for example, we have

〈R2〉 = na2 1− cos θ

1 + cos θ
σ2 , Rm = na sin

(
θ

2

)
, (9.56)

N =
n

2σ2
(1 + cos θ) , A = 2a

sin(θ/2)
1 + cos θ

σ2 . (9.57)

As will be shown in later chapters, however, the parameters N and
A never appear separately in the theory of dilute solutions as far as
the flexible chain is concerned, and the individual values of N and A
have no great significance. It may therefore be supposed that N is, to
some extent, arbitrary, and then A does not necessarily have to be the
Kuhn statistical length. In the remainder of this book, we shall use
the symbols n and a in place of N and A, respectively, unless specified
otherwise. Thus we rewrite Eq. (9.53) as

〈R2〉 = na2 . (9.58)
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This redefined length a is referred to as the unperturbed effective bond
length. It may then be understood that the statistical properties of the
random-flight chain described in the preceding sections apply to the
unperturbed flexible chain with short-range interferences, considering
a to have the new meaning.

9b. Branched and Ring Polymers

Some natural or synthetic polymer molecules contain branches or rings.
For such structures, it is convenient to use the mean-square radius
of gyration as a measure of the average size of the molecule rather
than the mean-square end-to-end distance, because the multiplicity or
absence of the ends leads to an ambiguity of the definition of the latter.
Evaluation is carried out for unperturbed chains obeying random-flight
statistics. It may then be easily shown that the Zimm–Stockmayer
relation (7.22) can be applied to both branched and ring polymers,
whereas the Kramers relation (7.19) can be applied only to molecules
containing no rings.

9b(i). Branched Polymers

We first consider a branched molecule containing no loops, as illustrated
in Fig. II.8, and define a factor g as the ratio of the mean-square radius
of the branched molecule to that of a linear chain possessing the same
number n of segments; that is,

〈S2〉b = g〈S2〉l = 1
6na2g , (9.59)

where the subscripts b and l indicate branched and linear chains, re-
spectively, and a is the unperturbed effective bond length. As seen
from Fig. II.8, some segments are attached to three or more branches.
Such segments will be called branch units, and are indicated by small
circles in the figure. The number of segments attached to a branch
unit will be called the functionality of the branch unit. A portion of
the molecule between two adjacent branch units or between adjacent
end and branch units will be called the subchain. Thus the functionality
of a branch unit is equal to the number of subchains which grow from
it. The molecule is assumed to have m branch units and p subchains.
If nλ is the number of segments in the λth subchain, we must have

n =
p∑

λ=1

nλ . (9.60)

From Eq. (7.22), 〈S2〉b may be written in the form,

〈S2〉b =
1
n2

∑

(iλ,jµ)

〈R 2
iλjµ

〉 , (9.61)
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Fig. II.8. Schematic representation of a branched polymer molecule containing

no ring. The small circles indicate the branch units.

where Riλjµ is the distance between the ith segment in the λth subchain
and the jth segment in the µth subchain, and the summation is carried
out over all iλ, jµ pairs.

Since by assumption the molecule contains no rings, there exists
only one way to reach one segment from another along subchains. In
addition, each subchain obeys the random-flight statistics. We there-
fore have

〈R 2
iλjµ

〉 = |jλ − iλ|a2 for λ = µ

= (nλµ + iλ + jµ)a2 for λ 6= µ , (9.62)

where nλµ is the number of segments in one or more subchains lying
between the λth and µth subchains. In Fig. II.8, for example, n27 =
n4 + n6 and n13 = 0. The segments of the λth and µth subchains are
numbered so that (nλµ + iλ + jµ) just gives the number of segments
existing on the way from segment iλ to segment jµ, and therefore the
order of the segment numbers in the λth subchain may be inverted for
a λ, µ pair. The sum in Eq. (9.61) can easily be evaluated, and we
obtain for the factor g

g =
1
n3




p∑

λ=1

(3nn 2
λ − 2n 3

λ ) + 6
∑

(λ,µ)

nλnλµnµ


 , (9.63)

where
∑

(λ,µ) means the sum over λ, µ pairs. This is the general formula
derived by Kataoka.58, 59 Special cases derived by Zimm and Stock-
mayer [Eqs. (15a), (18), and (19) of Ref. 21] can readily be obtained
from Eq. (9.63). In particular, for star molecules of one branch unit of
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Fig. II.9. Two types of branched molecules. (a) Star type with f = 6.

(b) Normal type with f = 4.

functionality f [see Fig. II.9(a)], Eq. (9.63) becomes

g =
1
n3

f∑

λ=1

(3nn 2
λ − 2n 3

λ ) . (9.64)

This result has also been derived by Orofino60 from the Kramers equa-
tion.

Equation (9.63) is valid for a branched molecule having a given type
of branching. However, even if the molecular weight or n is uniform,
any real polymeric material will have distributions of subchain lengths,
of the number of branch units per molecule, of branch units in the
molecule, and so on. In what follows, we assume that n and m are fixed,
and that all branch units have the same functionality f , for simplicity.
We then have the relation,

p = (f − 1)m + 1 . (9.65)

As for the distributions of subchain lengths (nλ), we consider two types,
for the sake of comparison; one is the uniform distribution61 and the
other is the random distribution.21

The uniform distribution is defined by nλ = n/p for all λ. If νλµ is
the number of subchains between the λth and µth subchains (for exam-
ple, ν27 = 2 in Fig. II.8), we then have nλµ = νλµn/p, and Eq. (9.63)
becomes

gu =
3p− 2

p2
+

6
p3

∑

(λ,µ)

νλµ , (9.66)
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where the subscript u indicates the uniform distribution.
The random distribution is defined as follows: the number of seg-

ments in each subchain varies with an equal probability of occurrence
of a set of n1, n2, . . ., np values. Then a quantity X

({np}
)

as a function
of a set of p numbers, n1, n2, . . ., np, may be replaced by its average
〈X〉 given by21, 59

〈X〉 =

∫ n

0

dnp−1

∫ n−np−1

0

dnp−2 · · ·
∫ n−Pp−1

λ=2 nλ

0

X({np})dn1

∫ n

0

dnp−1

∫ n−np−1

0

dnp−2 · · ·
∫ n−Pp−1

λ=2 nλ

0

dn1

.

(9.67)
As seen from Eq. (9.63), the quantity X to be averaged generally has
the form, n x

λ n y
µ n z

ν , and the integrations in Eq. (9.67) can be easily
performed. Thus we have

gr =
6

p(p + 1)(p + 2)
(p2 +

∑

(λ,µ)

νλµ) , (9.68)

where the subscript r indicates the random distribution.
We now consider three types of branching for each distribution:

star type, normal (comb) type, and random type. The normal type of
branched molecule contains a linear sequence of m branch units (each
of functionality f), as illustrated in Fig. II.9(b). The random type
contains a random mixture of structural isomers (with n and m fixed
and with branch units of the same functionality f).

For the star type (m = 1, νλµ = 0), we readily have, from Eqs. (9.66)
and (9.68),

gu(star) =
3f − 2

f2
, (9.69)

gr(star) =
6f

(f + 1)(f + 2)
. (9.70)

In the normal type, there are (f − 2) side chains attached to every
branch unit; a pair of two branch units separated by ν subchains forms
(f − 1)2 pairs of subchains separated by ν subchains. Further, there
are (m − ν) different pairs of branch units separated by ν subchains.
We therefore have

∑

(λ,µ)

νλµ =
m−1∑
ν=1

(f − 1)2(m− ν)ν = 1
6 (f − 1)2m(m2 − 1) . (9.71)

Substitution of Eq. (9.71) into Eqs. (9.66) and (9.68) leads to

gu(normal) =
3p− 2

p2
+

1
p3

(f − 1)2m(m2 − 1) , (9.72)

gr(normal) =
6

p(p + 1)(p + 2)
[
p2 + 1

6 (f − 1)2m(m2 − 1)
]
. (9.73)



SEC. 9. Remarks 51

TABLE II.2. NUMERICAL VALUES OF THE FACTOR g

RANDOM NORMAL

f m gr gu gr gu

3 1 0.900 0.778 — —
2 0.829 0.712 — —
3 0.774 0.668 — —
4 0.730 0.633 0.733 0.638
5 0.694 0.605 0.703 0.617

10 0.573 0.510 0.622 0.566
15 0.505 0.454 0.587 0.546
20 0.454 0.414 0.567 0.535
25 0.418 0.384 0.555 0.529

4 1 0.800 0.625 — —
2 0.691 0.545 — —
3 0.618 0.496 — —
4 0.566 0.460 0.569 0.465
5 0.525 0.432 0.534 0.443

10 0.406 0.347 0.448 0.394
15 0.344 0.301 0.414 0.375
20 0.305 0.270 0.395 0.365
25 0.277 0.248 0.384 0.359

Equations (9.72) and (9.73) are the results derived by Kurata and
Fukatsu.61

For the random type, the sum
∑

νλµ must be replaced by its average
over all possible structural isomers. This has been done by Kurata and
Fukatsu61 by means of generating functions, but the details are omitted
here. The results are

gu(random) =
3p− 2

p2
+

6
p3

h(f, m) , (9.74)

gr(random) =
6

p(p + 1)(p + 2)
[
p2 + h(f,m)

]
, (9.75)

where

h(f,m) = 1
2 (f − 1)2m(m− 1)

m−1∑
ν=1

(fm−m− ν)!(m− 2)!
(fm−m)!(m− ν − 1)!

×(f − 1)ν−1(fν − 2ν + f)ν . (9.76)

We note that Zimm and Stockmayer21 have obtained an alternative but
equivalent expression for gr (random) from the Kramers equation.

In table II.2 are given some numerical values of g calculated by
Kurata and Fukatsu. In all cases, g is seen to be smaller than unity.
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For given values of f and m, it is observed that g(star)< g (random)<
g(normal) for both uniform and random distributions, and that gu < gr

for each type of branching.
The effect of the heterogeneity in n has been studied by Zimm and

Stockmayer21 and by Orofino,62 but we do not reproduce it here.

9b(ii). Ring Polymers

For simplicity, we consider a single-ring molecule. It may be formed
by joining the ends of a linear chain of n segments. The distribution
function Pr(Rij) of the distance between segments i and j of the ring
molecule may then be expressed in terms of the bivariate distribution
P (Rij ,R) for the linear chain as follows,

Pr(Rij) = P (Rij |R)R=0 ≡ P (Rij |0) , (9.77)

where
P (Rij |R) = P (Rij ,R)/P (R) . (9.78)

Thus Pr(Rij) can be evaluated by the use of the Wang–Uhlenbeck
theorem, and the result is

Pr(Rij) =
(

3
2πµa2

)3/2

exp

(
−3R 2

ij

2µa2

)
(9.79)

with

µ = (j − i)
(

1− j − i

n

)
. (9.80)

We therefore have
〈R 2

ij 〉r = µa2 , (9.81)

and from Eqs. (7.22) and (9.81)

〈S2〉r = 1
12na2 , (9.82)

or
〈S2〉r = 1

2 〈S2〉l . (9.83)

Equation (9.82) or (9.83) is the result obtained by Kramers20 and by
Zimm and Stockmayer21; it implies that the mean-square radius of a
single-ring molecule is just one half of that of a linear chain having the
same number of segments.

In general, the mean-square radii of multiple-ring molecules can also
be evaluated by the use of the Wang–Uhlenbeck theorem.

9c. Wormlike Chain Model for Stiff Chains

In Section 9a, we have seen that, even for the case of vinyl polymers,
unperturbed chains do not have the Markoff nature (the proportional-
ity of 〈R2〉 to n) when they are short. This arises from the fact that the
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correlation between the two end bonds does not vanish for short chains,
and the chains may be regarded as stiff or semiflexible. Typical exam-
ples placed in this category are short chains of cellulose derivatives,
polypeptides in the helical state, and DNA (deoxyribonucleic acids). A
useful molecular model of a stiff chain is the one called the wormlike
chain, the concept of which was first introduced by Kratky and Porod63

in interpreting small angle x-ray scattering measurements of polymer
solutions. In this section, we give a brief description of the statistical
treatment of the wormlike chain.

9c(i). The Concept and the Moments

We first consider a model chain composed of n bonds of length a joined
linearly with bond angle θ, where the free rotation about bonds is
permitted and θ dose not necessarily stand for the true valence angle.
The mean-square end-to-end distance of this chain is given by Eq. (9.7).
Suppose now that the first bond r1 is placed in the direction of the z
axis. Then the average of the z component of the end-to-end vector R
is given by 〈R · ez〉 = a−1

∑
i〈r1 · ri〉. The projection method yields

〈r1 · ri〉 = a2(− cos θ)i−1 as before, and we have

〈R · ez〉 = a
1− (− cos θ)n

1 + cos θ
, (9.84)

and for large n

lim
n→∞

〈R · ez〉 =
a

1 + cos θ
≡ 1

2λ
, (9.85)

assuming that | cos θ| < 1. The length (2λ)−1 is referred to as the
persistence length. The situation is similar to that encountered in the
kinetic theory of gases, in which some component of the velocity of a
particle persists after collisions.

The wormlike chain is defined as a limiting continuous chain formed
from the above discrete chain by letting a → 0 and θ → π under the re-
striction that a/(1+cos θ) = (2λ)−1 and na ≡ L remain constant.63, 64

For the wormlike chain, we therefore have, from Eqs. (9.84) and (9.7),

〈R · ez〉 =
1
2λ

(1− e−2λL) , (9.86)

〈R2〉 =
L

λ
− 1

2λ2
(1− e−2λL) . (9.87)

Similarly, by evaluating 〈R4〉 of the discrete chain, for the limiting case
we obtain65, 66

〈R4〉 =
5L2

3λ2
− 26L

9λ3
− 1

54λ4
(1− e−6λL) +

2
λ4

(1− e−2λL)− L

λ3
e−2λL .

(9.88)
Equations (9.87) and (9.88) have also been derived by Hermans and
Ullman67 and by Saito et al.68 by different methods.
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The random-flight chain and rod may be considered the extremes,
λL À 1 and λL ¿ 1, of the wormlike chain, respectively. In fact, we
have, from Eqs. (9.87) and (9.88),

lim
λL→∞

〈R2〉 =
L

λ
,

lim
λL→∞

〈R4〉 =
5
3

(
L

λ

)2

,





(for random flights) (9.89)

lim
λL→0

〈R2〉 = L2 ,

lim
λL→0

〈R4〉 = L4 .

}
(for rods) (9.90)

The quantity L is the contour length of the chain and is equal to Rm

of Eq. (9.54), the end-to-end distance at full extension. Thus, for the
random-flight chain, we have A = 〈R2〉/L = λ−1; that is, the Kuhn
statistical segment length is just twice the persistence length. The
parameter λ is a measure of chain stiffness or flexibility; the stiffer the
chain, the smaller the parameter λ.

9c(ii). Treatments as a Space Curve

The wormlike chain may be regarded as a differentiable space curve,
and from this point of view the statistical theory of a stiff chain has
recently been developed.68, 69 For convenience, we describe it following
the procedure of Saito et al.68

Let r(s) be the radius vector of an arbitrary point of the space curve
as a function of the contour distance s from one end to that point. Then
the unit vector u(s) tangential to the curve at the point s is given by

u =
∂r
∂s

(9.91)

with

u2 =
(

∂r
∂s

)2

= 1 . (9.92)

The derivative ∂u/∂s is the curvature vector, its magnitude being equal
to the inverse of the radius of curvature. The energy of a bending rod
(per unit length) is equal to 1

2ε(radius of curvature)−2, where ε is a
bending force constant.70 Thus the potential energy of the chain of
contour length s is given by

U = 1
2ε

∫ s

0

(
∂u
∂s

)2

ds . (9.93)

The configurational partition function Z(u, s) with the unit tangent
vector u(s) (at the end s) fixed may be written in the form,

Z(u, s) =
∫

exp

[
− ε

2kT

∫ s

0

(
∂u
∂s

)2

ds

]
d{r} , (9.94)
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where the integration over {r} is carried out over all possible configu-
rations of the chain with u(s) fixed, and may be considered a kind of
path integral.

Now, Eq. (9.94) is of the same form as the integral representation
of the wave function ψ(r, t) for a free particle,71 the correspondence
between the parameters in the two expressions being ε/2kT ↔ πm/ih.
The wave function for a free particle satisfies the Schrödinger equation,

∂ψ

∂t
=

ih

4πm
∇ 2

r ψ . (9.95)

Thus we can readily write down the differential equation satisfied by Z
as follows,

∂Z

∂s
= λ∇ 2

u Z (9.96)

with

λ =
kT

2ε
. (9.97)

In polar coordinates, the general solution of Eq. (9.96) under the re-
striction of (9.92) may be expanded in terms of spherical harmonics,

Z(θ, ϕ, s) =
1
4π

∑
n,m

(2n + 1)e−n(n+1)(s−s′)λ(A e
nmY e

nm + A 0
nmY 0

nm ) ,

(9.98)
where Y e

nm and Y 0
nm are the even and odd spherical harmonics,

Y e
nm = cos(mϕ)P m

n (cos θ) , Y 0
nm = sin(mϕ)P m

n (cos θ) (9.99)

with P m
n (cos θ) the associated Legendre function, and the coefficients

Anm(= A e
nm or A 0

nm, as Ynm = Y e
nm or Y 0

nm ) are given by

Anm = em
(n−m)!
(n + m)!

∫ π

0

∫ 2π

0

Z(θ′, ϕ′, s′)Ynm(θ′, ϕ′) sin θ′dθ′dϕ′

(9.100)
with e0 = 1 and em = 2 for m = 1, 2, . . . Equation (9.98) may be
rewritten as

Z(θ, ϕ, s) =
∫ π

0

∫ 2π

0

Z(θ′, ϕ′, s′)G(θ, ϕ, s|θ′, ϕ′, s′) sin θ′dθ′dϕ′ ,

(9.101)
where G is the Green’s function72 of the differential equation of (9.96)
and is given by

G(θ, ϕ, s|θ′, ϕ′, s′) =
1
4π

∞∑
n=0

(2n + 1)e−n(n+1)λ|s−s′|
n∑

m=0

em

× (n−m)!
(n + m)!

P m
n (cos θ)P m

n (cos θ′) cos
[
m(ϕ− ϕ′)

]
. (9.102)
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Note that for the present case G has the meaning of a conditional
probability. In particular, we have

G(θ, ϕ, s|0, 0, s′) =
1
4π

∑
n

(2n + 1)e−n(n+1)λ|s−s′|Pn(cos θ)Pn(1)

(9.103)
with Pn the ordinary Legendre polynomials.

The mean-square end-to-end distance of a discrete chain may be
expressed as 〈R2〉 =

∑
i

∑
j〈ri ·rj〉. For the continuous chain of contour

length L, this may be converted to

〈R2〉 =
∫ L

0

∫ L

0

〈
u(s1) · u(s2)

〉
ds1ds2 . (9.104)

The integrand can be evaluated, by the use of Eq. (9.103), as

〈
u(s1) · u(s2)

〉
=

∫ π

0

∫ 2π

0

cos θG(θ, ϕ, s2|0, 0, s1) sin θdθdϕ

= e−2λ|s2−s1| . (9.105)

Substitution of Eq. (9.105) into Eq. (9.104) leads to Eq. (9.87). Simi-
larly, 〈R4〉 may be written as

〈R4〉 =
∫ L

0

· · ·
∫ L

0

〈[
u(s1) · u(s2)

][
u(s3) · u(s4)

]〉
ds1 · · · ds4 . (9.106)

After a rather lengthy calculation with the use of Eq. (9.102), we recover
Eq. (9.88). Thus the parameter λ defined by Eq. (9.97) is identical with
that introduced in Eq. (9.85).

The mean-square radius of gyration may be calculated from the
equivalent of Eq. (7.22),

〈S2〉 =
1
L2

∫ L

0

(L− l)〈R 2
l 〉dl , (9.107)

where 〈R 2
l 〉 is the mean-square end-to-end distance of the chain of

contour length l and is given by Eq. (9.87) with L = l. The result is

〈S2〉 =
L

6λ
− 1

4λ2
+

1
4λ3L

− 1
8λ4L2

(1− e−2λL) . (9.108)

In the two limiting cases, we have

lim
λL→∞

〈S2〉 =
L

6λ
(for random flights) , (9.109)

lim
λL→0

〈S2〉 =
L2

12
(for rods) . (9.110)
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9c(iii). Distribution of the End-to-End Distance

Our attention is directed to the distribution function P (R,u0) for the
continuous chain with the unit tangent vector u0 at one end fixed.
Daniels73 has treated the problem as a Markoff process, and derived
a differential equation for P from a Markoff integral equation.∗ A
similar approach has been made by Hermans and Ullman.67 However,
the details are omitted here. The result can be obtained only in a series
form; in polar coordinates, it reads73

P (R,u0)dR = (3λ/2πL)3/2 exp(−3λR2/2L)
× [

(1− 5/8λL + 2R2/L2 − 33λR4/40L3) + (3R/2L

− 25R/16λL2 + 153R3/40L3 − 99λR5/80L4)P1(cos θ)
+ (R2/2L2)P2(cos θ) + · · ·]R2 sin θ dR dθ dϕ (9.111)

with u0 in the direction of the polar axis. Integrating over θ and ϕ, we
have

P (R,u0)dR = (3λ/2πL)3/2 exp(−3λR2/2L)
× (1− 5/8λL + 2R2/L2 − 33λR4/40L3 + · · ·)4πR2dR .(9.112)

From Eqs. (9.111) and (9.112), we obtain for the moments of the Daniels
distribution

〈R · ez〉 =
1
2λ

,

〈R2〉 =
L

λ
− 1

2λ2
,

〈R4〉 =
5L2

3λ2
− 26L

9λ3
.





(Daniels) (9.113)

These are to be compared with the exact values given by Eqs. (9.86)
to (9.88). Thus the Daniels distribution is seen to be a good approxi-
mation to the actual distribution for large λL; it includes a first-order
correction to the Gaussian distribution due to chain stiffness.

Appendix II A. Method of Steepest Descents

We consider the problem of finding the asymptotic form of a contour
integral,

J(z) =
∫

Γ

g(ξ) exp
[
zf(ξ)

]
dξ , (II A.1)

as |z| → ∞, where z and ξ are complex variables, g(ξ) and f(ξ) are
analytic functions of ξ, and the contour Γ is such that the integrand
becomes zero at the ends A and B of the contour. This can be done
by a procedure known as the method of steepest descents or the saddle
point method.74 In the following, we give only a short sketch of the
method which will be sufficient for practical use.

∗This approach to the chain statistics will be described in Chapter III.
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Fig. II.10. Two paths C1 and C2 passing through the saddle point. Path C1 is

the distorted contour, while Γ is the original contour.

Let us examine the behavior of the real part |z|u(ξ) of zf(ξ) =
|z|u(ξ) + i|z|v(ξ) near the point ξ = ξ0 determined by

f ′(ξ0) = 0 . (II A.2)

It is convenient to plot the surface, |z|u(ξ) =vertical coordinate per-
pendicular to the x, y complex plane (ξ = x + iy); at every point ξ in
the x, y plane the surface is at a height above the horizontal given by
|z|u(ξ) at that point. Now, according to the theory of functions, the
real part of an analytic function of a complex variable (and also the
imaginary part and the absolute value) can have neither a maximum
nor a minimum. The above surface can therefore be neither a mountain
top nor a valley in the neighborhood of ξ0, though it must be flat there
because of Eq. (II A.2). Thus the point ξ0 must be a minimax (or a
saddle point). Two curves C1 and C2 passing through ξ0 can be drawn
on the surface so as to satisfy the following condition: the point ξ0 is
the sharpest maximum for curve C1 running from one valley to another
and is the sharpest minimum for curve C2 running from one mountain
top to another, while the imaginary part |z|v(ξ) is kept constant along
paths C1 and C2 (projections of C1 and C2 on the x, y plane). Along
path C1 the integrand of Eq. (II A.1) approaches its end-point value of
zero at A′ or B′ as |z|u(ξ) descends towards the valley on either side
of the saddle point. Path C1 may then be chosen as a new distorted
contour in place of Γ, assuming that the integrand is zero along paths
AA′ and BB′ (see Fig. II.10). Thus Eq. (II A.1) may be rewritten as

J(z) = exp
[
i|z|v(ξ)

] ∫

C1

g(ξ) exp
[|z|u(ξ)

]
dξ . (II A.3)

The dominant contribution to this integral comes from the neighbor-
hood of the saddle point. This becomes increasingly true as |z| → ∞,
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since the maximum of |z|u(ξ) along C1 becomes sharper and the descent
to the end-point value more rapid.

To illustrate the above statement more clearly, let us find the first
term in the asymptotic expansion of J(z). In the neighborhood of ξ0,
zf(ξ) may be expanded as

zf(ξ) = zf(ξ0) + 1
2zf ′′(ξ0)(ξ − ξ0)2 + · · ·

= zf(ξ0) + 1
2 |zf ′′(ξ0)|r2ei(2θ+α) + · · · , (II A.4)

where r is the absolute value of (ξ−ξ0), and θ and α are the arguments
of (ξ − ξ0) and zf ′′(ξ0), respectively. The real part of zf(ξ) is

|z|u(ξ) = |z|u(ξ0) + 1
2 |zf ′′(ξ0)|r2 cos(2θ + α) + · · · , (II A.5)

Thus the steepest-descent direction C1 at ξ0 is such that cos(2θ +α) =
−1, and therefore such that zf ′′(ξ0)(ξ−ξ0)2 is real and negative. Along
path C2 perpendicular to C1 at the point ξ0, it is the sharpest minimum.
Along paths C1 and C2, we have

|z|v(ξ) = |z|v(ξ0) + · · · , (II A.6)

which is independent of ξ. Thus the integral J(z) may be approximated
by

J(z) = exp
[
zf(ξ0)

] ∫

C1

g(ξ) exp
[
1
2zf ′′(ξ0)(ξ − ξ0)2

]
dξ . (II A.7)

For instance, suppose that g(ξ) ≡ 1, and that zf ′′(ξ0) is real and
negative. Then the contour should pass through ξ0 parallel to the real
axis. Upon putting ξ = x+ iy0 and ξ0 = x0 + iy0, Eq. (II A.7) becomes
an integral with respect to x covering the range from −∞ to +∞. The
direction of integration over x is determined by the original contour. If
it is assumed that the direction of integration along the contour is such
that the integration over x is from −∞ to +∞, J(z) can be evaluated
as

J(z) = exp
[
zf(ξ0)

] ∫ +∞

−∞
exp

[− 1
2 |zf ′′(ξ0)|(x− x0)2

]
dx

=
[
2π/|zf ′′(ξ0)|

]1/2 exp
[
zf(ξ0)

]
. (II A.8)

Appendix II B. Orthogonal Transformations

For the evaluation of the integral of Eq. (6.14), it is convenient to resolve
ρj into x, y, and z components, giving

P
({Φs}

)
= Px

({Φsx}
)
Py

({Φsy}
)
Pz

({Φsz}
)
, (II B.1)
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where

Px

({Φsx}
)

= (2π)−s

∫
exp

[
−〈a

2〉
6

∑

k

∑

l

Cklρkxρlx

−i
∑

k

ρkxΦkx

]
d{ρsx} , (II B.2)

and so on. In the material that follows the subscript x will be omitted
for simplicity.

As is well known, a vector may be represented as a matrix consisting
of one single row or one single column, and is called a row vector or a
column vector, as the case may be. Now suppose ρ and Φ to be column
vectors,

ρ =




ρ1
...

ρs


 , Φ =




Φ1
...

Φs


 , (II B.3)

so that the transposes ρT and ΦT of ρ and Φ are the row vectors,

ρT = (ρ1 · · · ρs) , ΦT = (Φ1 · · ·Φs) . (II B.4)

In matrix notation, Eq. (II B.2) may then be rewritten as

Px

({Φs}
)

= (2π)−s

∫
exp

[
−〈a

2〉
6

ρT Cρ− iΦT ρ

]
dρ (II B.5)

with

ρT Cρ =
∑

k

∑

l

Cklρkρl , (II B.6)

ΦT ρ =
∑

k

Φkρk , (II B.7)

where C is the s × s symmetric matrix with elements Ckl and the
quadratic form of (II B.6) is assumed positive definite.

The matrix C can be transformed into a diagonal matrix Λ with
an appropriate orthogonal matrix Q(Q−1 = QT ),

Q−1CQ = Λ , (II B.8)

and at the same time ρ and Φ are transformed into ξ and Ψ, respec-
tively,

ρ = Qξ , (II B.9)
Φ = QΨ . (II B.10)

Then, in the new coordinate system ξ, the quantities ρT Cρ and ΦT ρ
may be expressed as

ρT Cρ = (Qξ)T Cρ = ξT QT CQξ = ξT Λξ =
∑

j

λjξ
2

j , (II B.11)



APP. II B. Orthogonal Transformations 61

ΦT ρ = ΦT Qξ = (Q−1Φ)T ξ = ΨT ξ =
∑

j

Ψjξj , (II B.12)

where the λj ’s are the diagonal elements of Λ. Further, the Jacobian
of the transformation is∣∣∣∣

∂ρ

∂ξ

∣∣∣∣ = absolute value of |Q| = 1 (II B.13)

with |Q| the determinant of Q. Accordingly Eq. (II B.5) becomes

Px

({Φs}
)

= (2π)−s

∫
exp

[
−〈a

2〉
6

ξT Λξ − iΨT ξ

]
dξ

= (2π)−s
s∏

j=1

∫ +∞

−∞
exp

[
−〈a

2〉
6

λjξ
2

j − iΨjξj

]
dξj .

(II B.14)

Since by assumption ρT Cρ is positive definite, all the eigenvalues λj

are positive, and thus it can be easily found that

Px

({Φs}
)

=
(

3
2π〈a2〉

)s/2



s∏

j=1

λ
−1/2

j


 exp


− 3

2〈a2〉
s∑

j=1

Ψ 2
j

λj


 .

(II B.15)
Now we recall that ∏

j

λj = |Λ| = |C| , (II B.16)

∑

j

Ψ 2
j

λj
= ΨT Λ−1Ψ = ΦT QΛ−1Q−1Φ

= ΦT C−1Φ =
∑

k

∑

l

Ckl

|C|ΦkΦl , (II B.17)

where Ckl is the cofactor of the element Ckl of C. Equation (II B.15)
may then be rewritten as

Px

({Φs}
)

=
(

3
2π〈a2〉

)s/2

|C|−1/2 exp

(
− 3

2〈a2〉|C|
∑

k

∑

l

CklΦkΦl

)
.

(II B.18)
Substitution of Eq. (II B.18) and similar equations for the y and z
components into Eq. (II B.1) leads to

P
({Φs}

)
=

(
3

2π〈a2〉
)3s/2

|C|−3/2

× exp

[
− 3

2〈a2〉|C|
∑

k

∑

l

Ckl(ΦkxΦlx + ΦkyΦly + ΦkzΦlz)

]
.

(II B.19)

This is equivalent to Eq. (6.15).
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Appendix II C. Distribution of the Quasi-radius of
Gyration with S Fixed

In this appendix, we evaluate, from Eq. (8.21), the conditional proba-
bility density P (s|S) of the quasi-radius of gyration s with the radius
of gyration S fixed. A very interesting conclusion will be drawn con-
cerning the segment density. The evaluation is due to Fixman.75

We begin by describing some basic equations. As in the case of
P (s), P (s|S) is given by the sum of the bivariate distribution functions
Pj(s, S2) of Eq. (8.21) with Sj = s,

P (s|S) =
[
nP (S2)

]−1 ∑

j

Pj(s, S2) =
[
nP (S)

]−1 ∑

j

Pj(s, S)

=
1
n

∑

j

Pj(s|S) , (II C.1)

and also is related to the segment-density distribution function ρ(s|S)
with S fixed by the equation,

P (s|S) =
1
n

ρ(s|S) . (II C.2)

The function P (s|S) averaged over all values of S gives the distribution
function P (s) of the quasi-radius of gyration, and the second moments
of P (s) and P (S) are identical as mentioned earlier; that is,

P (s) =
∫

P (s|S)P (S)dS , (II C.3)

〈S2〉 =
∫

S2P (S)dS =
∫

s2P (s)ds

=
∫

s2P (s|S)P (S)ds dS . (II C.4)

Further, it must be true that

S2 =
∫

s2P (s|S)ds . (II C.5)

This equality follows from the fact that the square of the radius of
gyration in any instantaneous configuration is

1
n

∑

j

S 2
j =

1
n

∫
s2

∑

j

δ(s− Sj)ds ,

where
∑

δ(s − Sj) is the segment density in the given configuration.
Equation (II C.5) results from a conditional average over all configu-
rations, the condition being that S2 = n−1

∑
S 2

j . Equations (II C.4)
and (II C.5) are general relations between S and P (s|S).
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Now we evaluate the quantity Wj of (8.20), which appears in
Pj(Sj , S

2) of (8.21). Substitution of Eqs. (7.4) and (8.38) and con-
version of the sum to an integral leads to

n∑

l=1

ψjlQlk = −(2n)1/2(πk)−1 cos(πjk/n) . (II C.6)

Substituting Eqs. (8.34) and (II C.6) into Eq. (8.20), we can obtain (for
n À 1)

Wj = (na2/12X2)
{
2−(X/ sin X)

[
cosX+cos(X−2jX/n)

]}
. (II C.7)

The problem is to evaluate the integral in Eq. (8.21) with Eq. (II C.7).
No closed expression for P (S) valid for all S has been obtained, and

therefore it will not be surprising that the integration in Eq. (8.21) also
proves refractory. Thus we shall confine ourselves to the solution for
large S. Even for this situation, however, a steepest-descent calculation
of the integral is so complicated that it is easier to compute the moments
of Pj(Sj , S

2), and from these to infer the distribution. The moments
〈S 2p

j 〉S of Pj(Sj |S) are given by

〈S 2p
j 〉S =

∫
S 2p

j Pj(Sj |S)dSj

=
[
P (S2)

]−1
∫

S 2p
j Pj(Sj , S

2)dSj . (II C.8)

Substitution of Eq. (8.21) into Eq. (II C.8) and integration over Sj

gives

P (S2)〈S 2p
j 〉S = (2π)−12n

[
1 · 3 · · · (2p + 1)

]

×
∫ +∞

−∞
K(ρ)W p

j exp(−iρS2)dρ . (II C.9)

It should be noted that a summation of Eq. (II C.9) over all j, for
p = 1, must lead to ∑

j

〈S 2
j 〉S = nS2 , (II C.10)

which can easily be verified from Eqs. (II C.1) and (II C.5).
The integral in Eq. (II C.9) was evaluated by Fixman for large S

by the method of steepest descents. The result is

P (S2)〈S 2p
j 〉S = 2−1/233/2π5/2(na2)−3/2S2p+1(p + 3

2 )−(p+1)

× [
1 · 3 · · · (2p + 1)

]
cos2p(πj/n) exp

[
(p + 3

2 )− (3π2S2/2na2)
]
.

(II C.11)

It must however be pointed out that Eq. (II C.11) is not the correct
asymptotic form for large n and S, but is slightly erroneous. When
p = 0, Eq. (II C.11) reduces to the Fixman equation (8.51) for P (S),
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which is also slightly erroneous as already discussed. From Eqs. (II
C.11) and (8.51) we obtain for 〈S 2p

j 〉S at large S

〈S 2p
j 〉S = α p

j βp (II C.12)

with
αj = 2S2 cos2(πj/n) , (II C.13)

βp = 3ep
[
1 · 3 · · · (2p + 1)

]
(2p + 3)−(p+1) . (II C.14)

If Stirling’s approximation is applied to the product
[
1 · 3 · · · (2p + 1)

]
,

Eq. (II C.14) becomes

βp = 0.9467
{
1 +

[
12(p + 3

2 )
]−1 + · · ·} . (II C.15)

The first two terms in this series suffice to give βp with an error less
than 0.001 for p = 0, and smaller error for larger p. From Eq. (II C.12)
with (II C.13) and (II C.15), we have

∑

j

〈S 2
j 〉S = 0.98nS2 . (II C.16)

The coefficient should, of course, equal unity according to Eq. (II C.10),
and we can only presume that this small error is connected with the
inadequate treatment of the steepest-descent calculation stated above.

Equation (II C.15) shows that no moment would be computed with
an error greater than 5% if βp were put equal to unity for all p. (In-
deed, the coefficient in Eq. (II C.16) would become unity.) Because
of the small error consequent on this approximation and the enormous
simplification, we therefore take

〈S 2p
j 〉S = α p

j . (II C.17)

It is rather obvious from Eq. (II C.17) that the probability density has
now been approximated by a delta function. To develop this conclusion
formally let S 2

j = xj ,

〈S 2p
j 〉S =

∫
x p

j Pj(xj |S)dxj . (II C.18)

Pj(x|S) is related to its characteristic function φj(ρ) by

Pj(x|S) =
1
2π

∫
φj(ρ) exp(−iρx)dρ , (II C.19)

and according to Eq. (4.13) φj(ρ) is related to the moments of Pj(x|S)
by

φj(ρ) =
∞∑

p=0

1
p!
〈x p

j 〉S(iρ)p = exp(iραj) , (II C.20)



References 65

where the last equality has been obtained by substitution of Eq. (II
C.17). Substitution of Eq. (II C.20) into Eq. (II C.19) leads to a Fourier
representation of the one-dimensional delta function; that is,

Pj(xj |S) = δ(xj − αj) . (II C.21)

The result can be rewritten in terms of Pj(Sj |S) as

Pj(S 2
j |S)dS 2

j = Pj(Sj |S)4πS 2
j dSj ,

Pj(Sj |S) =
1

2πSj
δ(S 2

j − αj) . (II C.22)

Now conversion of the sum in Eq. (II C.1) to an integral gives

P (s|S) =
1
n

∫ n

0

Pj(s|S)dj

=
1

2πns

∫ n

0

δ(s2 − αj)dj

=
1

πns

∫ 2S2

0

δ(s2 − αj)
∣∣∣∣
∂αj

∂j

∣∣∣∣
−1

dαj . (II C.23)

From Eq. (II C.13), |∂αj/∂j| is obtained as
∣∣∣∣
∂αj

∂j

∣∣∣∣ = (2π/n)α 1/2
j (2S2 − αj)1/2 . (II C.24)

We therefore have

P (s|S) = H(2S2 − s2)/2π2s2(2S2 − s2)1/2 , (II C.25)

where H is the unit step function defined by Eq. (7.5). It may easily
be seen that Eq. (II C.25) satisfies Eq. (II C.5), and the step function
H(2S2 − s2) makes the segment density zero for s >

√
2S.

Equation (II C.25) has several interesting features. There is a sharp
boundary to the molecule, and the segment density has a maximum on
that boundary. However, there is also a nonnegligible distribution of
segments in the interior of the molecule, the segment density being
minimized at s = (4/3)1/2S. Far in the interior of the molecule the
segment density varies as (s2S)−1. In summary, the qualitative effect
of the constraint on S is a shift of segments from the interior of the
segment cloud to its boundary, the effect being so large that the cloud
acquires a minimum density on an interior shell.
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Chapter Three

Statistics of Real
Polymer Chains:
Excluded-Volume Effect

10. Introduction

In the statistics of unperturbed chains we have described so far, account
has been taken only of short-range interferences between segments sepa-
rated by a relatively small number of bonds [through the first few terms
in the expansion of the internal-rotational potential of (9.13)]. However,
two or more segments remote from one another along the chain cannot
occupy the same volume element at the same time because of their
finite volumes; in other words, repulsive forces will act between these
segments when close to one another. In addition, this repulsive force
will, to some extent, be altered by the existence of solvent molecules.
That is, there exist general van der Waals interactions among these
segments. Intramolecular interactions of this sort are usually referred
to as the excluded-volume effect in a polymer chain. This effect may be
represented by higher-order terms in the expansion of (9.13), and there-
fore is of long-range nature. Thus it is also often called the long-range
(intramolecular) interference effect. The description in this chapter is
mostly concerned with the excluded volume of a linear flexible chain.

The basic molecular model we adopt for the present problem is the
random-flight (Gaussian) chain of (n + 1) identical segments with the
effective bond length a, as discussed in Section 9a(iii). The reasons
for this simplification are the following: (1) the distribution function
is very complicated even for the unperturbed chain with only short-
range interferences, and (2) there is no fundamental way in which the
total intramolecular potential of (9.13) may be split into the potentials
corresponding to short-range and long-range interferences. With this
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assumption, the configurational partition function for the system may
be given formally by Eq. (3.7),

Z =
∫ 


n∏

j=1

τ(rj)


 exp

[
−W

({Rn}
)

kT

]
d{rn} . (10.1)

However, τ and W are to be redefined as follows: τ is the (effective)
bond probability given by Eq. (5.3) or (5.35) with a being the effective
bond length, and W represents only the potential of mean force due to
long-range interferences, so that the effect of short-range interferences
is absorbed into the parameter a.

Now it is evident that the real chain with excluded volume will tend
to be more extended, especially in a good solvent, than is expected from
the statistics of unperturbed chains. Thus it is adequate to express
the mean-square end-to-end distance 〈R2〉 and mean-square radius of
gyration 〈S2〉 of the real chain in the forms,

〈R2〉 = 〈R2〉0α 2
R , (10.2)

〈S2〉 = 〈S2〉0α 2
S , (10.3)

where the subscript 0 refers to the unperturbed chain.∗ In particular,
the unperturbed dimensions of the linear flexible chain may be written
as

〈R2〉0 = na2 , (10.4)
〈S2〉0 = 1

6na2 , (10.5)

as discussed in Section 9a(iii). The parameter αR or αS is referred
to as the (linear) expansion factor of the polymer chain. It measures
the extent to which a linear molecular dimension is perturbed by the
excluded-volume effect and thereby differs from a linear unperturbed
dimension. When the potential W in Eq. (10.1) vanishes, the chain
must become the unperturbed chain with αR = αS = 1.

For the treatment of the partition function of (10.1), it is necessary
to make the superposition approximation1, 2 in the potential of mean
force W ,

W
({Rn}

)
=

∑

0≤i<j≤n

w(Rij) , (10.6)

where w(Rij) is the pair potential of mean force between the ith and
jth segments as a function of separation Rij . Further, it is assumed
that the pair potential w is short-ranged. Then the problem becomes
very similar to that in the theory of simple fluids1, 2; it is the many-
body problem. In fact, there are two approaches to the theory of the
expansion factor. The first approach, which corresponds to the theory
of imperfect gases, is valid for small excluded volume, and the expan-
sion factor is expressed in a series form. The second approach focuses

∗Throughout the remainder of this book, the subscript 0 will be used to indicate
the unperturbed state unless specified otherwise.
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on deriving a theory valid at large excluded volume, and therefore cor-
responds to the theory of liquids at high densities. Naturally, the latter
encounters many mathematical difficulties inherent in the many-body
problem, and an exact solution for the case of large excluded volume
has not yet been obtained. However, both the approaches lead to the
conclusion that the expansion factor depends on the number of seg-
ments in the chain, and therefore the chain with excluded volume is of
the non-Markoff nature. These developments, based on Eq. (10.1), will
be described in Sections 13 to 16.

Our procedure is as follows: we first describe the theory of Flory,3, 4

who was among the first to demonstrate the non-Markoff nature of the
excluded-volume effect. Then we give a brief description of various at-
tempts made by many workers following Flory, whose studies preceded
the establishment of the dependence of α on n.

11. The Flory Theory

In the model used by Flory, the polymer molecule is regarded as a
continuous cloud of segments distributed about the molecular center of
mass in accordance with a Gaussian function. Irrespective of the form
of the segment distribution, such a model is referred to as the smoothed-
density model. For this model, the expansion factors αR and αS cannot
be distinguished from each other, and we represent them both by α.
In Flory’s treatment the equilibrium value of α is calculated from the
balance between the osmotic force which tends to swell the molecule
in solution and the elastic force arising from the resulting molecular
expansion to a less probable configuration. For the sake of comparison
with our later developments, however, we adopt an alternative method
somewhat different from that used by Flory, but physically equivalent
to that of Flory.

The distribution function P (S) of the radius of gyration may be
obtained by integrating the instantaneous distribution, the integrand
of Eq. (10.1) divided by Z, over {rn} under the restriction that S has
a specified value, as in Eq. (3.9) for P (R). The result may be written
formally in the form,

P (S) = Z−1P0(S) exp
[
−V (S)

kT

]
(11.1)

with

Z =
∫

P0(S) exp
[
−V (S)

kT

]
dS , (11.2)

where V (S) is the intramolecular potential of mean force with S fixed,
and Z−1 has the meaning of a normalizing constant. Equation (11.1) is
rather a defining equation for V (S). The complete form of the unper-
turbed distribution P0(S) is very complicated, as seen in Section 8b.
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For convenience, it is therefore assumed to be a Gaussian function,

P0(S) =
(

3
2π〈S2〉0

)3/2

exp
(
− 3S2

2〈S2〉0

)
· 4πS2 . (11.3)

Now the problem is to evaluate V (S). When the zero of energy
is chosen appropriately, the potential of mean force V (S) will be a
Helmholtz free energy of mixing segments (of one polymer molecule)
and solvent molecules for a specified value of S with the polymer molec-
ular center of mass fixed in space. Let ϕ(s|S) be the volume fraction of
polymer segments at the distance s from the molecular center of mass
with S fixed. Then the local free energy εs of mixing per unit volume
at the point s is a function of ϕ,

εs = ε
[
ϕ(s|S)

]
, (11.4)

and V (S) is given by5, 6

V (S) =
∫

εsds . (11.5)

Since the average segment density within a single polymer molecule is
very low, we may expand εs in a Taylor series around ϕ = 0,

εs = ε(0) + ε(1)(0)ϕ + 1
2ε(2)(0)ϕ2 + · · · (11.6)

with

ε(k)(ϕ) =
dkε(ϕ)
dϕk

, (11.7)

and neglect cubic and higher-order terms. The first term of Eq. (11.6)
gives a constant term in V (S). Now ϕ may be expressed in terms of
the segment-density distribution function ρ(s|S) with S fixed,

ϕ(s|S) = Vsρ(s|S) (11.8)

with Vs the volume of the polymer segment. Since the integral of ρ over
s is equal to n, the second term of Eq. (11.6) also gives a constant term
in V (S). These constant terms have no contribution to the distribution
P (S). We therefore have for V (S) (with omission of constant terms)

V (S) = 1
2ε(2)(0)V 2

s

∫ [
ρ(s|S)

]2
ds . (11.9)

The complete form of ρ(s|S) is unknown, as discussed in Appendix II
C, and we therefore approximate it by a Gaussian function. Equa-
tions (II C.2) and (II C.5) require the relation,

S2 = n−1

∫
s2ρ(s|S)ds . (11.10)

The Gaussian function satisfying this necessary condition is

ρ(s|S) = n

(
3

2πS2

)3/2

exp
(
− 3s2

2S2

)
. (11.11)
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Substitution of Eq. (11.11) into Eq. (11.9) leads to

V (S) = (33/2/16π3/2)n2V 2
s ε(2)(0)S−3 . (11.12)

Now we adopt the Flory–Huggins equation7−9 for the free energy
of mixing polymer and solvent. Then ε may be written in the form,

ε(ϕ) = V −1
0 kT

[
(1− ϕ) ln(1− ϕ) + χϕ(1− ϕ)

]
, (11.13)

where V0 is the molecular volume of the solvent and χ is the thermo-
dynamic interaction parameter for a given polymer-solvent pair. In
Eq. (11.13), the term involving lnϕ has been dropped because of the
assumed fixed position of the polymer molecular center of mass.8 From
Eqs. (11.7) and (11.13), we obtain

ε(2)(0) = 2V −1
0 kT

(
1
2 − χ

)

= 2V −1
0 kTψ(1−Θ/T ) , (11.14)

where ψ is the entropy parameter, and Θ is the parameter called
the theta temperature; both were introduced by Flory.8 Recalling that
nVs = Mv̄/NA with NA the Avogadro number, M the polymer molec-
ular weight, and v̄ the polymer partial specific volume, we may then
rewrite Eq. (11.12) in the form,

V (S)/kT = 2CMψ(1−Θ/T )M1/2x−3 (11.15)

with

CM = (27/25/2π3/2)(v̄2/N 2
A V0)

(〈R2〉0/M
)−3/2

, (11.16)

x = S/〈S2〉 1/2
0 . (11.17)

The mean-square radius 〈S2〉 or the squared expansion factor α2

may be calculated from Eq. (4.16) with (11.1) to (11.3); that is,

〈S2〉/〈S2〉0 = α2

=

∫∞
0

x4 exp
[−3x2/2− V (x)/kT

]
dx∫∞

0
x2 exp

[−3x2/2− V (x)/kT
]
dx

, (11.18)

where x is defined by Eq. (11.17). The ratio of the two integrals in
Eq. (11.18) may be evaluated approximately following the procedure
of Hermans and Overbeek10; the approximate value of α is equal to
the value of x at which the function x3 exp

[−3x2/2 − V (x)/kT
]

is a
maximum. In other words, if V (x) > 0, x3 exp[ ] may be regarded as a
delta function δ(x−α), which satisfies Eq. (11.18).11 This maximizing
condition is

∂

∂α

[
ln α3 − 3

2α2 − V (α)
kT

]
= 0 , (11.19)
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which is equivalent to the equilibrium condition of Flory for the balance
between the osmotic and elastic forces. Substitution of Eq. (11.15) into
Eq. (11.19) leads to

α5 − α3 = 2CMψ(1−Θ/T )M1/2 . (11.20)

This is the well-known Flory equation for the expansion factor.
A number of significant conclusions may be drawn from Eq. (11.20).

First, the quantity (α5 − α3) is seen to be proportional to the square
root of the polymer molecular weight M except at T = Θ, since the
constants CM , ψ, and Θ are independent of M for high-molecular-
weight polymers of ordinary interest.8 Therefore it follows that α in-
creases slowly with molecular weight (assuming that ψ(1−Θ/T ) > 0)
and without limit even when the molecular weight becomes very large.
Since α5 is proportional to M1/2 as M approaches infinity, the depen-
dence of the mean-square end-to-end distance on the molecular weight
may be expressed, from Eq. (10.2), as

〈R2〉 ∝ M δ ∝ nδ , 1 ≤ δ ≤ 1.2 . (11.21)

Thus 〈R2〉 is no longer proportional to the number of the segments
in the chain, and the real chain with excluded volume is of the non-
Markoff nature. This is the most important conclusion of the Flory
theory.

Secondly, α depends on the factor ψ(1 − Θ/T ). This factor rep-
resents the solvent power of the “goodness” of the solvent; the larger
this factor, the better the solvent. Therefore, the better the solvent,
the greater the value of α for a given molecular weight. The parameter
ψ is ordinarily positive, and a system having Θ above or below room
temperatures is called a poor-solvent or good-solvent system empirically,
as the case may be. Thus α may be expected to increase as the tem-
perature is increased in a poor solvent. Furthermore, α is greater or
smaller than unity, as the temperature is above or below Θ.

The important point is that at the theta temperature α must equal
unity irrespective of M ; that is, at T = Θ the molecular dimension is
unperturbed by long-range interferences, and the chain behaves just like
an unperturbed chain. From a physical point of view, the theta point
arises because of the apparent cancellation at this temperature of the
effect of volume exclusion of the segments, which tends to enlarge the
molecule, and the effect of van der Waals attractions between segments,
which contracts the molecule. As will be seen in Chapter IV, the second
virial coefficient of polymer solutions vanishes at the theta temperature.
Thus it corresponds to the Boyle point of an imperfect gas. The theta
temperature may often be experimentally realized by suitable choice of
a single (or mixed) solvent near room temperatures. Such poor solvents
are called theta solvents for a given polymer. A number of theta-solvent
systems have been studied.

Our final discussion is concerned with the parameter CM defined
by Eq. (11.16). It involves the unperturbed dimension 〈R2〉0, which
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depends on the temperature through the effective bond length a as
mentioned in Section 9a. In most cases, however, CM is less dependent
on the temperature than the factor ψ(1−Θ/T ); the temperature depen-
dence of α will then be governed by the factors discussed above. On the
other hand, CM is inversely proportional to the molecular volume, V0,
of the solvent, and therefore if χ = 0, α may be expected to decrease
with increasing V0. Consider now a polymer molecule dispersed in a
“solvent” consisting of other polymers of the same kind. Necessarily
χ will then be zero, and V0 is very large. Thus α will be very nearly
unity. This suggests that α will decrease with increasing concentration
of the polymer. A quantitative treatment of the dependence of α on
concentration will be made in Chapter V.

In conclusion, it must be pointed out that in 1948 Hermans and
Overbeek10 evaluated the expansion factor of a polyelectrolyte chain
with electrostatic interactions and showed its dependence on n. Strictly
speaking, therefore, they were the first to demonstrate the excluded-
volume effect in a wide sense. Nevertheless, the noteworthy contribu-
tion of Flory consists in his emphasis of the significance of this effect
and his establishment of the concept of the theta state.

12. The Direction of Developments
Following the Flory Theory

In its original form the Flory theory cannot be considered a theory
developed logically from the formalism of statistical mechanics. If the
chain with excluded volume truly has a non-Markoff nature, as con-
cluded by Flory, the non-Markoff nature will have a large influence on
the properties of dilute polymer solutions, especially on the molecu-
lar weight dependences. Because the excluded-volume problem itself
is of great interest both physically and mathematically, following the
publication of the Flory theory, a number of different attacks on the
problem were made. Among these, there were several whose conclusions
disagreed with those of Flory. Indeed, it was not until the mid-1950s
that Flory’s concepts gained wide acceptance. It seems worthwhile to
make a survey of these early investigations, since these will help us
to understand the salient aspects of the excluded-volume effect, and
also our later developments. The published work may be classified into
three groups: ideal-chain type, production-chain type, and real-chain
type.12, 13 There are discussed in order.

12a. Ideal-Chain Type

The work of Hermans14 and Grimley15 belongs to this group; the con-
clusion is that the excluded-volume effect is negligible, so that the
mean-square end-to-end distance retains exactly the form it would have
if long-range interferences were absent.

We have already pointed out the equivalence of an ideal random-
flight chain to a simple Markoff chain, and it is known that the Gaussian
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distribution of its end-to-end distance can be obtained as the solution of
a Markoff integral equation or a diffusion equation with an appropriate
boundary condition. Hermans14 approached the problem from this
standpoint. Suppose now that the 0th segment of a chain of n bonds
is fixed at the origin of a coordinate system, and the position of the
jth segment is Rj , as before (see Fig. III.1). Then, by definition, the
bivariate distribution, or the joint probability, P (Rj ,Rj+1) is given
by the product of the singlet distribution P (Rj) and the conditional
probability ψ(Rj+1|Rj),

P (Rj ,Rj+1) = P (Rj)ψ(Rj+1|Rj) (12.1)

irrespective of the existence of long-range interferences, P and ψ being
normalized as

∫
P (Rj)dRj = 1 , (12.2)

∫
ψ(Rj+1|Rj)dRj+1 = 1 . (12.3)

Integration of Eq. (12.1) over Rj gives

P (Rj+1) =
∫

P (Rj)ψ(Rj+1|Rj)dRj . (12.4)

If we use the symbols (R, j + 1) and (R − r, j) in place of Rj+1 and
Rj , respectively, Eq. (12.4) may be rewritten in the form,

P (R, j + 1) =
∫

P (R− r, j)ψ(R− r, j; r)dr (12.5)

with ∫
ψ(R, j; r)dr = 1 . (12.6)

Equation (12.5) is a Markoff integral equation, sometimes referred to
as the Chapman–Kolmogoroff equation,16 ψ being the transition prob-
ability for R − r → R. In the present case, ψ dr is the conditional
probability that when the jth segment is at (R− r) the (j +1)th bond
vector lies between r and r+dr. The integral equation of (12.5) can be
transformed into a differential equation for the distribution function,
called the Fokker–Planck equation (see Appendix III A). If the form of
ψ is assumed, the solution for P (R, j) can in principle be obtained.

Hermans assumed for the form of the transition probability (for
R → R + r)

ψ(R, j; r) = C(R)τ(r)
[
1− β0ρ(R + r|R)

]
, (12.7)

where C(R) is the normalizing function dependent on R, τ(r) is the
bond probability, β0 is the volume excluded to one segment by the
presence of another, and ρ(R + r|R) is the average segment density
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Fig. III.1. Schematic representation of the coordinates of segments appearing

in the Markoff integral equation for the distribution function.

at (R + r) when the jth segment is at R. The physical meaning of
Eq. (12.7) is obvious: β0ρ is the fraction of the total volume excluded
to the (j + 1)th segment at (R + r) by the presence of others, and
therefore the factor (1 − β0ρ) represents the volume fraction available
for occupancy by the (j + 1)th segment in the volume element dr at
(R+r). Evidently ρ(R+r|R) is given by the sum over the conditional
probability density Pk(R+r|R) that the kth segment is in dr at (R+r)
when the jth segment is at R; that is,

ρ(R + r|R) =
n∑

k=1

Pk(R + r|R) . (12.8)

Hermans approximated Pk(R+ r|R) ≡ Pk(Rk|Rj) by Pk(Rk) without
Rj fixed, and used the unperturbed distribution function for Pk(Rk).
His final result is

〈R2〉 = na2
[
1 + 0.78(β0/a3n1/2)

]
. (12.9)

Thus 〈R2〉 becomes equal to na2 as n is increased. The average segment
density at (R+r) will be much higher when the jth segment is at R than
when it is free. Apart from the expression for ψ, therefore, Hermans’
approximation to Pk underestimates the excluded-volume effect and is
invalid.

Next we discuss the treatment of Grimley.15 His starting point is
Eq. (10.1) with (10.6). Now the product of τ in the integrand of
Eq. (10.1) is just the instantaneous distribution P0

({Rn}
)

for the un-
perturbed chain. Grimley approximated P0

({Rn}
)

by the product of
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independent distributions,

P0

({Rn}
)

=
n∏

j=1

P0j(Rj) . (12.10)

Integration of P
({Rn}

)
over {Rn−1} leads then to

P (R) = CP0(R)
[
1− β0ρ0(R)

]
, (12.11)

where C is the normalizing constant, and ρ0(R) is the average segment
density at R(≡ Rn) in the unperturbed state. From Eq. (12.11), we
can obtain

〈R2〉 = na2
[
1 + 0.143(β0/a3n1/2)

]
. (12.12)

Thus the conclusion of Grimley is the same as that of Hermans. The
approximation of (12.10) is incorrect, because all intramolecular in-
teractions cannot be taken into account in this approximation but
only interactions of the nth segment with the others contribute to the
excluded-volume effect.

12b. Production-Chain Type

The conclusion is that the effect increases 〈R2〉 but does not alter the
Markoff nature of the chain; that is, it behaves just like the short-range
effect. The theories of Hermans, Klamkin, and Ullman,17 Debye and
Rubin,18 and Montroll19 are placed in this category.

Hermans et al.17 again started at Eq. (12.5) with (12.7) but used
the correct expression for the conditional segment density ρ(R + r|R),
though it was evaluated in the unperturbed state. Their result is

〈R2〉 = na2
[
1 + 1.72(β0/a3)

]
. (12.13)

Thus the Markoff nature of the chain is preserved, although 〈R2〉 be-
comes greater than the unperturbed value na2. We must note that
the segments k > j + 1 make no contribution to the final result. In-
deed, Debye and Rubin18 used Eq. (12.8) from the outset without Pk

for k > j + 1 and naturally arrived at the same conclusion as Her-
mans et al.17 In these treatments, the entire chain may be considered
to be “produced” by adding bonds one by one, the direction of each
step depending only on the past steps. If the problem is formulated
by Eq. (12.5), ψ(R, j; r) should represent the transition probability for
R → R + r when all intramolecular long-range interactions are taken
into account. Each step or ψ must therefore be affected by all the steps
in the past and future, and also by correlations between them. Thus the
real chain must be different in nature from the simple Markoff chain.

On the other hand, Montroll19 treated the effect in a two-dimensional
square lattice chain, applying the theory of Markoff processes. For
a completely random-flight chain, excluding only first-order overlaps
which occur between bonds four removed from each other, his result is
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similar to that of Hermans et al.17 This is to be expected, since the effect
is regarded as of short-range nature. Frisch, Collins, and Friedman20

also attempted a similar approach, using the two-dimensional square
lattice, the hexagonal lattice, and the diamond lattice, but did not
come to any conclusion about 〈R2〉.

12c. Real-Chain Type

The conclusion is that the effect causes 〈R2〉 to become asymptotically
proportional to a power of n higher than the first, or at least 〈R2〉/n
does not approach a finite limit as n increases without limit. This point
of view, the non-Markoff nature of the real chain, is in agreement with
the conclusion of Flory and is widely accepted at the present time.

Many papers in this group have been published since 1951 (after
the Flory theory). All of them start with the partition function of
(10.1), using the superposition approximation of (10.6) to the poten-
tial of mean force but discarding the factorization approximation of
(12.10) to the unperturbed instantaneous distribution. Necessarily this
leads to the correct result. The foremost of these theories is the de-
velopment of the partition function by Teramoto,12, 21 based on the
cluster expansion method of Ursell and Mayer in the theory of imper-
fect gases.22 Subsequent developments in this direction were made by
many workers.23−26 The most general formulation, made by Fixman26

in 1955, and subsequent advances will be described in detail in Sec-
tion 14. Another direction of study is the derivation of the Markoff in-
tegral equation for the distribution function, or the equivalent diffusion
equation, from the partition function. Contrary to the work of Herman
et al.17 and others,18 however, no assumption is made about the form
of the transition probability ψ; there results a physically plausible form
for ψ as a straightforward consequence of the partition function. Such
investigations were made by Grimley27 and by Zimm, Stockmayer, and
Fixman,13 and will be described in Section 13. Saito28 also treated
the problem in a similar manner, deriving an integrodifferential equa-
tion for the distribution function by means of the coupling parameter
method.1, 29 All these early investigations of the real-chain type lead
to a theory, now called the first-order perturbation theory. It must be
pointed out that although the theory of James30 also gives the cor-
rect result, his treatment is somewhat different from those cited above.
Regarding the problem as equivalent to a diffusion problem, he still
started at the Markoff integral equation but assumed for the transition
probability

ψ(R, j; r) = τ(r)
[
1− β0ρ(R + r|R)

]
. (12.14)

The existence of the segments k > j + 1 was not considered from the
outset because of the formulation as a diffusion process. The essen-
tial difference between the theories of Hermans et al.17 and James30

consists in the normalization condition; that is, in the latter neither
ψ(R, j; r) nor P (R, j) is subject to any normalization condition. Af-
ter normalization, however, his distribution function becomes exactly
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Fig. III.2. A two-dimensional square lattice chain of ten bonds and with bond

angle 90◦.

the same as that of Grimley27 and Zimm et al.13 in the first-order per-
turbation approximation. A statistical-mechanical justification of the
formulation of James will be given in Section 16.

Finally, from a different point of view, we now discuss the differ-
ences between the theories classed under the ideal, production, and real
chains.12, 31 Let us consider the two-dimensional square lattice chain
with bond angle 90◦, and suppose this chain to be constructed by at-
taching one bond after another consecutively just as in the diffusion of
a free particle. A configuration of such a chain of ten bonds is shown
in Fig. III.2. If this configuration is one of the configurations of the
ideal chain in which overlaps of bonds are allowed, the probability of
its occurrence is (1/4) · (1/2)9 = 1/2048, since each bond can be placed
in two ways (on the right or left side of a foregoing one) except the first
bond which has four possible directions. The total number of possible
configurations is of course 2048 in this case. If we take the configura-
tion in Fig. III.2 as one of the configurations of the production chain,
its probability is (1/4) · (1/2)4 · 1 · (1/2) · 1 · (1/2)2 = 1/512, since the
first step goes to the right with probability one-fourth, the next step
goes upwards with probability one-half, after three steps with the same
probability the sixth step goes certainly upwards with probability unity,
and so on. Thus, all possible configurations do not occur with the same
probability, and the probability of placing each bond is normalized in
such a way that overlaps of bonds occur with probability zero. For
instance, the sixth step goes upwards with probability unity and down-
wards with probability zero (1 + 0 = 1). Therefore this corresponds to
the normalized transition probability of Hermans et al.17 On the other
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hand, a complete enumeration shows that if the overlaps between bonds
are completely excluded, only 440 configurations are allowable. For the
real chain, therefore, the probability of the configuration in Fig. III.2 is
1/440, since all possible configurations must be a priori equally proba-
ble. In this case, each configuration has the same relative probability
1/2048 = (1/4) · (1/2)9, and the probability of placing each bond is
not always normalized. For instance, the sixth step goes upwards with
probability one-half and downwards with probability zero. Therefore
this corresponds to the unnormalized transition probability of James.30

If the overlap between bonds is regarded as the arrival at a barrier of
a diffusing particle, the problem of the production chain is equivalent
to that of a random walk with reflecting barriers, while the problem of
the real chain is equivalent to that of a random walk with absorbing
barriers. Note that a diffusing particle reflects with probability unity
at a reflecting barrier, while it cannot suffer further displacements after
arrival at an absorbing barrier and the sequence of the random walk
terminates there.32

13. Perturbation Theory (A):
Distribution Function Method

The primary purpose of this section is to derive an exact expression
for the transition probability ψ and a differential equation for the dis-
tribution function from the partition function of (10.1). This has been
done by several authors, as mentioned in the previous section. For
convenience, we describe it following the procedure of Zimm, Stock-
mayer, and Fixman,13 which will be very helpful in understanding the
difference between the real polymer chain and a simple Markoff chain.
We shall also discuss the approximations used here and common to all
other theories of dilute solutions of flexible chain polymers. Although
the original theory of Zimm et al. was worked out on the distribution
P (Rij) of the distance between the ith and jth segments, we consider
simply the distribution P (R), since the former can be treated more
conveniently by the cluster expansion method.

We begin by discussing the superposition approximation of (10.6).
In general, the pairwise decomposability of the potential energy is mod-
erately accurate, whereas the potential of mean force is exactly ex-
pressed as a sum of terms of all kinds of component potentials, w(2)

for two molecules, w(3) for three molecules, and so on33; the approxi-
mation of (10.6) neglecting higher component potentials is inexact. A
justification of the superposition approximation is difficult, although
its adequacy has been proved for the dense hard sphere fluid. In the
present problem, however, the superposition approximation may be ex-
pected to cause little error for the final result, because the average seg-
ment density within a polymer molecule is very low and three or more
nonbonded segments will not be simultaneously close to one another
[the component potential w(ν) approaches zero if one of the molecules
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(segments) of the subset of ν molecules is distant from all the other
molecules of the subset].

The second approximation to be used is concerned with the form
of the pair potential w(Rij) in Eq. (10.6). The potential w, although
formally taking the place of a potential energy for solute-solute inter-
actions, depends intimately on solvent-solute and solvent-solvent inter-
actions as well. In addition, w is a complicated function of separation
even in the simplest systems. More explicitly, w is related to the pair
correlation function g(Rij) for solute molecules (segments) at infinite
dilution by the equation,

g(Rij) = exp
[
−w(Rij)

kT

]
, (13.1)

where the zero of w is chosen so that g → 1 as Rij → ∞. For a fluid
mixture of monatomic isotopes, for example, g is exactly the radial
distribution function for any pair of molecules in the fluid, and would
oscillate at short range, as would w, even if the molecules were hard
spheres without attraction.1, 2 It is therefore physically of no great sig-
nificance to speculate about the detailed behavior of polymer solutions
by using special simple forms for w, e.g., a Lennard–Jones 6–12 po-
tential; almost any function can be used with impunity, provided its
short-range nature is preserved.34, 35 Thus we simply put

χij ≡ g(Rij)− 1 = −βδ(Rij) (13.2)

with

β =
∫ [

1− g(Rij)
]
dRij , (13.3)

where δ is a three-dimensional Dirac delta function. The parameter β
is called the binary cluster integral for a pair of segments (strictly the
cluster integral is the negative of β); it represents the effective volume
excluded to one segment by the presence of another.∗ We note that
any function w with a repulsive core at small separation and attraction
for some range of separation will give positive β at high temperature,
negative β at low temperature, and vanishing β at an intermediate
Boyle temperature, namely the theta temperature. Generally, β will
have large positive values in good-solvent systems where preferential
attractions occur between the polymer segment and solvent molecule,
and small positive, zero, or negative values in poor-solvent systems.
The approximations of (10.6) and (13.2) are fundamental and common
to all the theories of dilute polymer solutions.

Now we proceed to consider the present problem. From Eq. (10.1),
the instantaneous distribution P

({Rn}
)

for the entire chain may be

∗For a very dilute gas of hard spheres, β is equal to 8V0 with V0 the molecular
volume. For a fluid mixture of monatomic isotopes, β is approximately equal to V0

at high densities where the compressibility of the fluid may be neglected.



SEC. 13. Perturbation Theory (A): Distribution Function Method 83

written as

P
({Rn}

)
= Z−1

[
n∏

i=1

τ(ri)

]
exp

(
−W

kT

)
, (13.4)

where the 0th segment is fixed at the origin of a coordinate system, as
before (see Fig. III.1). With the use of Eqs. (10.6), (13.1), and (13.2),
Eq. (13.4) may be rewritten in the form,

P
({Rn}

)
= Z−1




n∏

i=1

τ(ri)





 ∏

0≤k<l≤n

(1 + χkl)


 . (13.5)

From Eq. (13.5), P
({Rn}

)
is seen to reduce to the unperturbed distri-

bution at the theta temperature at which β and χij vanish. Now we
designate the partition function and instantaneous distribution for the
chain of j bonds (with the first segment fixed) by Zj and P (j)

({Rj}
)
,

respectively, P (j) being written as

P (j)
({Rj}

)
= Z −1

j




j∏

i=1

τ(ri)





 ∏

0≤k<l≤j

(1 + χkl)


 . (13.6)

If t = n − (j + 1) and {Rt} = (Rj+2, . . ., Rn), the instantaneous
distribution for the chain of t bonds is

P (t)
({Rt}

)
= Z −1

t




n∏

i=j+2

τ(ri)





 ∏

j+1≤k<l≤n

(1 + χkl)


 . (13.7)

Further, we define a function Hjt by

1 + Hjt =
∏

0≤k≤j
j+1≤l≤n

(1 + χkl) . (13.8)

Then the distribution of (13.5) may be factored as

P
({Rn}

)
= Z−1ZjZtτ(rj+1)P (j)

({Rj}
)
P (t)

({Rt}
)
(1 + Hjt) . (13.9)

This factorization is the basis for several useful results, and provides a
means of relating the intramolecular long-range effects on the (j +1)th
bond in the chain of n bonds to the interactions between the two parts
of the chain on either side of the specified bond.

Integrating P
({Rn}

)
over {Rn} under the restriction that Rj and

Rj+1 are fixed, we obtain the joint probability,

P (Rj ,Rj+1) = Z−1ZjZtτ(rj+1)
∫

P (j)P (t)(1 + Hjt)
d{Rn}

dRjdRj+1
,

(13.10)
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where for brevity the explicit coordinates of P (j) and P (t) have been
suppressed. Dividing both sides by the singlet distribution P (Rj),

P (Rj) =
∫

P (Rj ,Rj+1)dRj+1 , (13.11)

we have for the transition probability

ψ(Rj+1|Rj) = γ(Rj)τ(rj+1)
∫

P (j)P (t)(1+Hjt)
d{Rn}

dRjdRj+1
, (13.12)

where γ(Rj) = Z−1ZjZt/P (Rj) is a normalizing function to be deter-
mined from Eq. (12.3). It will be convenient to express ψ in another
form. The integral in Eq. (13.12) is the sum of two parts, the first of
which is easily split into a product of two independent factors,

∫
P (j)P (t) d{Rn}

dRjdRj+1

=
[∫

P (j) d{Rj}
dRj

]
·
[∫

P (t)d{Rt}
]

= P (j)(Rj) · 1 , (13.13)

where P (j)(Rj) is just the distribution function of the end-to-end dis-
tance of the chain of j bonds. The second term cannot be simply
reduced, and is of special interest; we denote it by J(Rj ,Rj+1),

J(Rj ,Rj+1) =
∫

P (j)P (t)Hjt
d{Rn}

dRjdRj+1
. (13.14)

With these relations, Eq. (13.12) may be rewritten in the form,

ψ(Rj+1|Rj) = C(Rj)τ(rj+1)
[
1 +

J(Rj ,Rj+1)
P (j)(Rj)

]
, (13.15)

where C(Rj) = γ(Rj)P (j)(Rj) is a new normalizing function.
From Eq. (13.8), the function Hjt is seen to involve interaction

terms χkl between all the segments in the first part of the chain [i.e.,
the first (j + 1) segments] and all of those in the other part. This
effect reflects on the transition probability through the function J . In
other words, the transition probability ψ for j → j + 1 is affected not
only by the existence of the segments k ≤ j but also by the segments
l > j +1. The real chain must therefore be distinguished from a simple
Markoff chain, for which ψ is governed only by the jth segment. On
the other hand, in the transition probability of Hermans et al.17 and
Debye and Rubin,18 only the interaction of the (j + 1)th segment with
the others is considered. It is evident that such special assumptions
about ψ cannot lead to a correct conclusion concerning the excluded-
volume effect, since Eq. (13.15) is a straightforward consequence of the
partition function.

Now the problem is to derive a differential equation for P (Rj).
This can usually be done from the Markoff integral equation of (12.4)
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or (12.5). However, it is more convenient to go back to the joint prob-
ability of (13.10). Integrating it over Rj+1 or Rj , we have the singlet
distributions,

P (Rj) = Q

[
P (j)(Rj) +

∫
τ(rj+1)J(Rj ,Rj+1)dRj+1

]
, (13.16)

P (Rj+1) = Q

∫
τ(rj+1)

[
P (j)(Rj) + J(Rj ,Rj+1)

]
dRj , (13.17)

where we have used Eqs. (13.13) and (13.14), and Q = Z−1ZjZt is a
normalizing constant and is given by

Q−1 = 1 +
∫

τ(rj+1)J(Rj ,Rj+1)dRjdRj+1 . (13.18)

In the alternative notation, as in Eq. (12.5), Eqs. (13.16) to (13.18)
may be rewritten as

P (R, j) = Q

[
P (j)(R, j) +

∫
τ(r)J(R,R + r)dr

]
, (13.19)

P (R, j + 1) = Q

∫
τ(r)

[
P (j)(R− r, j) + J(R− r,R)

]
dr , (13.20)

Q−1 = 1 +
∫

τ(r)J(R,R + r)dR dr . (13.21)

Expanding P (j)(R− r, j) around R, and J(R,R + r) and J(R− r,R)
around (R,R), we obtain (see Appendix III A)

P (R, j + 1)− P (R, j) = 1
6a2Q

[∇ 2
j P (j) + (∇ 2

j J −∇ 2
j+1J)R,R + · · ·] ,

(13.22)
where we have used the normalization condition on τ and the fact that
the second moment of τ is a2, and terms of order a3 and higher have
been dropped. The symbols ∇ 2

j and ∇ 2
j+1 denote Laplacian opera-

tors with respect to the coordinates of the jth and (j + 1)th segments,
respectively, and the subscript (R,R) means that the value of the func-
tion so designated is to be taken when the coordinates of both these
segments are at R. Similarly we have

Q−1 = 1 +
∫

J(R,R)dR + · · · . (13.23)

The right-hand side of Eq. (13.22) may be equated to ∂P (R, j)/∂j, and
we therefore have for the desired differential equation

6
a2

∂P

∂j
= Q

[∇ 2
j P (j) + (∇ 2

j J −∇ 2
j+1J)R,R

]
. (13.24)

We do not deal further with the distribution function itself, but turn
our attention now to the mean-square distance 〈R 2

j 〉. Multiply both



86 STATISTICS OF REAL POLYMER CHAINS: EXCLUDED-VOLUME EFFECT

sides of Eq. (13.24) by R2dR and integrate. Noting that by Green’s
theorem ∫

(∇ 2
j P (j))R2dR = 6 , (13.25)

we then obtain

1
a2

d〈R 2
j 〉

dj
=

1 + 1
6

∫
(∇ 2

j J −∇ 2
j+1J)R,RR2dR

1 +
∫

J(R,R)dR
. (13.26)

As seen from Eq. (13.8), the function Hjt is given by the sum of prod-
ucts of the χ functions. We now approximate Hjt by terms involving
only one of the χ functions; that is,

Hjt =
∑

0≤k≤j

∑

j+1≤l≤n

χkl . (13.27)

Such an approximation is called the single-contact approximation. In
this approximation, only those configurations are considered in which
a single pair of segments is interacting (i.e., only one of the χ functions
differs appreciably from zero). Higher-order approximations for multi-
ple contacts will be introduced in the next section. In the single-contact
approximation, we may further approximate the functions P (j) and
P (t) by their unperturbed values P

(j)
0 and P

(t)
0 , respectively. From

Eq. (13.14), we then have

J(Rj ,Rj+1) =
∑

k

∑

l

∫
χklP

(j)
0 (Rk,Rj)

×P
(l−j−1)

0 (Rl −Rj+1)dRk dRl . (13.28)

Substitution of Eq. (13.2) for χkl and integration over Rl leads to a
contact of the kth and lth segments because of the delta function,

J(Rj ,Rj+1) = −β
∑

k

∑

l

∫
P

(j)
0 (Rk,Rj)

×P
(l−j−1)

0 (Rk −Rj+1)dRk . (13.29)

The unperturbed bivariate distribution P
(j)

0 (Rk,Rj) may be factored
as

P
(j)

0 (Rk,Rj) = P
(k)

0 (Rk)P (j−k)
0 (Rj −Rk) . (13.30)

Then, if we use Gaussian functions for all the P0’s, the integral in
Eq. (13.29) may be evaluated in a straightforward manner, and the
result can be used in Eq. (13.26).

We omit further details. The derivative of 〈R 2
j 〉 becomes

1
a2

d〈R 2
j 〉

dj
= 1 + 8

3z
[
2y1/2 + (1− y)1/2 − 1− y

]
+ · · · , (13.31)
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where

y =
j

n
,

z =
(

3
2πa2

)3/2

βn1/2

=
(

3
2π〈R2〉0

)3/2

βn2 . (13.32)

Integration now yields 〈R 2
n 〉 ≡ 〈R2〉,

〈R2〉
na2

= α 2
R = 1 + 4

3z + · · · . (13.33)

This is the first-order perturbation theory of the mean-square end-
to-end distance, and has been derived by many authors as cited in
Section 12c. From Eqs. (13.32) and (13.33), the expansion factor is
seen to increase with n (assuming that β > 0). Thus the present
theory gives support to the conclusion of Flory. A further discussion of
the perturbation theory of α is deferred to the next section.

14. Perturbation Theory (B):
Cluster Expansion Method

As mentioned in Section 12c, the approach to the problem analogous
to the Ursell–Mayer theory of imperfect gases was attempted first by
Teramoto,12, 21 and subsequently pursued by many investigators. Var-
ious statistical properties can be calculated more easily than in the
previous section, although the results are obtained in series forms. The
formulation presented here is due to Fixman.26

It is convenient to formulate, instead of P (R), the distribution func-
tion P (Rij) of the distance Rij between the ith and jth segments
(j > i). Suppose the ith segment to be fixed at the origin of a coor-
dinate system. Then the partition function is still given by Eq. (10.1),
and P (Rij) may be written in the form,

P (Rij) = Z−1

∫ 


n∏

j=1

τ(rj)


 exp

(
−W

kT

)
d{rn}
dRij

. (14.1)

The exponential in the integrand may be expanded in terms of the χ
functions as follows,

exp(−W/kT ) =
∏

k<l

(1 + χkl)

= 1 +
∑

k<l

χkl +
∑

k<l

∑
p<q

k<p

χklχpq + · · ·

+
∑

k<l

∑
p<q

· · ·
∑
u<v

k<p<···<u

χklχpq · · ·χuv + · · · . (14.2)
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We now introduce the unperturbed multivariate distribution function
P0(Rij ,Rkl, . . . ,Ruv) of vectors Rij , Rkl, . . ., Ruv,

P0(Rij ,Rkl, . . . ,Ruv) =
∫ 


n∏

j=1

τ(rj)


 d{rn}

dRijdRkl · · · dRuv
. (14.3)

With the use of Eqs. (14.2) and (14.3), P (Rij) of (14.1) may then be
expanded as

P (Rij) = Z−1

[
P0(Rij) +

∑ ∫
χklP0(Rij ,Rkl)dRkl

+
∑∑ ∫

χklχpqP0(Rij ,Rkl,Rpq)dRkldRpq + · · ·
]

. (14.4)

Recalling that

P0(Rkl, . . . ,Ruv) =
∫

P0(Rij ,Rkl, . . . ,Ruv)dRij , (14.5)

we integrate both sides of Eq. (14.4) over Rij to obtain

Z = 1 +
∑∫

χklP0(Rkl)dRkl

+
∑∑ ∫

χklχpqP0(Rkl,Rpq)dRkl dRpq + · · · . (14.6)

Substitution of Eq. (13.2) into Eqs. (14.4) and (14.6) and integration
leads to

P (Rij) = Z−1
[
P0(Rij)− β

∑
P0(Rij , 0kl)

+β2
∑ ∑

P0(Rij , 0kl, 0pq) + · · ·] (14.7)

with

Z = 1− β
∑

P0(0kl) + β2
∑∑

P0(0kl, 0pq) + · · · , (14.8)

where 0kl, 0pq, . . . mean that Rkl = 0, Rpq = 0, . . . . Now Z cer-
tainly lies between zero and unity if β > 0. We may therefore expand
the denominator of the right-hand side of Eq. (14.7) with (14.8) in a
geometric series and collect powers of β; that is,

P (Rij) = P0(Rij) + β
∑

k<l

Q0(Rij , 0kl)− β2
∑

k<l

∑
p<q

k<p

Q0(Rij , 0kl, 0pq)

+ β3
∑

k<l

∑
p<q

∑
s<t

k<p<s

Q0(Rij , 0kl, 0pq, 0st)− · · · , (14.9)

where

Q0(Rij , 0kl) = P0(Rij)P0(0kl)− P0(Rij , 0kl) , (14.10)
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Q0(Rij , 0kl, 0pq) = P0(Rij)P0(0kl, 0pq)− P0(Rij , 0kl, 0pq)
+P0(Rij , 0kl)P0(0pq) + P0(Rij , 0pq)P0(0kl)
−2P0(Rij)P0(0kl)P0(0pq) , (14.11)

Q0(Rij , 0kl, 0pq, 0st) = P0(Rij)P0(0kl, 0pq, 0st)− P0(Rij , 0kl, 0pq, 0st)
+P0(Rij , 0pq, 0st)P0(0kl) + P0(Rij , 0kl)
×P0(0pq, 0st)− 2P0(Rij)P0(0kl)P0(0pq, 0st)
+P0(Rij , 0kl, 0st)P0(0pq) + P0(Rij , 0pq)
×P0(0kl, 0st)− 2P0(Rij)P0(0pq)P0(0kl, 0st)
+P0(Rij , 0kl, 0pq)P0(0st) + P0(Rij , 0st)
×P0(0kl, 0pq)− 2P0(Rij)P0(0st)P0(0kl, 0pq)
−2P0(Rij , 0kl)P0(0pq)P0(0st)
−2P0(Rij , 0pq)P0(0kl)P0(0st)
−2P0(Rij , 0st)P0(0kl)P0(0pq)
+6P0(Rij)P0(0kl)P0(0pq)P0(0st) . (14.12)

As seen from Eq. (14.3), if we use the Gaussian function of (5.35) for
the bond probability, all the P0’s can be easily evaluated by the Wang–
Uhlenbeck theorem (Section 6). Some of these, which are frequently
used, are given in Appendix III B. Thus each term in Q0 becomes a
Gaussian function.

We do not again deal further with the distribution function itself,
but proceed to the evaluation of its moments. For example, the mean-
square end-to-end distance can be obtained by multiplying Eq. (14.9)
with i = 0 and j = n by R2dR and integrating. All the results may
be expressed as power series in β, as seen from Eq. (14.9). The linear
term, the square term, and so on are called the single-contact term,the
double-contact term, and so on, respectively. The theory obtained by
retaining terms only up to the kth power of β is referred to as the
kth-order perturbation theory.

We first evaluate the mean-square end-to-end distance. The final
result may be expressed as a power series in the parameter z defined
by Eq. (13.32),

〈R2〉/〈R2〉0 = α 2
R = 1 + C1z − C2z

2 + C3z
3 − · · · . (14.13)

Let us now consider the symmetric matrix C appearing in Eq. (6.15)
for the distribution function P0(Φ1,Φ2, . . .) with Φ1 = R, Φ2 = Rkl,
Φ3 = Rpq, Φ4 = Rst, . . . . From Eqs. (6.3) and (6.12), it is seen that
for the present case the diagonal element Cjj is equal to the number of
bonds contained in the part of the chain between the two ends of the
vector Φj , while the off-diagonal element Cij is equal to the number of
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Fig. III.3. Representative cluster diagrams for the single- and double-contact

terms of the mean-square end-to-end distance.

bonds contained commonly in the two parts of the chain between the
ends of Φi and between the ends of Φj . Thus we have

C =




n l − k q − p t− s · · ·
l − k l − k D1 D2 · · ·
q − p D1 q − p D3 · · ·
t− s D2 D3 t− s · · ·

...
...

...
...

. . .




. (14.14)

The coefficients in Eq. (14.13) can be expressed in terms of the matrix
elements of (14.14),

C1 = n−3/2
∑

k<l

(l − k)−1/2 , (14.15)

C2 = n−2
∑

k<l

∑
p<q

k<p

{
(l − k)(q − p)

[
2D1 − (l − k)− (q − p)

]
[
(l − k)(q − p)−D 2

1

]5/2

+(l − k)−1/2(q − p)−3/2 + (l − k)−3/2(q − p)−1/2

}
, (14.16)

C3 = n−5/2
∑

k<l

∑
p<q

∑
s<t

k<p<s

f(k, . . . , t,D1, D2, D3) , (14.17)
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TABLE III.1. THE MATRIX ELEMENTS D1, D2, and D3 FOR
THE CLUSTER TYPES IN THE TRIPLE-CONTACT
TERM OF 〈R2〉 FOR WHICH THE SUMMATION IS
REQUIRED

D1 = q − p D1 = l− p

TYPE σ D2 D3 TYPE σ D2 D3

1 1 t− s t− s 5 1 t− s t− s
2 1 t− s 0 6 1 0 q − s
3 1 t− s q − s 7 2 l − s t− s
4 2 l − s 0 8 1 l − s q − s

where the explicit expression for f has been omitted because of its
length. The elements D1, D2, and so on can be determined by a cluster-
diagram analysis. In Fig. III.3 are depicted representative cluster dia-
grams for all possible contact types in the single- and double-contact
terms. There is only one type of contact in the single-contact term,
and three types in the double-contact term. For the latter, we have

D1 = q − p for type 1 ,

= l − p for type 2 ,

= 0 for type 3 . (14.18)

When D1 = 0, the quantity in curly brackets of Eq. (14.16) is identically
equal to zero; terms of type 3 do not contribute to C2, and only two
types require the multiple summations in Eq. (14.16). In general, a
diagram, in which the chain can be divided into at least two subchains
statistically independent of each other, does not contribute to the final
result. In the triple-contact term, there are, in all, 15 possible types
of contacts. Of these, five types make no contribution, for which f is
identically equal to zero. In addition, there is mirror image symmetry
between two other types of contacts; two types related by mirror image
symmetry lead to the same numerical contribution once the summation
has been carried out. There are two symmetric pairs of types among
the remaining ten types in C3. Thus the number of types of contacts
that require the multiple summations in Eq. (14.17) is reduced to eight.
In Table III.1 are given the elements D1, D2, and D3 for these eight
types of contacts together with a symmetry factor σ(= 1 or 2) to be
applied to each type.

The sums in Eqs. (14.15) to (14.17) may now be converted to in-
tegrals for n1/2 À 1. The integrals for C1 and C2 can be evaluated
analytically. The integrals for types 1 to 5 in C3 can also be evaluated
analytically, but the remaining require numerical integration. The re-
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sults are

C1 = 4
3 = 1.333 ,

C2 =
16
3
− 28

27
π = 2.075 ,

C3 =
64
3
−

(
73679
8100

− 13202
2025

ln 2 +
1616
405

ln
3
2

)
π +

512
45

IA

= 6.459 , (14.19)

where

IA =
∫ π/2

0

θ2

1 + 3 sin2 θ
dθ = 0.40325 .

The integral IA was evaluated numerically. The first coefficient C1 is in
agreement with that in Eq. (13.33), and C2 and C3 are due to Fixman26

and Yamakawa and Tanaka.36 It is of interest to note that, using a
numerical extrapolation method, Subirana et al.37 found C2 = 2.05 and
C3 = 6.3± 0.2, which are very close to the exact values of (14.19). The
evaluation of higher coefficients requires the use of digital computers.

Next we evaluate the mean-square radius of gyration in the double-
contact approximation. For this purpose, we can use Eq. (7.22) or

〈S2〉 = n−2
∑

i<j

〈R 2
ij 〉 , (14.20)

where 〈R 2
ij 〉 can be obtained from Eq. (14.9). We may write the result

as
〈S2〉/〈S2〉0 = α 2

S = 1 + C
′

1 z − C
′

2 z2 + · · · . (14.21)

The matrix C′ associated with the distribution function P0(Rij , Rkl,
Rpq, . . .) is

C′ =




j − i D
′

1 D
′

2 · · ·
D

′
1 l − k D

′
3 · · ·

D
′

2 D
′

3 q − p · · ·
...

...
...

. . .


 . (14.22)

The coefficients in Eq. (14.21) may then be written as

C
′

1 = 6n−7/2
∑

i<j

∑

k<l

(D
′

1 )2(l − k)−5/2 , (14.23)

C
′

2 = 6n−4
∑

i<j

∑

k<l

∑
p<q

k<p

{[
(q − p)(D

′
1 )2 + (l − k)(D

′
2 )2

− 2D
′

1 D
′

2 D
′

3

][
(l − k)(q − p)− (D

′
3 )2

]−5/2

− (D
′

1 )2(l − k)−5/2(q − p)−3/2 − (D
′

2 )2(l − k)−3/2(q − p)−5/2
}

.

(14.24)
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We omit further details, and merely note that there are three types of
clusters in C

′
1 and 16 types in C

′
2 that require the multiple summa-

tions. The sums may be converted to integrals; they can be evaluated
analytically. The results are

C
′

1 =
134
105

= 1.276,

C
′

2 =
536
105

− 1247
1296

π = 2.082 . (14.25)

The first coefficient was obtained by Zimm, Stockmayer, and
Fixman,13, 26 and the second coefficient, by Yamakawa, Aoki, and
Tanaka.38 The evaluation of C

′
3 and higher coefficients cannot be car-

ried through without numerical calculation.
Other statistical averages can also be evaluated easily in the single-

contact approximation. For example, we can calculate 〈R 2p
ij 〉. In

particular, we obtain for 〈R2p〉 and 〈R 2
ij 〉

〈R2p〉 = 〈R2p〉0(1 + K(p)z − · · ·) (14.26)

with

K(p) =
p∑

m=1

(−1)m+1

m2 − 1
4

(
p
m

)
= 2

[
π1/2(p + 1)!

Γ(p + 3
2 )

− 2
]

, (14.27)

〈R 2
ij 〉 = 〈R 2

ij 〉0(1 + Kijz − · · ·) (14.28)

with

Kij = 4
3

{
8
3 (y − x)1/2 − 4(1− x)1/2 − 4y1/2 + (y − x)

− 8
3 (y − x)−1

[
(1− y)3/2 − (1− x)3/2 − y3/2 + x3/2

]}
,

x = i/n , y = j/n . (14.29)

Substituting Eqs. (14.21) and (14.28) into the relation,

〈S 2
j 〉 = n−1




j−1∑

i=0

〈R 2
ij 〉+

n∑

i=j+1

〈R 2
ji 〉


− 〈S2〉 , (14.30)

we obtain
〈S 2

j 〉 = 〈S 2
j 〉0(1 + Kjz − · · ·) (14.31)

with

Kj = (1− 3y + 3y2)−1

{
121
21

− 32
3

[
y3/2 + (1− y)3/2

]

+
24
5

[
y5/2 + (1− y)5/2

]
+ 4

3

[
y3 + (1− y)3

]}
. (14.32)

The results given by Eqs. (14.26) to (14.32) are due to Yamakawa and
Kurata.39, 40
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Fig. III.4. Theoretical values of α 2
R at small z. Curves 1 to 3: the first-,second-,

and third-order perturbation theories, respectively. Curve F,o: the original Flory

theory, Eq. (14.39). Curve F,m: the modified Flory theory, Eq. (14.40).

As seen from the analysis described so far, the average molecular
dimensions may be expressed in terms of three parameters: the number
n of segments in the chain, the effective bond length a, and the binary
cluster integral β for a pair of segments, provided that the superposition
approximation and the assumption of the short-range nature of the
pair potential are valid and n is large. However, it is important to
observe that these three parameters never appear separately but only
in two combinations na2 and n2β. For this reason, a theory of the
type described is referred to as the two-parameter theory of polymer
solutions. The quantity na2 is nothing but the unperturbed mean-
square end-to-end distance of the linear chain, while the quantity n2β
is just twice the total excluded volume between segments. Thus these
two quantities represent short-range and long-range interferences in the
chain, respectively.

The most significant results obtained in this section are the pertur-
bation theoretic predictions of the expansion factors,

α 2
R = 1 + 1.333z − 2.075z2 + 6.459z3 − · · · , (14.33)

α 2
S = 1 + 1.276z − 2.082z2 + · · · . (14.34)

These equations represent the exact and standard theory of the excluded-
volume effect within the framework of the two-parameter theory, al-
though the series are very slowly convergent and therefore their va-
lidity is confined to the range of small z, i.e., the very vicinity of the
theta temperature. The expansion coefficients in Eq. (14.33) or (14.34)
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may be used as a criterion for excellence of an approximate theory at
least over the range of relatively small z. In order to illustrate the
slow convergence of the series, in Fig. III.4 are shown the values of α 2

R

predicted by the first-, second-, and third-order perturbation theories
by curves 1, 2, and 3, respectively. The second- and third-order per-
turbation theories are seen to predict almost the same values of αR for
|z| < 0.15, but depart markedly from each other beyond this region.
These perturbation theories are believed to predict the correct trend
of the increase in αR over the range of z < 0.15. Also, it is important
to note that for small z both the second- and third-order perturbation
theories predict values of αR smaller (not greater) than those predicted
by the first-order perturbation theory.

From the first-order perturbation theory, we can deduce some in-
teresting aspects of the excluded-volume effect.39, 40 First, consider a
Gaussian distribution function of the end-to-end distance, whose sec-
ond moment is given by the exact first-order perturbation theory. Its
2pth moments, which we designate by 〈R2p〉∗, can then be obtained as

〈R2p〉∗ = 〈R2p〉0(1 + 4
3pz − · · ·) . (14.35)

By a comparison of this and Eq. (14.26) with (14.27), we immediately
find that 〈R2p〉∗ are always larger than the corresponding exact values
for positive small z and p ≥ 2. Secondly, the ratio of 〈R2〉 to 〈S2〉 may
be expressed as

〈R2〉
〈S2〉 = 6

(
1 +

2
35

z − · · ·
)

. (14.36)

In other words, the ratio is larger than the value 6 for the random-flight
chain for positive z, and tends to increase with increasing z. Thirdly,
from Eq. (14.31) with (14.32), we have

〈S 2
j 〉 = 1

3na2(1 + 1.23z − · · ·) for j = 0, n ,

=
1
12

na2(1 + 1.00z − · · ·) for j = 1
2n . (14.37)

Equations (14.37) indicate that the excluded-volume effect has a larger
influence on the segments near the ends of the chain than on the in-
termediate segments; the expansion of the polymer molecule does not
occur uniformly, but is greater in the outer shells than in the interior
of the molecule. All these aspects of the effect may be represented in
terms of the non-Gaussian nature of the real polymer chain.

Finally, we discuss briefly the Flory theory from the point of view
of the two-parameter theory. As will be shown in Chapter IV, a corre-
spondence exists between Flory’s notation and ours,35, 41

z = (4/33/2)CMψ(1−Θ/T )M1/2 ,

β = 2V −1
0 V 2

s ψ(1−Θ/T ) . (14.38)

In our notation the Flory equation (11.20) may be rewritten as

α5 − α3 = 2.60z . (F, o) (14.39)
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At small z, Eq. (14.39) may be expanded as α2 = 1 + 2.60z − · · ·; the
coefficient 2.60(= 33/2/2) is about two times greater than the exact
value of (14.19) or (14.25). Thus Stockmayer35, 41 recommended an
adjustment of the coefficient on the right-hand side of Eq. (14.39) so
that it gives the exact first-order perturbation theory;

α 5
R − α 3

R = 4
3z , (F,m) (14.40)

α 5
S − α 3

S =
134
105

z . (F,m) (14.41)

Equation (14.39) is referred to as the original Flory equation (F,o),
and Eqs. (14.40) and (14.41), as the modified Flory equations (F,m).
In Fig. III.4 are also plotted the values of α 2

R predicted by the original
and modified Flory equations. The modified Flory theory prediction
is seen to lie between the second- and third-order perturbation theory
predictions for positive z, and seems rather better than the original
Flory theory. However, Eq. (14.40) or (14.41) is semiempirical in na-
ture, and the adequacy of these equations at large z must be examined
by further investigations.

15. Approximate Closed Expressions

As described in the preceding sections, the expansion factor is a func-
tion only of the excluded-volume parameter z within the framework
of the two-parameter theory. Although the perturbation theory is ex-
act, its validity is confined to a very small range near z = 0. We now
wish to derive an equation which can describe correctly the behavior
of the expansion factor over a wide range of z. There is, of course, no
promise that we can obtain an exact solution of the problem, since it
is a many-body problem. Since the mid-1950s, the general excluded-
volume problem has been approached from two starting points. One
begins with the potential of mean force with the end-to-end distance
or the radius of gyration fixed, and the other is a derivation of a dif-
ferential equation for the expansion factor. Although all the theories
predict that α increases with z without limit, in conformity with the
Flory theory, there are appreciable differences among the values of α
predicted by them, depending primarily on the method used to decou-
ple the many-body problem. In particular, although all expressions for
α have the asymptotic form,

lim
z→∞

αν = const. z , (15.1)

where ν is a constant independent of z, several values between one and
five for ν have been predicted. In the present and next sections, we
give a detailed discussion of the present status of the problem.
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15a. Approximate Expressions Derived from the
Potential of Mean Force with R or S Fixed

In Section 11, we assumed a form for the potential V (S) in Eq. (11.1)
without proof. We begin by deriving a formal but exact expression for
the potential V (R) or V (S). The distribution function P (R) of the
end-to-end distance may be written in the form,

P (R) = Z−1

∫
P0

({Rn}
)
exp

(
−W

kT

)
d{rn}
dR

(15.2)

with

Z =
∫

P0

({Rn}
)
exp

(
−W

kT

)
d{rn} , (15.3)

exp
(
−W

kT

)
=

∏

i<j

(1− βδij) , (15.4)

where δij is shorthand for δ(Rij) and P0

({Rn}
)

represents the prod-
uct of the bond probabilities, namely the unperturbed instantaneous
distribution. Now, differentiation of ZP (R) with respect to β leads to

∂ZP (R)
∂β

= −
∑

i<j

∫
δijP0

({Rn}
)
exp

(
−W

kT

)
d{rn}
dR

. (15.5)

Dividing both sides of Eq. (15.5) by Z, we obtain

Z−1 ∂ZP (R)
∂β

= −
∑

i<j

∫
δijP

({Rn}
)d{rn}

dR

= −
∑

i<j

∫
δijP (R,Rij)dRij . (15.6)

Dividing both sides of Eq. (15.6) by P (R), we have

∂ ln ZP (R)
∂β

= −
∑

i<j

∫
δijP (Rij |R)dRij

= −
∑

i<j

P (0ij |R) . (15.7)

Integration of Eq. (15.7) over β from 0 to β leads to

P (R) = Z−1P0(R) exp
[
−V (R)

kT

]
, (15.8)

where

Z =
∫

P0(R) exp
[
−V (R)

kT

]
dR , (15.9)

V (R)
kT

=
∑

i<j

∫ β

0

P (0ij |R)dβ . (15.10)
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The conditional probability density P (0ij |R) in Eq. (15.10) is to be
evaluated in the (intermediate) perturbed state. Equation (15.10) is
due to Fujita et al.42

Similarly, we can obtain for the distribution function P (S) of the
radius of gyration

P (S) = Z−1P0(S) exp
[
−V (S)

kT

]
(15.11)

with

Z =
∫

P0(S) exp
[
−V (S)

kT

]
dS , (15.12)

V (S)
kT

=
∑

i<j

∫ β

0

P (0ij |S)dβ . (15.13)

We note that the approximation of Eq. (15.4) by26

W

kT
= β

∑

i<j

δij (15.14)

in Eq. (15.2) and the corresponding expression for P (S) give the same
results as Eqs. (15.10) and (15.13), respectively. This means that the
effect of interactions between two particular segments on statistical
averages is negligibly small provided n is large. With Eq. (15.14),
the differentiation with respect to β can be conveniently performed.
Equations (15.10) and (15.13) are formally exact within the framework
of the two-parameter theory.

Now we may use the Gaussian function for P0(R). Adopting the
Hermans–Overbeek procedure, used in Section 11, the expansion factor
αR may then be equated to the value of x = R/〈R2〉 1/2

0 satisfying the
equation,

x− 1
x

= − 1
3kT

∂V (R)
∂x

. (15.15)

However, the exact expression for P0(S), as given by Eq. (8.47), is too
complicated to derive a closed expression for αS . In the first approxima-
tion, we therefore use the Gaussian function for P0(S) as in Section 11,
and then αS can be determined from Eq. (15.15) with x = S/〈S2〉 1/2

0

and V (S) in place of V (R).
Thus the problem comes down to an evaluation of the conditional

probability density P (0ij |R) or P (0ij |S) in Eq. (15.10) or (15.13). De-
pendent on the approximation made in P (0ij |R) or P (0ij |S), the pub-
lished work may be classified into three groups.
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15a(i). Theories with P (0ij|R) in the Unperturbed
State

We approximate P (0ij |R) by its value at β = 0 corresponding to the
lower limit of integration in Eq. (15.10). We then have

V (R)
kT

= β
∑

i<j

P0(0ij |R) . (15.16)

For the random-flight model, P0(0ij |R) can be evaluated straight-
forwardly, and we have

V (R)
kT

= zn
∑

i<j

(j − i)−3/2(n− j + i)−3/2 exp
[
− 3(j − i)R2

2n(n− j + i)a2

]
.

(15.17)
Replacing the summation by integration, we obtain (with omission of
a constant term)

V (R)/3kT = −(2π/3)1/2zx (15.18)

for a ¿ R ¿ na. From Eqs. (15.15) and (15.18), we have the re-
sult, α 2

R − 1 = (2π/3)1/2αRz. Now the Hermans–Overbeek procedure
correctly defines the asymptotic solution for large z. We replace the
coefficient (2π/3)1/2 = 1.446 by 4/3 over the range of ordinary interest,
since the difference between the two coefficients is small and at small
z the latter gives the exact first-order perturbation theory. Thus we
rewrite the result as

α 2
R − 1 = 4

3αRz . (BJ) (15.19)

This equation is due to Bueche25 and to James.30 The BJ equation pre-
dicts that at large z, αR is proportional to z, i.e., ν = 1 in Eq. (15.1).
Such an equation for α is referred to as an equation of the first-power
type; it predicts that the root-mean-square end-to-end distance is pro-
portional to n at large z so that the chain behaves like a rod molecule.
This seems an implausible result.

Next we consider the smoothed-density model. It is convenient to
rewrite P0(0ij |R) as

P0(0ij |R) =
∫

δ(Sj − Si)P0(Si,Sj |R)dSi dSj , (15.20)

where Si is the distance of the ith segment from the molecular center
of mass, as before. We now introduce the factorization approximation,

P0(Si,Sj |R) = P0i(Si|R)P0j(Sj |R) (15.21)

with P0i(Si|R) the unperturbed distribution of Si with R fixed. Sub-
stitution of Eq. (15.21) into Eq. (15.20) leads to

P0(0ij |R) =
∫

P0i(s|R)P0j(s|R)ds . (15.22)
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Recalling that the (unperturbed) conditional segment-density distribu-
tion ρ0(s|R) is given by

ρ0(s|R) =
∑

j

P0j(s|R) , (15.23)

we have, from Eqs. (15.16), (15.22), and (15.23),

V (R)/kT = 1
2β

∫ [
ρ0(s|R)

]2
ds . (15.24)

Similarly, we can obtain

V (S)/kT = 1
2β

∫ [
ρ0(s|S)

]2
ds . (15.25)

Substitution of Eq. (11.11) into Eq. (15.25) leads to

V (S)/kT = (33/2/2)zx−3 . (F, o) (15.26)

If we use Eq. (15.26) and the Gaussian function for P0(S), we find
the original Flory equation. As pointed out by Fixman,26 however,
to derive the equations of the Flory type, it suffices merely to assume
that the spatial distribution of segments about the center of mass is
spherically symmetric; ρ0(s|S) is a function only of n, s, and S. Thus
ρ0(s|S) must be of the form,

ρ0(s|S) = nS−3f(s/S) , (15.27)

where f is some unknown function of s/S. We then have

V (S)/kT = 1
2βn2S−3

∫ ∞

0

[
f(s/S)

]24π(s/S)2d(s/S)

= Czx−3 . (15.28)

Use of Eq. (15.28) and the Gaussian function for P0(S) leads to

α 5
S − α 3

S = Cz . (15.29)

If the coefficient C is adjusted to give the exact first-order perturbation
theory, Eq. (15.29) becomes the modified Flory equation of (14.41) for
αS . If we assume that ρ0(s|R) is also spherically symmetric, by the
same argument as above we can find the modified Flory equation of
(14.40) for αR. All the equations of the Flory type predict that ν = 5
in Eq. (15.1); they are of the fifth-power type.

Flory and Fisk43 introduced a device to improve the theory by using
the Flory–Fisk function given by Eq. (8.52) with m = 3 for P0(S)
instead of the Gaussian function. Equation (15.28) was still adopted
for V (S), adjusting the coefficient C to force agreement with the exact
first-order perturbation theory. Carrying out the integration over S
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numerically (without use of the Hermans–Overbeek procedure), they
obtained the result,

α 5
S − α 3

S = 0.648z
[
1 + 0.969(1 + 10z/α 3

S )−2/3
]
. (FF) (15.30)

The FF equation predicts that at large z, α 5
S = 0.648z; it is of the fifth-

power type, but the constant 0.648 in this asymptotic form is about
one-half of the corresponding constant in the F,m equation. We note
that the boson representation approach of Fixman and Stidham 44, 45

also predicts similar dependences of αR and αS on z; the numerical
results will be shown at the end of this section, though the derivation
is too complicated to reproduce herein [see Section 35a(iii)].

Fujita and Norisuye46 improved the FF theory by using their exact
expression for P0(S) given by Eq. (8.47) and still adopting Eq. (15.28)
for V (S). The coefficient C may be again adjusted to force agreement
with the exact first-order perturbation theory. This can be done conve-
niently following the procedure of Fixman.47 If the general expression
for 〈S2〉, analogous to Eq. (11.18), is expanded in powers of Cz, the
coefficients of these powers are various combinations of 〈S−2p〉0. These
moments can be calculated if P0(S) or P0(S2) is expressed as Eq. (8.45)
and the integration over S is carried out first. The result is∗

α 2
S = 1 + 0.4649(Cz)− 0.2458(Cz)2 + · · · . (15.31)

If the coefficient of z is equated to 134/105, C is found to be 2.745.
Note that this C value yields the value −1.852 for the coefficient of
z2 in Eq. (15.31), which is in good agreement with the exact value.
The Fujita–Norisuye theory is also of the fifth-power type and gives,
of course, only numerical results. As will be shown later, it predicts
values of αS somewhat greater than those predicted by the FF theory.

The following question now arises: is ρ0(s|R) spherically symmet-
ric? Obviously, it is not, since it is the sum over P0j(s|R) given by
Eq. (7.25) with (7.26). Although its evaluation is straightforward,Kurata,
Stockmayer, and Roig48 simply adopted an ellipsoid model such that
the distribution of segments is uniform within an ellipsoid having its
principal axes proportional to the root-mean-square radii of the chain
with R fixed. From Eqs. (7.31), the volume VR of this ellipsoid is given
by

VR = const.
(〈S 2

x 〉R〈S 2
y 〉R〈S 2

z 〉R
)1/2

= const.〈R2〉0R
(
1 + 〈R2〉0/3R2)1/2 . (15.32)

we then have

ρ0(s|R) = n/VR within the ellipsoid ,

= 0 outside the ellipsoid , (15.33)
∗Fixman’s original result is erroneous and corrected in the paper of Fujita and

Norisuye.46
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and therefore obtain, from Eqs. (15.24) and (15.33),

V (R)/kT = βn2/2VR

= 3Cz(x2 + 1
3 )−1/2 . (15.34)

From Eqs. (15.15) and (15.34), we find

α 3
R − αR = 2.053z

(
1 +

1
3α 2

R

)−3/2

, (KSR) (15.35)

where the choice of C = (4/3)5/2 = 2.053 has been taken to give the
exact first-order perturbation theory. The KSR equation is seen to be of
the third-power type. This arises from the fact that the KSR potential
falls off as R−1 instead of R−3 as in the potential of the Flory type.

Koyama49 assumed ρ0(s|S) to be an ellipsoidal distribution, and
arrived at an equation for αS of the third-power type with the use of
Eq. (8.52). As mentioned already, however, Eq. (8.52) is not neces-
sarily correct. In addition, there is no reason why ρ0(s|S) should not
be spherically symmetric for the smoothed-density model; the ellip-
soidal distribution is inconsistent with the factorization approximation
to P0(Si,Sj |S) as in Eq. (15.21). Thus the significance of this improve-
ment seems obscure.

15a(ii). Theories with P (0ij|R) in the Fully
Perturbed State

We approximate P (0ij |R) by its value at β = β corresponding to the
upper limit of integration in Eq. (15.10). We then have

V (R)
kT

= β
∑

i<j

P (0ij |R) , (15.36)

where P (0ij |R) is to be evaluated in the fully perturbed state. This case
was studied by Fujita.42 For simplicity, we approximate P (0ij |R) in
Eq. (15.36) by P0(0ij |R) with aαR in place of a. Such an approximation
is referred to as the uniform-expansion approximation.

For the random-flight model, we have

V (R)/3kT = −(2π/3)1/2zxα −4
R . (15.37)

This equation can readily be obtained from Eq. (15.18) by replacing z
and x by z/α 3

R and x/αR, respectively. If the coefficient (2π/3)1/2 is
again replaced by 4/3, we find the F,m equation,

α 5
R − α 3

R = 4
3z .

Next we consider the smoothed-density model. In the case of the
spherically symmetric distribution of segments, Eq. (15.28) remains
unchanged, and we therefore recover the F,m equation. In the case of
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the ellipsoidal distribution of segments, Eq. (15.34) must be replaced
by

V (R)
3kT

= Cz

(
x2 +

α 2
R

3

)−1/2

α −2
R . (15.38)

This potential also leads to the F,m equation.
The result is quite interesting; irrespective of the form of P (0ij |R),

the present case leads exactly to the F,m equation of the fifth-power
type. From the analysis described so far, we may expect that the BJ
and F,m equations give the upper and lower bounds of αR at a given
z, respectively.

15a(iii). Theories with P (0ij|R) in the Intermediate
Perturbed State

We still introduce the uniform-expansion approximation, but use, in-
stead of αR(z), a scale factor αR(z′) with z′ the excluded-volume pa-
rameter in the intermediate perturbed state (0 ≤ z′ ≤ z). The potential
can then be obtained, according to Eq. (15.10) or (15.13), by replacing
αR by αR(z′) in the potential used in Section 15a(ii) and integrating
z−1V so obtained over z′ from 0 to z.

For the random-flight model, the equation determining αR becomes

αR − 1
αR

= (2π/3)1/2

∫ z

0

dz′

α 4
R (z′)

(15.39)

with αR ≡ αR(z). Differentiation of both sides with respect to z leads
to

(2π/3)1/2 dz

dαR
= α 4

R + α 2
R . (15.40)

Integration gives

1
5 (α 5

R − 1) + 1
3 (α 3

R − 1) = 4
3z , (K) (15.41)

where the coefficient (2π/3)1/2 has been replaced by 4/3 again. Equa-
tion (15.41) is due to Kurata.50 The K equation predicts that at large
z, α 5

R = 6.67z; it is of the fifth-power type. A similar calculation was
also carried out by Alexandrowicz.51

In the case of the spherically symmetric distribution of segments,
the result is the same as in Section 15a(ii), i.e., the F,m equation. In
other words, the potential which is proportional to R−3 or S−3 leads
to the F,m equation irrespective of the presence of a scale factor in the
fully or intermediately perturbed state. In the case of the ellipsoidal
distribution of segments, with the modification of Eq. (15.38) we have
for the equation determining αR = αR(z).

1− 1
α 2

R

= C

∫ z

0

dz′

α 2
R (z′)

[
α 2

R + 1
3α 2

R (z′)
]3/2

. (15.42)
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If we put αR(z) = y, αR(z′) = t, and dz/dy = φ(y), Eq. (15.42) may
be rewritten as

y3 − y = C

∫ y

1

t−2

(
1 +

t2

3y2

)−3/2

φ(t)dt . (15.43)

This is a linear integral equation of the Volterra type for φ. Over
the range of integration, Fujita, Okita, and Norisuye42 represented the
kernel to a very good approximation by the quadratic form,
0.9990 − 0.4771(t/y)2 + 0.1304(t/y)4. Then Eq. (15.43) can be solved
analytically, and the final result is

α 5
R − 0.4931α 3

R − 0.2499α −1.332
R sin(1.073 ln αR)

− 0.5069α −1.332
R cos(1.073 ln αR) = 2.630z , (FON) (15.44)

where the coefficient C has been put equal to 2.053, as before. The
FON equation predicts that at large z, α 5

R = 2.63z; it is also of the
fifth-power type.

Finally, we describe briefly two other theories, which were not de-
veloped on the basis of Eq. (15.10), but may be considered to belong
to the present category. Bueche25 assumed for the potential

V (R)
kT

= β
∑

i<j

P ∗(0ij , i, n− j|R) , (15.45)

where P ∗(0ij , i, n − j|R) has the same meaning as P0(0ij |R) except
that the two parts of the chain between the 0th and ith segments and
between the jth and nth segments are in the fully perturbed state. The
justification of this approximation given by Bueche is the following:
the main contribution to the potential comes from P (0ij |R) with small
(j− i), and then the middle part of the chain (between i and j) may be
regarded as an unperturbed chain. With P ∗ evaluated for the random-
flight model with a scale factor, we obtain

α 4
R − α 2

R =
48
69

z

(
1 +

2
3α 2

R

+
1

4α 4
R

)
. (B) (15.46)

The B equation is of the fourth-power type. On the other hand,
Alexandrowicz52 derived the approximate expression for the potential,

V (R)
kT

= β
∑

i<j

P ∗(0ij , n− i|R) . (15.47)

For this P ∗, the part of the chain between the ith and nth segments
is in the fully perturbed state. For the random-flight model, the final
result was obtained numerically, though the asymptotic solution could
be obtained analytically. It predicts that ν = 4.24 in Eq. (15.1).

15b. The Differential-Equation Approach

This approach was attempted first by Fixman,26, 47 and further devel-
opments were made by Ptitsyn53 and by Yamakawa and Tanaka.36
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15b(i). The Fixman Theory

Differentiation of Eq. (15.2) with (15.3) and (15.4) with respect to β
leads to

∂P (R)
∂β

=
∑

i<j

[
P (R)P (0ij)− P (R, 0ij)

]
. (15.48)

Multiplying both sides by R2dR and integrating, we have

∂〈R2〉
∂β

=
∑

i<j

∫
R2

[
P (R)P (0ij)− P (R, 0ij)

]
dR . (15.49)

This equation is formally exact. We now introduce the uniform-expan-
sion approximation; that is, we approximate the P by the P0 with aα
in place of a, where we suppress temporarily the subscript R on α.
Recalling that the quantity in square brackets in Eq. (15.49) is equal
to Q0(R, 0ij) of (14.10) with the scale factor, we readily obtain

∂〈R2〉
∂β

= C1(3/2πa2)3/2n1/2(na2)α−1 , (15.50)

or
dα2

dz
=

C1

α
, (15.51)

where C1 is given by Eq. (14.19). Integration of Eq. (15.51) leads to

α3 = 1 + 3
2C1z . (15.52)

The differential equation (15.51) may be considered to hold for both
αR and αS if the first coefficients in the perturbation theories are used
for C1. Thus we have

α 3
R = 1 + 2z , (F1) (15.53)

α 3
S = 1 + 1.914z . (F1) (15.54)

The F1 equations are of the third-power type; the subscript 1 is used to
distinguish the present theory from Fixman’s second theory (F2) using
the boson representation.

15b(ii). The Ptitsyn Theory

Equation (15.52) may be improved if we take into account the fact
that the scale factor α entering into the right-hand side of Eq. (15.49)
through the replacement of a by aα in fact is not equal to 〈R2〉1/2/

〈R2〉1/2
0 because of the non-Gaussian nature of the chain. Designating

this scale factor by α∗, we have, instead of Eq. (15.51),

dα2

dz
=

C1

α∗
. (15.55)
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From the perturbation theory, (α∗)2 may be expanded as

(α∗)2 = 1 + (4C2/C1)z − · · · . (15.56)

We therefore have [
d(α∗)2

dz

]

z=0

=
4C2

C1
. (15.57)

We now assume that α∗ satisfies a differential equation of the same
form as Eq. (15.51); that is,

d(α∗)2

dz
=

4C2

C1α∗
, (15.58)

where we have used Eq. (15.57). The solution of Eq. (15.58) is

(α∗)3 = 1 + (6C2/C1)z . (15.59)

Substitution of Eq. (15.59) into Eq. (15.55) and integration leads to

α2 =
C 2

1

4C2

[
4C2

C 2
1

− 1 +
(

1 +
6C2

C1
z

)2/3]
. (15.60)

Using the exact values for C1 and C2 of (14.19) and (14.25), as before,
we obtain the results,

4.67α 2
R = 3.67 + (1 + 9.34z)2/3 , (P) (15.61)

5.12α 2
S = 4.12 + (1 + 9.79z)2/3 . (P) (15.62)

Although the P equation is still of the third-power type, it predicts that
at large z, α 3

R = 0.93z, while the F1 equation predicts that at large z,
α 3

R = 2z. There is a similar relation between the F1 and P equations
for αS .

15b(iii). The Yamakawa–Tanaka Theory

As we have seen in the preceding sections, the Fixman theory deals
with a differential equation of the first order for α including the first
expansion coefficient C1, while the Ptitsyn theory deals with a differen-
tial equation of the second order including the coefficients C1 and C2.
This suggests a derivation of differential equations of higher orders.
Necessarily, the derived equations form a hierarchy, and the present
idea consists in obtaining an approximate solution for α by truncating
the hierarchy at some step including at least the first three expansion
coefficients.

Now we differentiate further Eq. (15.49) with respect to β to obtain

∂2〈R2〉
∂β2

=
∑

i<j

∫
R2

[
∂P (R)

∂β
P (0ij)+P (R)

∂P (0ij)
∂β

− ∂P (R, 0ij)
∂β

]
dR .

(15.63)



SEC. 15. Approximate Closed Expressions 107

Differentiating the formal expressions for P (Rij) and P (R,Rij) with
respect to β, we can obtain the equations, similar to Eq. (15.48),

∂P (0ij)
∂β

=
∑

k<l

[
P (0ij)P (0kl)− P (0ij , 0kl)

]
, (15.64)

∂P (R, 0ij)
∂β

=
∑

k<l

[
P (R, 0ij)P (0kl)− P (R, 0ij , 0kl)

]
. (15.65)

Substitution of Eqs. (15.48),(15.64), and (15.65) into Eq. (15.63) leads
to

∂2〈R2〉
∂β2

= −
∑

i<j

∑

k<l

∫
R2Q(R, 0ij , 0kl)dR , (15.66)

where Q(R, 0ij , 0kl) is given by Q0(R, 0ij , 0kl) of (14.11) evaluated in
the perturbed state. Similarly, we can obtain for the third derivative

∂3〈R2〉
∂β3

=
∑

i<j

∑

k<l

∑
s<t

∫
R2Q(R, 0ij , 0kl, 0st)dR . (15.67)

Equations (15.49), (15.66), (15.67), and so on may then be rewritten
as

∂α2

∂β
= α2

∑

i<j

[
P (0ij)− 〈R2〉−1

∫
R2P (R, 0ij)dR

]
,

∂2α2

∂β2
= −α2

∑

i<j

∑

k<l

{
P (0ij , 0kl)− 2P (0ij)P (0kl)− 〈R2〉−1

∫
R2

×[
P (R, 0ij , 0kl)− P (R, 0ij)P (0kl)− P (R, 0kl)P (0ij)

]
dR

}
,

∂kα2

∂βk
= (−1)k+1α2

∑

i<j

· · ·
∑
s<t

[
P (0ij , . . . , 0st) + · · ·] . (15.68)

Recalling that removal of the lower restrictions on the summations in
the βk term of Eq. (14.9) introduces the factor k!, we obtain, from
Eqs. (14.9) (with Rij = R) and (15.68),

[
∂kα2

∂zk

]

z=0

= (−1)k+1k!Ck , (15.69)

where Ck is the coefficient of zk in the expansion of α2, α2 =∑
(−1)k+1Ckzk.
If the sum in Eq. (15.68) is evaluated in the unperturbed state,

followed by the replacement of a by aᾱk, we have

dkα2

dzk
= (−1)k+1k!Ck

α2

ᾱ 3k
k

(k = 1, 2, . . .) . (15.70)

Equations (15.70) may be considered to be defining equations for the
new scale factors ᾱk. Equation (15.70) can be obtained more con-
veniently following Fixman’s dimensional argument in deriving Eq.
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(15.51).47 The derivative ∂k〈R2〉/∂βk has the dimension of (length)2/
(length)3k, and must therefore be proportional to (aα)2/(aᾱk)3k if the
scale factors to be introduced in the denominator and numerator are
distinguished from each other. On the other hand, ∂k〈R2〉/∂βk is pro-
portional to a2∂kα2/∂βk, and n must enter in such a way as to make α
and ᾱk functions of z. We then have dkα2/dzk ∝ α2/ᾱ 3k

k , the propor-
tionality constant being determined from Eq. (15.69). We now define
new scale factors αk by

ᾱk =

(
k∏

i=1

αi

)1/k

(15.71)

(with ᾱ1 = α1), and eliminate α2 from Eqs. (15.70) with (15.71) to
obtain

dα 3
k

dz
=

(k + 1)Ck+1

Ck

α 3
k

α 3
k+1

− kCk

Ck−1
(k = 1, 2, . . .) (15.72)

with C0 ≡ −1. Equation (15.72) may be considered to form a hierarchy
of differential equations for αk; the solution for α1 requires the solution
for α2, the solution for α2 requires the solution for α3, and so on.
If the hierarchy is truncated by some approximation, we can find an
approximate solution for α1 and then obtain α2 from the k = 1 equation
of (15.70),

dα2

dz
= C1

α2

α 3
1

. (15.73)

We note that the Fixman and Ptitsyn equations can be obtained from
the different hierarchy of differential equations,

dkα2

dzk
= (−1)k+1k!Ck

1
(α ∗

k )3k−2
, (15.74)

by truncating it with α = α ∗
1 and α ∗

1 = α ∗
2 , respectively. However,

when it is truncated with α ∗
2 = α ∗

3 and the exact values for C1 to C3

are used, there is no physically reasonable solution for α in the sense
that α must be a monotonically increasing function of z.

Before proceeding to solve Eq. (15.72), we examine the behavior of
αk. First, αk must be unity at z = 0, and at small z, α 3

k may be
expanded, from Eq. (15.72), as follows,

α 3
k = 1 +

[
(k + 1)Ck+1

Ck
− kCk

Ck−1

]
z − · · · . (15.75)

Inserting the values of (14.19) for C1 to C3, we have

α 3
1 = 1 + 4.45z − · · · ,

α 3
2 = 1 + 6.23z − · · · . (15.76)

Since the corresponding expansion for the original α(= αR) is α3 =
1 + 2z− · · ·, there must exist the inequalities, α < α1 < α2, provided z
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is positive and small. Next, in order to examine the behavior of αk at
very large z, we assume the asymptotic forms αν = γz and α νk

k = γkz.
Substitution of these relations into Eqs. (15.72) and (15.73) leads to

ν =
2γ

3/ν1
1

C1
z3/ν1−1 , (15.77)

3γ
3/νk

k

νk
z3/νk−1 =

(k + 1)Ck+1

Ck

γ
3/νk

k

γ
3/νk+1

k+1

z3(1/νk−1/νk+1) − kCk

Ck−1
.

(15.78)
Since Eq. (15.77) must hold for all large values of z, there must exist
the relations,

ν =
2γ1

C1
, ν1 = 3 . (15.79)

By the same argument, substitution of ν1 = 3 into the k = 1 equation
of (15.78) leads to ν2 = 3, substitution of ν2 = 3 into the k = 2 equation
to ν3 = 3, and so on; and we therefore have νk = 3 for all k; that is,

lim
z→∞

α 3
k = γkz (for all k) . (15.80)

In other words, the equations for αk must be of the third-power type.
Equation (15.78) may then be reduced to

(k + 1)Ck+1

Ckγk+1
− kCk

Ck−1γk
= 1 . (15.81)

This is a difference equation for γk, and the solution must be of the
form,

γk =
kCk

(k − 1− σ)Ck−1
, (15.82)

where σ is an unknown positive constant independent of k. From the
equation for γ1 and the first of Eqs. (15.79), we have

ν =
2
σ

. (15.83)

Now, it seems reasonable to assume that 3 ≤ ν ≤ 5, considering
the predictions of the various approximate theories already described.
Then, from Eqs. (15.82) and (15.83) and the values of (14.19) for C1 to
C3, we have γ1 = 2, γ2 = 9.34, and γ3 = 7.00 if ν = 3, and γ1 = 3.33,
γ2 = 5.19, and γ3 = 5.84 if ν = 5. From these values and the analysis
above, we expect that α < α1 < α2 at an arbitrary positive value of
z. However, the values of γ1 to γ3 suggest that αk levels off at large k.
This conclusion is reached as follows: qualitatively, αk will be related
to the expansion factor associated with the conditional probability that
when there are (k − 1) intramolecular contacts between segments, an
additional contact occurs; and the expansion factor will increase with
increasing number of contacts because the average segment density is
increased, but the rate of increase in αk with k will decrease because
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Fig. III.5. Theoretical values of α 3
R calculated from various approximate theo-

ries. Curve BJ: the Bueche–James theory, Eq. (15.19). Curve F1: the Fixman

theory, Eq. (15.53). Curve P: the Ptitsyn theory, Eq. (15.61). Curve K: the Ku-

rata theory, Eq. (15.41). Curve F,o: the original Flory theory, Eq. (14.39). Curve

FON: the Fujita–Okita–Norisuye theory, Eq. (15.44). Curve YT: the Yamakawa–

Tanaka theory, Eq. (15.94). Curve B: the Bueche theory, Eq. (15.46). Curve

F,m: the modified Flory theory, Eq. (14.40). Curve F2: the boson representation

theory of Fixman. Broken curve: Eq. (15.96).

the increase in the number of contacts tends to suppress the expansions
of subchains between contact segments, which become short with in-
creasing number of contacts. Thus we impose the following condition
on αk,

αk = αk+1 (at large k) . (15.84)

We now solve Eq. (15.72) under the conditions of (15.80) and (15.84).
Equation (15.84) requires that αk be the same for all values of k greater
than some boundary value. We first determine that value of k. Putting
α 3

k = xk and kCk/Ck−1 = ak, we have, from Eq. (15.72) with (15.84),

dxk

dz
= ak+1 − ak ≡ Kk (15.85)

for some large value of k. It is evident that a1 = −C1 < 0, ak > 0 (for
k ≥ 2), and Kk > 0 (for k ≥ 1). Integration of Eq. (15.85) leads to

xk = 1 + Kkz . (15.86)
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TABLE III.2. THE COEFFICIENTS C1 TO C3 IN THE EXPAN-
SION OF α 2

R FROM VARIOUS APPROXIMATE THE-
ORIES

C1 C2 C3

Exact 1.33 2.08 6.46
BJ 1.33 −0.89 0.30
F1 1.33 0.44 0.40
K 1.33 0.89 1.09
P 1.33 2.08 8.61
FON 1.33 1.50 2.96
YT 1.33 2.08 6.46
B 1.33 2.86 11.70
F,m 1.33 2.67 9.78
Eq. (15.96) 1.33 2.08 5.24

Substitution of Eq. (15.86) into Eq. (15.72) leads to

(1 + Kkz)
dxk−1

dz
− akxk−1 = −ak−1(1 + Kkz) . (15.87)

This is an Euler differential equation. If Kk 6= ak, the solution for xk−1

which satisfies the condition of (15.80) is obtained as

xk−1 =
(

1 +
ak−1

Kk − ak

)
(1+Kkz)ak/Kk − ak−1

Kk − ak
(1+Kkz) . (15.88)

In Eq. (15.88) Kk must be smaller than ak because if Kk > ak, xk−1

becomes −∞ as z is increased to ∞. The condition of (15.80) then
requires that the first term on the right-hand side of Eq. (15.88) be
identically equal to zero so that there must hold the relation, ak −
ak−1 = Kk, i.e., Kk−1 = Kk. We therefore have xk−1 = 1 + Kk−1z
with Kk−1 = Kk. Thus, repeating the above procedure, we arrive at

xk = 1 + Kz (for k ≥ 2) (15.89)

with
K = K2 = a3 − a2 . (15.90)

After substitution of Eq. (15.89) for x2 in the k = 1 equation of (15.72),
integration leads to

α 3
1 = (1−A)(1 + Kz)1−µ + A(1 + Kz) (15.91)

with

A =
C1

K − a2
, µ =

K − a2

K
. (15.92)



112 STATISTICS OF REAL POLYMER CHAINS: EXCLUDED-VOLUME EFFECT

Fig. III.6. Theoretical values of α 3
S calculated from various approximate the-

ories. Curve F: the Fixman theory, Eq. (15.54). Curve P: the Ptitsyn theory,

Eq. (15.62). Curve F,o: the original Flory theory, Eq. (14.39). Curve YT: the

Yamakawa–Tanaka theory, Eq. (15.95). Curve FN: the Fujita–Norisuye theory.

Curve F,m: the modified Flory theory, Eq. (14.41). Curve FS: the boson rep-

resentation theory of Fixman and Stidham. Curve FF: the Flory–Fisk theory,

Eq. (15.30).

Substituting Eq. (15.91) for α 3
1 in Eq. (15.73) and integrating, we

obtain
α2 = 1−A + A(1 + Kz)µ . (15.93)

This solution gives the sequence α < α1 < α2 = α3 = · · ·. If we use
the values of (14.19) for C1 to C3, the equation for αR is obtained from
Eq. (15.93). From Eqs. (14.19) and (14.25), the coefficient C2

′ in the
expansion of α 2

S is seen to be very close to C2 for α 2
R , and we therefore

assume that C3
′ is nearly equal to C3. With these C1

′ to C3
′ instead

of C1 to C3 (C3
′ = C3), the equation for αS is also obtained from

Eq. (15.93). The results are

α 2
R = 0.572 + 0.428(1 + 6.23z)1/2 , (YT) (15.94)

α 2
S = 0.541 + 0.459(1 + 6.04z)0.46 . (YT) (15.95)

If our hierarchy is truncated with α = α1, the Fixman equation is
obtained, while if it is truncated with α1 = α2, there is obtained for
αR

α 6.67
R = 1 + 4.45z (for α1 = α2) . (15.96)
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We note that the Fixman equation can also be obtained from Eq. (15.93)
with C1 = C1, C2 = C 2

1 /4, and C3 = C 3
1 /6, and the Ptitsyn equation

from Eq. (15.93) with C1 = C1, C2 = C2, and C3 = 8C 2
2 /3C1.

Finally, we compare numerical results obtained from the various ap-
proximate theories. In Fig. III.5 are plotted the values of α 3

R predicted
by the BJ theory, Eq. (15.19), the F1 theory, Eq. (15.53), the P theory,
Eq. (15.61), the K theory, Eq. (15.41), the FON theory, Eq. (15.44), the
YT theory, Eq. (15.94), the B theory, Eq. (15.46), and the F,m theory,
Eq. (14.40); the broken curve represents the values from Eq. (15.96). At
small z, all these theories give at least the exact first-order perturbation
theory. In the figure are also shown the values predicted by the F,o the-
ory, Eq. (14.39), and the boson representation theory of Fixman (F2);
the F2 theory gives only numerical results (see Chapter VI). The values
predicted by the KSR theory, Eq. (15.35), and by the Alexandrowicz
theory52 are close to those predicted by the F1 theory over the range of
α 3

R displayed in the figure. In Table III.2 are given the values for the
first three coefficients in the expansion of α 2

R from various approximate
theories. The values of C2 and C3 from the BJ, F1, and K theories are
seen to be too small compared with the exact values. It is of interest to
observe that the values of C3 from the P theory and Eq. (15.96) bracket
the exact value, their values of C1 and C2 being exact. In addition, the
values of α 3

R predicted by the B, F,m, and F2 theories and Eq. (15.96)
are very close to one another over the range of α 3

R of ordinary interest,
as seen from Fig. III.5. We may therefore expect that at small z the P
theory gives the upper bound of αR, and Eq. (15.96) and the B,F,m,
and F2 theories give the lower bound.

In Fig. III.6 are plotted the values of α 3
S predicted by the F,o theory,

Eq. (14.39), the F,m theory, Eq. (14.41), the F theory, Eq. (15.54),
the P theory, Eq. (15.62), the FF theory, Eq. (15.30), and the YT
theory, Eq. (15.95). In the figure are also shown the values predicted
by the boson representation theory of Fixman and Stidham (FS) and
the Fujita–Norisuye theory (FN), both giving only numerical results.
It is seen that the values of α 3

S predicted by the FN theory are very
close to those predicted by the YT theory. It must now be recalled that
an approximate expression for P0(S) is used in the FF theory, whereas
the exact expression for P0(S) is used in the FN theory. Thus the FF
theory and also the FS theory seem to underestimate αS . Curves F,o,
F,m, F, P, and YT correspond to the curves indicated by the same
symbols in Fig. III.5, respectively.

16. Asymptotic Solution at Large z

In most of the approximate theories described in Section 15a, adjustable
constants were chosen to force agreement with the exact first-order per-
turbation theory, and in the differential-equation approach, the theory
was still developed on the basis of the first few expansion coefficients.
It is therefore not possible to deduce the asymptotic behavior of α at
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extremely large z from these approximate closed expressions. To pro-
ceed further, we must resort to a different approach. The result will
serve to select several good approximate expressions for α from those
derived in the previous section.

We first describe the self-consistent-field approach to the solution
for αR. The following formulation of the self-consistent potential is
due to Reiss.54 Suppose the 0th segment to be fixed at the origin of a
coordinate system, as before. Then the instantaneous distribution for
the chain is given by Eq. (13.4); that is,

P
({Rn}

)
= Z−1P0

({Rn}
)
exp

(
−W

kT

)
, (16.1)

where W is given by the sum of all pair potentials between segments,
as in Eq. (10.6). We now wish to express P in order to decouple the
many-body problem;

P
({Rn}

)
= Z−1P0

({Rn}
) n∏

j=1

exp
[
−φj(Rj)

kT

]
(16.2)

with

Z =
∫

P0

({Rn}
){ n∏

j=1

exp
[
−φj(Rj)

kT

]}
d{Rn} . (16.3)

The form of P given by Eq. (16.2) will prove to be especially convenient
in deriving an integral equation or a diffusion equation for the distribu-
tion function. In Eq. (16.2), the part of the distribution dealing with
long-range interactions is approximated by a product of single-segment
distributions. The process is quite analogous to the Hartree–Fock self-
consistent-field method of determining wave functions in many-particle
quantum-mechanical systems. Our problem is to determine the form
of the function φj , which is a self-consistent field, as will be seen later.
This can be achieved by applying the variation principle. In the present
case, the variation principle consists of finding an extremal of configu-
rational free energy rather than of the energy as in quantum mechanics.

For the classical case of canonical ensemble under consideration, the
configurational Helmholtz free energy A of the system may be written
in the form,

A =
∫

UP d{Rn}+ kT

∫
P ln P d{Rn} , (16.4)

where U is the exact configurational energy, while P is constrained
to be given by Eq. (16.2) with (16.3), differing from Eq. (16.1). The
potential U is composed of two parts, as in Eq. (3.2): one is the formal
potential U0 representing the connection of segments, and the other is
W . These may be written as

U0 = −kT ln P0

({Rn}
)
, (16.5)
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W =
1
2

∑

i

∑

j

i 6=j

wij (16.6)

with wij ≡ w(Rij) the pair potential between the ith and jth segments.
Equation (16.4) may then be reduced to

A =
1
2

∑∑

i 6=j

∫
wijP d{Rn}−

∑

j

∫
φjP d{Rn}−kT ln Z

∫
P d{Rn} .

(16.7)
Regarding A as a functional of φj , we may determine φj from the
extremalization condition that the variation δA due to variations δφl is
zero at the extremal point, δφl being taken subject to the normalization
condition of P ; that is,

δA = 0 (16.8)

subject to the constraint,
∫

P d{Rn} = 1 . (16.9)

After tedious algebraic calculations, we obtain, from Eqs. (16.7) to
(16.9),

kTδA =
∑

l

∫
δφlFl dRl = 0 , (16.10)

where

Fl =
[
φlP (Rl)−

∑

j 6=l

∫
wljP (Rl,Rj)dRj

]

− P (Rl)
∫ [

φlP (Rl)−
∑

j 6=l

∫
wljP (Rl,Rj)dRj

]
dRl

+
∑

i6=l

∫ {
φi

[
P (Ri,Rl)− P (Ri)P (Rl)

]

− 1
2

∑

j 6=i
6=l

∫
wij

[
P (Ri,Rj ,Rl)− P (Ri,Rj)P (Rl)

]
dRj

}
dRi .

(16.11)

Equation (16.10) must now hold for arbitrary variations δφl, and there-
fore Fl must be identically equal to zero. At this stage, we introduce
the approximations P (Ri,Rl) = P (Ri)P (Rl) and P (Ri,Rj ,Rl) =
P (Ri,Rj)P (Rl), but do not factor P (Ri,Rj) appearing in the prod-
ucts wijP (Ri,Rj), the latter having significant influence on the aver-
aging of wij . Then the third term in Fl vanishes, and the first and
second terms vanish if we set

φlP (Rl)−
∑

j 6=l

∫
wljP (Rl,Rj)dRj = 0 ,
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or

φj(Rj) =
n∑

i=16=j

∫
w(Rij)P (Rij |Rj)dRi . (16.12)

This is the desired approximate solution for φj . The function φj is seen
to be given by a sum of the physically exact pair potentials over all pairs
of segments including the jth, averaged over the desired distribution,
and therefore it represents a self-consistent potential. We note that
Edwards55 also introduced a self-consistent field. As pointed out by
Reiss,54 however, Edwards’ field is equivalent to assuming P (Rij |Rj) =
P (Ri) in Eq. (16.12). Further, we note that although Reiss’ equation
[Eq. (25) of Ref.54] determining φj is incorrect, its incorrect solution
led accidentally to Eq. (16.12). Therefore, any attempt56 to obtain a
complete solution of Reiss’ equation is meaningless.

Our problem is now to derive an integral equation for the distri-
bution function, and to solve it after transformation into a differential
equation. This was done by Reiss,54 but his integral equation is incor-
rect, since an important factor was dropped. Further developments are
due to Yamakawa.57 Expressing P0

({Rn}
)

by the product of the bond
probabilities, as before, we define functions P̂ (Rj) and G(Rj+1) by

P̂ (Rj) =
∫ j∏

i=1

{
τ(ri) exp(−φi/kT )dri

}
/dRj , (16.13)

G(Rj+1) =
∫ n∏

i=j+2

{
τ(ri) exp(−φi/kT )dri

}
/dRj+1 . (16.14)

With these relations, the joint probability P (Rj ,Rj+1) may be ex-
pressed, from Eq. (16.2), as

P (Rj ,Rj+1) = Z−1P̂ (Rj)G(Rj+1)τ(rj+1) exp
(
−φj+1

kT

)
. (16.15)

We then have the Markoff integral equation of (12.4), where the tran-
sition probability ψ is given by

ψ(Rj+1|Rj) = C(Rj)τ(rj+1)G(Rj+1) exp
(
−φj+1

kT

)
, (16.16)

with C the normalizing function to be determined from Eq. (12.3). We
note that Reiss omitted the factor G in Eq. (16.16), and that if the
exponential in Eq. (16.16) is linearized the integral equation of (12.4)
without G in ψ is equivalent to that of Hermans, Klamkin, and Ullman
which does not lead to the excluded-volume effect (see Section 12b).
The transition probability given by Eq. (16.16) resembles that of Zimm,
Stockmayer, and Fixman, Eq. (13.15), which involves the effects of the
segments k > j +1 as well as the segments k ≤ j. In Eq. (16.16), there
are two kinds of effects of segments beyond the (j + 1)th. One is the
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direct effect arising from interactions between the (j+1)th segment and
some segment further down the chain, as summarized in Eq. (16.12).
The other is an effect which is transmitted along the backbone of the
chain. Such an effect ultimately appears through the influence of the
(j + 1)th segment on the jth, and this effect is represented by the
factor G. However, an evaluation of G is as formidable as a direct
evaluation of the distribution function P (R) of the end-to-end distance
from Eq. (16.2). It is more convenient to work with an integral equation
for the function P̂ defined in Eq. (16.13). Evidently, when j = n,
normalization of P̂ (Rj) yields P (R). Indeed, the advantage of the self-
consistent-field approach consists in deriving an integral equation for
P̂ amenable to mathematical treatment.

Now we can readily have, from the defining equation for P̂ (Rj+1),

P̂ (Rj+1) =
∫

P̂ (Rj)τ(rj+1) exp
[
−φj+1(Rj+1)

kT

]
dRj , (16.17)

or in the alternative notation,

P̂ (R, j + 1) =
∫

P̂ (R− r, j)ψ̂(R− r, j; r)dr (16.18)

with

ψ̂(R− r, j; r) = τ(r) exp
[
−φ(R, j + 1)

kT

]
. (16.19)

This new transition probability is subject to no normalization condi-
tion, and is equivalent to that of James, Eq. (12.14), if the exponential
in Eq. (16.19) is linearized. Equation (16.18) can be easily transformed
into a differential equation. Recalling that the second moment of τ is
a2, and expanding P̂ (R− r, j) around R with neglect of terms of order
a3 and higher, we obtain

∂P̂ (R, j)
∂j

− a2

6
∇2P̂ (R, j) = Λ(R, j)P̂ (R, j) , (16.20)

where

Λ(R, j) = exp
[
−φ(R, j)

kT

]
− 1 . (16.21)

In Eq. (16.20), we have also neglected terms of order j−2P̂ and Λj−1P̂ ,
which are small compared to j−1P̂ for j À 1.

In order to complete the differential equation of (16.20), we evaluate
the self-consistent potential. As in Eq. (15.14), we express the pair
potential as

w(Rij) = kTβδ(Rij) . (16.22)

Substitution of Eq. (16.22) into Eq. (16.12) leads to

φ(R, j)
kT

= β
∑

i

P (0ij |R) . (16.23)
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As seen from the derivation of Eq. (16.12), P (0ij |R) should be eval-
uated in the perturbed state. Thus we make the uniform-expansion
approximation in P (0ij |R); that is, we replace it by P0(0ij |R) with aα
in place of a, where α is the expansion factor for the end-to-end dis-
tance of the entire chain of n bonds (not of j bonds) with temporary
omission of the subscript R on α. Under the condition that

aα ¿ R ¿ jaα , (16.24)

for the random-flight model φ may then be evaluated to be (with omis-
sion of a constant term)

φ(R, j)
kT

= (2π/3)1/2ξ

(
a

α2R
− 3R

jaα4

)
(16.25)

with
ξ = z/n1/2 . (16.26)

From Eq. (16.25), φ is seen to be very small compared to kT under the
condition of (16.24). The exponential in Λ may therefore be linearized.
Substitution of Eq. (16.21) with (16.25) into Eq. (16.20) then leads to

∂P̂

∂j
− 1

6
∇2P̂ = −(2π/3)1/2ξ

(
1

α2y
− 3y

jα4

)
P̂ , (16.27)

where we have introduced the dimensionless variable y = R/a. We
note that if α is set equal to unity, Eq. (16.27) is equivalent to the
differential equation of James, and it has a simple analytic solution.

We now proceed to solve Eq. (16.27). As is well known, when
z = ξ = 0 the solution of Eq. (16.27) satisfying the boundary condition,
P̂ (R, 0) = δ(R), is P̂ (R, j) = P0(R, j), the Gaussian distribution (see
Appendix III A). Unless ξ = 0, it is difficult to find an analytic solution
of Eq. (16.27) which is valid over the unlimited ranges of the variables.
Thus, following the procedure of Reiss, we consider an associated differ-
ential equation which becomes identical with the given equation under
appropriate conditions. In the present case, such an equation is

∂P̂

∂j
− 1

6
∇2P̂ = (Λ1 + Λ2)P̂ (16.28)

with

Λ1 = −(2π/3)1/2ξ

[
1

α2y

(
1 +

1
α2

)
− 3y

jα4
+

j

3α2y3

]
, (16.29)

Λ2 = −(4π/3)ξ2

[
1 +

jα2

3y2
ln

(
y

j1/2α

)](
j

α6y2

)
ln

(
y

j1/2α

)
. (16.30)

The exact solution of Eq. (16.28) satisfying the same boundary condi-
tion as above is

P̂ (R, j) = P0(R, j) exp(πξ2j/α8)

× exp
(
−(2π/3)1/2ξ

{
2j

α2y

[
1 + ln

(
y

j1/2α

)]
− 3y

α4

})
. (16.31)
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Let us now demonstrate that Eq. (16.28) reduces to Eq. (16.27) under
appropriate conditions. Suppose that

j = O(n) and n →∞ . (16.32)

We then have y = O(n1/2α) over the important range of y. Therefore,
the first and second terms of Λ1 are of order ξ/n1/2α3, whereas the last
term is of order ξ/n1/2α5; the last term is negligibly small compared to
the first two, provided α becomes indefinitely large as n is increased.
Thus Λ1 may be expected to tend to

Λ1 → −(2π/3)1/2ξ

(
1

α2y
− 3y

jα4

)
= O(ξ/n1/2α3) . (16.33)

On the other hand, the quantity in square brackets of Eq. (16.30) is of
order unity, and we therefore have

Λ2 = O
[
(ξ2/α8) ln(y/j1/2α)

]
. (16.34)

We now assume that αν = const.n1/2, or α2 = const.nε for extremely
large n. Equations (16.33) and (16.34) may then be rewritten as
Λ1 = O(ξ/n(1+3ε)/2) and Λ2 = O

[
(ξ2/n4ε) ln(y/j1/2α)

]
, respectively.

If ε > 0.2, or ν < 5, we have 4ε > (1 + 3ε)/2, and therefore Λ2 is
negligibly small compared to Λ1, since ξ is at most of order unity and
the logarithm in Eq. (16.34) is also of order unity. If ε = 0.2, or ν = 5,
Λ2 is still negligibly small compared to Λ1 as long as y is very close to
j1/2α. Thus, when the conditions, ν ≤ 5 and y ≈ j1/2α, together with
(16.32) are fulfilled, (Λ1+Λ2) becomes equal to Λ1 given by Eq. (16.33),
and Eq. (16.28) reduces to Eq. (16.27). In other words, the P̂ given by
Eq. (16.31) is the solution of Eq. (16.27) under these conditions.

Putting j = n in Eq. (16.31) and normalizing it, we obtain the
distribution function of the end-to-end distance R of the chain of n
bonds, which may be written as Eq. (15.8) with the potential

V (R)
kT

= (2π/3)1/2z

{
2

α 2
R x

[
1 + ln

(
x

αR

)]
− 3x

α 4
R

}
, (16.35)

where x = R/〈R2〉 1/2
0 , as before. Equation (16.35) is valid only when

R ≈ 〈R2〉1/2, ν ≤ 5, and z → ∞. The asymptotic solution for 〈R2〉
can be obtained exactly by means of the Hermans–Overbeek procedure
or from the value of R corresponding to the peak of the distribution.
Therefore, the restriction, R ≈ 〈R2〉1/2, does not affect the final result;
the localized solution of (16.35) suffices for the present purpose. Thus,
we find, from Eqs. (15.8) and (16.35),

lim
z→∞

α 5
R = (2π/3)1/2z = 1.45z . (16.36)

This is the self-consistent asymptotic solution for αR in the present
treatment, since the solution is ν = 5 on the assumption that ν ≤ 5.
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Equation (16.36) predicts values of αR (at large z) slightly larger than
those predicted by the corresponding F,m equation, α 5

R = 1.33z. The
result suggests that P (0ij |R) in Eq. (15.10) may be evaluated in the
fully perturbed state in a first approximation, since the potential of
(15.37) gives the same result as Eq. (16.36).

Whether the probability density appearing in the potential is evalu-
ated in the fully perturbed state or in the intermediate perturbed state,
it is evident that the uniform-expansion approximation made in it is
responsible for an equation of the fifth-power type for αR. This can be
seen more explicitly as follows. Assume that the potential V is pro-
portional to R−µ, or more generally that V is a linear combination of
such terms. From a dimensional consideration, V may then be written
in the form

V (R)/kT = z
∑

i

ci

(〈R2〉 1/2
0 /R)µiα µi−3

R , (16.37)

where ci are numerical constants and we have introduced the uniform-
expansion approximation (the replacement of a by aαR). From Eqs.
(15.8) and (16.37), we obtain

lim
z→∞

α 5
R =

1
3

∑

i

ciµiz . (16.38)

However, the uniform-expansion approximation of this kind is difficult
to justify from a theoretical point of view.

Several authors58, 59 have recently attempted to apply the tech-
nique used in the theory of simple liquids, i.e., the Born–Green–Yvon–
Kirkwood method or the Percus–Yevick method of deriving an integral
equation for the pair correlation function. However, these approaches
will need further investigations, and we do not reproduce them here.

Next we discuss briefly the asymptotic behavior of αS . For this
case, the important range of S is S ≈ 〈S2〉 1/2

0 αS or S À 〈S2〉 1/2
0 . We

should therefore use Eq. (8.50) for P0(S), or its leading term,

P0(S) = const. S2 exp
(
− π2S2

4〈S2〉0

)
. (16.39)

Then the asymptotic value of αS is exactly given by the value of x =
S/〈S2〉 1/2

0 satisfying the equation,

x = − 2
π2kT

∂V (S)
∂x

. (16.40)

If we use the Fujita–Norisuye–Fixman potential given by Eq. (15.28)
with C = 2.745, we have, from Eq. (16.40),

lim
z→∞

α 5
S = 1.67z . (16.41)
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If we use the original Flory potential given by Eq. (15.26), we have the
numerical coefficient 1.58 instead of 1.67 in Eq. (16.41).60 These equa-
tions predict values of αS (at large z) somewhat larger than those pre-
dicted by the corresponding F,m equation, α5

S = 1.276z, but definitely
smaller than those by the corresponding F,o equation, α 5

S = 2.60z.
From the previous analysis, it follows that the asymptotic form

of the fifth-power type, α5 = γz, as suggested first by Flory, may be
accepted, and that the value of γ will be nearly equal to or slightly above
the F,m value (1.333 for αR and 1.276 for αS). From this conclusion
and the statement at the end of Section 15b, we may deduce that the
F,m, B, F2, FON, or YT equation for αR and the F,m or YT equation
for αS will provide a fairly satisfactory description of the behavior of
the expansion factors over the range of z experimentally accessible (see
Figs. III.5 and III.6).

17. Remarks

17a. Branched and Ring Polymers

We describe only the first-order perturbation theory. The mean-square
radii may be evaluated conveniently by the cluster expansion method
with the use of the Zimm–Stockmayer relation of (7.22), as in the case
of a linear chain. The evaluation is tedious but straightforward, and
we omit the mathematical details.

For branched molecules, we may write

〈S2〉b = 1
6na2g(1 + Kz − · · ·) . (17.1)

For convenience, we consider only two types of structures: one is a
uniform star molecule of functionality f , and the other is a uniform
normal (comb) molecule of m branch units of functionality 3. For this
star molecule, the factor g is given by Eq. (9.69) and the coefficient K
was evaluated by Kron and Ptitsyn61 and by Berry and Orofino62 as
follows,

Ku(star) =
3

f1/2(3f − 2)

[
67 · 27/2

315
(f − 1)− 134

315
(f − 2)

+
4
45

(101 · 21/2 − 138)(f − 1)(f − 2)
]

.

(17.2)

In Table III.3 are given the values of K calculated from Eq. (17.2)
for various values of f . The coefficient K is seen to increase with f
from the value 1.276 for the linear chain. We note that for a cruciform
molecule (with f = 4) Fixman26 obtained the value 1.12 for K, using
the equation63

〈S2〉b = n−1f

n/f∑

k=1

〈L 2
k 〉 − 〈Z2〉 , (17.3)
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TABLE III.3. VALUES OF K FOR UNIFORM STAR MOLECULES
OF FUNCTIONALITY f62

f K

1 1.276
2 1.276
3 1.298
4 1.342
5 1.394
6 1.449
8 1.559

12 1.770
∞ 0.430f1/2

where Lk is the distance between the branch unit and the kth segment
of a particular branch, and Z is the distance from the branch unit to
the center of mass. Equation (17.3) is, of course, valid for a uniform
star molecule even with excluded volume, and there is some error in
his evaluation; Eq. (17.3) also gives the correct result of (17.2).64 For
the uniform normal molecule mentioned above, the factor g is given
by Eq. (9.72) with f = 3 and p = 2m + 1, and numerical values of K
obtained by Berry and Orofino62 are given in Table III.4. The coef-
ficient K is seen to increase with increasing number of branch units.
The results given in Tables III.3 and III.4 are easy to understand: the
chance of segment contacts is increased as the degree of branching is in-
creased, because the unperturbed dimension decreases with increasing
branching; and the greater the chance of segment contacts, the larger
the expansion of the molecule.

For a single-ring molecule, Casassa65 obtained the result,

〈S2〉r =
1
12

na2
(
1 +

π

2
z − · · ·

)
, (17.4)

where the unperturbed dimension has already been obtained in Sec-
tion 9b(ii). The coefficient of z is larger than the value 1.276 for
the linear chain. Thus the decrease in the molecular dimension due
to branching or formation of a ring is compensated in part by the
excluded-volume effect.

17b. Numerical Calculations on Lattice Chains

In parallel with various theoretical attempts to solve the excluded-
volume problem in a linear polymer chain, there have been made a
number of numerical computations for nonintersecting random walks
on various lattices. These investigations may be classified into two
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TABLE III.4. VALUES OF K FOR UNIFORM NORMAL (COMB)
MOLECULES OF m BRANCH UNITS OF FUNC-
TIONALITY 362

m K

2 1.386
3 1.455
4 1.522
5 1.587

10 1.849
15 2.032
20 2.167
25 2.271

groups: one is the exact enumeration method, and the other is the sta-
tistical or Monte Carlo method. Both approaches lead to the conclusion
that the dependence of 〈R2〉 on n may be expressed as

〈R2〉 ∝ nδ , (17.5)

and most attention is focused on the value of δ. A brief summary of
the results follows.

17b(i). Exact Enumeration Method

If Cn is the number of all possible nonintersecting random walks of n
steps on a lattice and fn(R)∆R is the number of those walks whose
end points lie between R and R + ∆R from the origin, we have

P (R)∆R = C −1
n fn(R)∆R , (17.6)

〈R2〉 = C −1
n

∑

R

R2fn(R)∆R , (17.7)

because all possible configurations are a priori equally probable. The
present method consists in carrying out a direct and exact enumeration
of Cn and fn(R) for short chains.

Teramoto et al.,12, 31 who were among the first to attempt this
approach, investigated the statistical properties of the two-dimensional
square lattice chain with bond angle 90◦ (right-left two choice), two-
dimensional square lattice chain with bond angles 90◦ and 180◦ (three
choice), and three-dimensional simple cubic lattice chain with bond
angle 90◦ (four choice). In every case of nonintersecting walks, it was
observed that 〈R2〉/n tends to increase and diverge as n is increased. In
addition, it was found that 〈R2〉/〈S2〉 = 7.41 for the two-choice, two-
dimensional, square lattice chain of 17 bonds, which is greater than
the value 6 for the random-flight chain. It is pertinent to note that the
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first-order perturbation theories of 〈R2〉 and 〈S2〉 for a two-dimensional
chain read66 (see Appendix III C)

〈R2〉 = na2(1 + 1
2z∗ − · · ·) , (17.8)

〈S2〉 = 1
6na2

(
1 +

11
24

z∗ − · · ·
)

, (17.9)

where
z∗ = (1/πa2)β∗n (17.10)

with β∗ the two-dimensional binary cluster integral for a pair of seg-
ments. From these equations, we may expect that 〈R2〉 of 〈S2〉 for
the two-dimensional chain has a greater dependence on n than for the
corresponding three-dimensional chain, and that 〈R2〉/〈S2〉 is greater
than 6 also for the two-dimensional chain (assuming z∗ > 0).

Fisher et al.67, 68 made an attempt to determine the value of δ
in Eq. (17.5) for n → ∞ from a knowledge of short chains by suitable
extrapolation, applying a “chain counting theorem” of Domb.69, 70 This
theorem enables one to calculate Cn recursively in terms of the number
of certain closed configurations of n bonds, which is much less than Cn

and can be enumerated with less labor. With values of 〈R2〉 = 〈R 2
n 〉

thus evaluated, they found that the sequence of points in a plot of the
ratio An = 〈R 2

n+1〉/〈R 2
n 〉 against 1/n approach a straight line of slope

δ which extrapolates to A∞ = 1. From this linearity, it was proved
that Eq. (17.5) holds for n → ∞. A sequence of estimates for the
index δ may then be calculated from δn = n(An − 1). The sequence
1 of points in Fig. III.7 represents the values of δn for the completely
random, two-dimensional, square lattice chain; the slope is zero and
the limit is δn = δ = 1 as expected. The sequence 2 corresponds to a
similar chain but with only immediate reversals forbidden (three-choice,
two-dimensional, square lattice chain subject to no volume exclusions).
These points lie on a slightly irregular sloping curve which, however,
clearly extrapolates to δ∞ = 1. The results for the three-choice, two-
dimensional, square lattice chain subject to volume exclusions yield the
sequence 3. The points exhibit the characteristic odd-even oscillation
about a straight line. The amplitude of oscillations can be markedly
reduced by forming the means 1

2 (δn + δn+1), which lie very close to a
straight line of small slope and quite well defined intercept (sequence
4). The estimate thus obtained is δ = 1.47±0.02.68 Similar treatments
for the five-choice, three-dimensional, simple cubic lattice chain lead
to the estimate, δ = 1.21 ± 0.02.68 Subsequently, Domb71 obtained
extensive data for longer lattice chains, and concluded that δ = 1.50
for all two-dimensional nonintersecting chains and δ = 1.20 for all three-
dimensional non-intersecting chains. This indicates the adequacy of the
asymptotic form of αR of the fifth-power type for a polymer chain.

Next we discuss briefly the shape of the distribution of R. The
function 2πRP (R) obtained by Teramoto et al.31 for the two-choice,
two-dimensional, square lattice chain of n = 17 and unit bond length is
shown by the histogram in Fig. III.8. For comparison, in the figure are
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Fig. III.7. Successive estimates of δ for two-dimensional square lattice chains.68

1: completely random-flight chains. 2: chains only with immediate reversals

forbidden. 3: three-choice, nonintersecting chains. 4: sequence of the means
1
2 (δn + δn+1) for case 3.

also shown the Gaussian distributions with the ideal value 17 of 〈R2〉0
and with the same value 48.8 of 〈R2〉 as the histogram by the broken and
full curves, respectively. From the figure, it is seen that the Gaussian
distribution decreases gradually beyond the most probable value of R,
while the distribution of R for the real (lattice) chain subject to volume
exclusions falls off to zero suddenly. Domb et al.72 also arrived at the
conclusion that in the limiting case the distribution of R is a skew
Gaussian function.

17b(ii). Monte Carlo Method

This method consists of generating nonintersecting random walks for
various lattice systems on an electronic computer and accumulating
statistical data describing the average behavior of the chain. Contrary
to the exact enumeration, the Monte Carlo method is thus restricted in
accuracy by statistical fluctuations, but long walks (n = 50 to 2000) can
be sampled. This approach has been developed by many investigators,
but especially by Wall and his co-workers.

Early investigations of Wall et al.73, 74 were confined to relatively
short chains of up to 50 to 100 bonds, and led to the estimates, δ = 1.45
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Fig. III.8. The distribution functions of R of the two-choice, two-dimensional,

square lattice chain of 17 bonds with unit bond length. Histogram: exact

enumeration.31 Broken curve: unperturbed Gaussian function. Full curve: Gaus-

sian function with the same value of 〈R2〉 as the histogram. The vertical line

segment indicates 〈R2〉1/2.

for two-dimensional chains and δ = 1.22 for three-dimensional chains.
Rosenbluth and Rosenbluth75 also obtained the same results. Sub-
sequently, however, much longer walks were generated by Wall and
Erpenbeck76 and by Suzuki77 on the three-dimensional tetrahedral lat-
tice, and by Kron and Ptitsyn78 on the five-choice, three-dimensional,
simple cubic lattice. The results are given in Tables III.5 and III.6,
where the bond length is taken as unity. These data lead to the esti-
mate, δ = 1.19, very close to the value 1.20 from the exact enumeration.
In addition, the ratio 〈R2〉/〈S2〉 is observed to be almost independent
of n; its average values are 6.4 and 6.3 for the tetrahedral and simple
cubic lattices, respectively.

We now consider the problem of estimating α and z for lattice
chains and compare the results with the analytical theory. For this
purpose, it is necessary and sufficient to determine the values of 〈R2〉0
(or 〈S2〉0 = 〈R2〉0/6) and β for a given lattice system. The reverse step
in nonintersecting random walks is usually considered to be a short-
range effect, which is absorbed into the unperturbed dimension.35, 66

For (zc − 1)-choice walks on a lattice of coordination number zc, we



SEC. 17. Remarks 127

TABLE III.5. MEAN-SQUARE END-TO-END DISTANCES AND
RADII OF THREE-DIMENSIONAL TETRAHEDRAL
LATTICE CHAINS WITH UNIT BOND LENGTH

WALL–ERPENBECK76 SUZUKI77

n 〈R2〉 〈S2〉 〈S2〉

16 — — 5.56
32 — — 12.78
40 108 17.0 —
64 — — 29.31
80 243 38.3 —

120 431 67.0 —
128 — — 67.37
160 568 89.3 —
200 726 115.0 —
240 880 141.7 —
256 — — 153.4
280 1075 168.7 —
320 1255 196.3 —
360 1456 225.0 —
400 1648 256.3 —
440 1885 293.0 —
480 2056 324.3 —
512 — — 350.3
520 2259 354.3 —
560 2501 389.7 —
600 2708 425.0 —

1024 — — 787.0
2048 — — 1740

then have (except for short chains)

〈R2〉0 = nl2
1 + (zc − 1)−1

1− (zc − 1)−1
(17.11)

with l the bond length. For example, we have 〈R2〉0 = 2nl2 for the
three-dimensional tetrahedral lattice, and 〈R2〉0 = 2

3nl2 for the five-
choice, three-dimensional, simple cubic lattice. For the estimation
of the binary cluster integral β, it is adequate to use the Ornstein–
Zernike equation relating the pair correlation function g(R1,R2) to the
isothermal compressibility κ for a one-component system of monatomic
molecules2, 35; that is,

1
ρV

∫
ρ(1)(R1)ρ(1)(R2)

[
g(R1,R2)− 1

]
dR1dR2 = ρκkT − 1 (17.12)
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TABLE III.6. MEAN-SQUARE END-TO-END DISTANCES AND
RADII OF FIVE-CHOICE, THREE-DIMENSIONAL,
SIMPLE CUBIC LATTICE CHAINS WITH UNIT
BOND LENGTH.78

n 〈R2〉 〈S2〉

47 107.6 —
197 591.8 93.2
407 1408 223
617 2293 366

1007 4088 653
1517 6720 1071
1997 9314 1474

with ρ = N/V , the number density of the component, and ρ(1) the
singlet generic molecular distribution function. (For the complete def-
inition of ρ(n), we refer the reader ahead to Section 19.) For fluids, we
have ρ(1) = ρ, and the compressibility term ρκkT may be neglected
compared to unity below the normal boiling point. From Eqs. (13.3)
and (17.12), we then find β = ρ−1; that is, β is equal to the molecular
volume. For perfect lattice systems, ρ(1) may be expressed as a sum of
delta functions,

ρ(1)(R1) =
∑

i

δ(R1 − li) (17.13)

with li the coordinates of the ith lattice point. Substitution of Eq. (17.13)
into Eq. (17.12) leads to (with κ = 0)

∫
ρ(1)(R1)

[
g(R1, li)− 1

]
dR1 = −1 . (17.14)

This equation is an obvious consequence of the fact that g is unity
when R1 and R2 are at two different lattice points, and zero when both
molecules are at the same lattice point. We then have the equivalent
of Eq. (13.3),

β = ρ−1

∫
ρ(1)(R1)

[
1− g(R1, li)

]
dR1 = ρ−1 . (17.15)

Thus β is equal to the volume per lattice point. For example, we have
β = 1.53l3 for the tetrahedral lattice, and β = l3 for the simple cubic
lattice.

Having determined the values of 〈R2〉0 and β, we evaluate α 2
S =

6〈S2〉/〈R2〉0 and z = (3/2π〈R2〉0)3/2βn2 (with l = 1), as functions of n,
with the values given in Tables III.5 and III.6. In Fig. III.9 are shown
the values of α 3

S as a function of z so obtained by the open circles,
triangles (tetrahedral lattice), and squares (simple cubic lattice). For
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Fig. III.9. Values of α 3
S calculated from Monte Carlo data. The open circles,

triangles, and squares were obtained assuming Eq. (17.11), while the filled circles,

triangles, and squares were obtained assuming 〈R2〉0 = nl2. Circles and triangles:

tetrahedral lattice.76, 77 Squares: simple cubic lattice.78 Curve P: the Ptitsyn

theory, Eq. (15.62). Curve YT: the Yamakawa–Tanaka theory, Eq. (15.95).

Curve F,m: the modified Flory theory, Eq. (14.41).

comparison, the values calculated from the F,m equation (14.41), the
P equation (15.62), and the YT equation (15.95) are also plotted in
the figure. The points for the tetrahedral and simple cubic lattices
are seen to form two different curves; the result is inconsistent with
the requirement of the two-parameter theory that α be a universal
function of z. This is probably due to the fact that the bond probability
is spherically symmetric in the two-parameter theory for a polymer
chain,whereas this is not the case for the lattice chains with 〈R2〉0
given by Eq. (17.11). If we regard the overlap between bonds due to
the reverse step as the excluded-volume effect, and take 〈R2〉0 = nl2,
we obtain the filled points in Fig. III.9. These points seem to form
a single-composite curve, which is close to the YT curve. However,
there arises the question of whether these data may be used to test an
approximate analytical theory of α regarding its dependence of z, since
there is still a gap between the discrete lattice chain and the model
used in the theory for a polymer chain. At present, there is no definite
answer to this question.

Finally, we note that numerical studies have been made also of the
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effects of solvent79−83 and of branching,84 but we shall not reproduce
the results here.

17c. General Comments

In this chapter we have described various attempts made so far to solve
the excluded-volume problem, and may now definitely accept the con-
clusion that α increases and diverges as n or z is increased. However,
there has been controversy on the question of whether the behavior of
α obeys an equation of the fifth-power type or of the third-power type.
On the one hand, the modified Flory equation, proposed at the early
stage of improvements of the Flory theory, has been frequently used for
the treatment of experimental data, although not accepted by Flory
for a long time. In 1960, on the other hand, Kurata et al. derived the
KSR equation of the third-power type, numerically equivalent to the F1

equation, and rejected both the original and modified Flory equations
of the fifth-power type. Their grounds for the superiority of the equa-
tion of the third-power type were the following: (1) the available Monte
Carlo data of Wall and Erpenbeck (the open circles in Fig. III.9) indi-
cated a linear relationship between α3 and n1/2, and (2) there existed
a similar relationship between the intrinsic viscosity and the molecular
weight, namely the Stockmayer–Fixman–Kurata plot.66, 85 However,
the recent Monte Carlo data for much longer chains show that α3 is
not linear in z (see Fig. III.9). Also from the theoretical point of view,
an equation of the fifth-power type is more plausible than that of the
third-power type, as discussed in Sections 15 and 16. The SFK plot of
the intrinsic viscosity will be discussed in Chapter VII.

We must now refer to a comparison of theory with experiment.
There is a fundamental difficulty in testing a theory of α regarding
its dependence on z. Light scattering measurements can afford experi-
mental values of αS , whereas the binary cluster integral β and, hence,
the parameter z are not directly observable quantities. Thus some
additional information is necessary. For example, we must know the
two-parameter theory value of the second virial coefficient, which will
be developed in the next chapter. Emphasis must then be focused on
the self-consistency of the intramolecular and intermolecular theories
of interaction. However, a complete comparison of theory with experi-
ment cannot be completed even in conjunction with the theory of the
second virial coefficient. Deferring this problem to Chapter VII, we
here discuss treatments of experimental data which are based on the
Flory expression for β or z, Eq. (14.38). If Eq. (14.38) were assumed,
the value of ψ could be determined from the temperature dependence of
the second virial coefficient near the theta temperature, and therefore
values of z could be determined at various temperatures and molec-
ular weights. However, such an analysis is inadequate, since Flory’s
expression for β corresponds to the Bragg–Williams approximation in
the theory of mixtures and is not always accurate over a wide range
of temperature. In this book, we therefore adopt β as a basic parame-
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ter representing interactions between segments and do not attempt to
calculate β.

Appendix III A. The Distribution Function, Markoff
Process, and Diffusion Equation

We give here a brief description of the Markoff process which suffices for
an application to polymer-chain statistics. For the details, the reader
is referred to Refs. 32, 86, and 87. As an example, consider the Brow-
nian motion of a free particle. If u(t) is the displacement or velocity of
the particle, it forms a random process defined as follows: the variable
u does not depend in a completely definite way on the independent
variable t (time), and the process is completely described only by the
probabilities Pn(u1, t1;u2, t2; . . . ;un, tn)du1du2 . . . dun (n = 1, 2, . . .)
of finding u in the range (u1,u1 + du1) at time t1, in the range (u2,
u2 + du2) at time t2, . . ., and in the range (un,un + dun) at time
tn. In our example, all the information about the process is con-
tained in P2. Such a process is called a (simple) Markoff process.
If ψ1(u2, t2|u1, t1)du2 is the conditional probability that u lies in the
range (u2,u2 + du2) at t2, given that u has the value u1 at t1, we have

P2(u1, t1;u2, t2) = P1(u1, t1)ψ1(u2, t2|u1, t1) . (III A.1)

Evidently we have also
∫

ψ1(u2, t2|u1, t1)du2 = 1 , (III A.2)

P1(u2, t2) =
∫

P1(u1, t1)ψ1(u2, t2|u1, t1)du1 . (III A.3)

This is the Markoff integral equation with the transition probability
ψ1. A Markoff process can now be defined alternatively by stating that
for such a process the transition probability of finding u in the range
(un,un + dun) at tn depends on (un, tn) and only on the value of u at
the previous time tn−1.

If the changes in the variable are frequent and small, as in the
present case, there exists an interval ∆t of time which is long compared
to intervals during which the changes in the variable occur but short
compared to intervals during which the distribution function changes by
appreciable amounts. Then a differential equation for the distribution
function P1 can be derived. If we take the interval ∆t equal to (t2−t1),
and set u1 = u− r and u2 = u, Eq. (III A.3) may be rewritten in the
form,

P (u, t + ∆t) =
∫

P (u− r, t)ψ(u− r, t; r) dr (III A.4)

with ∫
ψ(u, t; r) dr = 1 , (III A.5)
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where the subscripts 1 on P and ψ have been omitted, and ψ(u, t; r) is
the transition probability that u suffers the increment r in the interval
∆t.

Under the conditions stated above, we may expand P (u, t + ∆t),
P (u− r, t), and ψ(u− r, t; r) in Taylor series as follows,

P (u, t + ∆t) = P (u, t) +
∂P

∂t
∆t + · · · ,

P (u− r, t) = P (u, t)− r · ∇P + 1
2rr : ∇∇P − · · · ,

ψ(u− r, t; r) = ψ(u, t; r)− r · ∇ψ + 1
2rr : ∇∇ψ − · · · , (III A.6)

where ∇ is the differential operator with respect to u. We now define
the average of any function ϕ(r) of r by

〈
ϕ(r)

〉
=

∫
ϕ(r)ψ(u, t; r) dr . (III A.7)

For the Brownian motion under consideration, this average depends
generally on u, but does not depend on t. With Eqs. (III A.6) and (III
A.7), Eq. (III A.4) may be rewritten as (with omission of higher-order
terms)

∂P

∂t
∆t = −∇ · (〈r〉P )

+ 1
2∇∇ :

(〈rr〉P )
. (III A.8)

This is the Fokker–Planck equation in the position or velocity space.
We note that the moments 〈r〉 and 〈rr〉 are proportional to ∆t or vanish.

We now consider the problem of ideal random-flight chains, which is
obviously equivalent to that of the Brownian motion of a free particle.
We may regard P (u, t) as the distribution function of the end-to-end
distance u of the chain of t bonds. For large t, it may be considered a
continuous variable, and we may simply take ∆t = 1. Then ψ(u, t; r)
becomes equal to the bond probability τ(r). Since τ(r) is spherically
symmetric, we have

〈r〉 = 0 ,

〈rr〉 = 1
3 〈r2〉I =

a2

3
I (III A.9)

with I the unit tensor. Substitution of these relations into Eq. (III A.8)
leads to

∂P

∂t
=

a2

6
∇2P , (III A.10)

which is the diffusion equation with diffusion coefficient a2/6. It is well
known that the solution of Eq. (III A.10) with the boundary condi-
tion, P (u, 0) = δ(u), proper to the present problem, is the Gaussian
function,88

P (u, t) = (3/2πta2)3/2 exp(−3u2/2ta2) . (III A.11)

This is in agreement with the result obtained in Chapter II.
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Appendix III B. The Probability Densities for Segment
Contacts

We give some of the unperturbed probability densities for segment con-
tacts, which can readily be obtained by the use of the Wang–Uhlenbeck
theorem.

P0(R, 0ij) = (3/2πa2)3(j − i)−3/2(n− j + i)−3/2

× exp
[−3R2/2(n− j + i)a2

]
, (III B.1)

P0(0ij) = (3/2πa2)3/2(j − i)−3/2 , (III B.2)

P0(R, 0ij , 0kl) = (3/2πa2)9/2
[
(j − i)(l − k)− L2

]−3/2
µ−3/2

× exp(−3R2/2µa2) , (III B.3)

P0(0ij , 0kl) = (3/2πa2)3
[
(j − i)(l − k)− L2

]−3/2 (III B.4)

with

L = l − k for i < k < l < j ,

= j − k for i < k < j < l ,

= 0 for i < j < k < l ,

µ = n +
(j − i)(l − k)

[
2L− (j − i)− (l − k)

]

(j − i)(l − k)− L2
.

Appendix III C. Perturbation Theory for a Two-
Dimensional Chain

For brevity, we describe only a first-order perturbation theory of the
mean-square end-to-end distance. In the two-dimensional case, the
unperturbed distribution P0(R) and the Gaussian bond probability
τ(r) are given by

P0(R) = (1/π〈R2〉0) exp(−R2/〈R2〉0) , (III C.1)
τ(r) = (1/πa2) exp(−r2/a2) . (III C.2)

Of course, the relations, 〈R2〉0 = na2 and 〈S2〉0 = 1
6na2, hold for

both two- and three-dimensional chains. The Wang-Uhlenbeck theorem
(with aj = a) must now be replaced by

P
({Φs}

)
= (1/πa2)s|C|−1 exp

[−(1/a2|C|)
s∑

k=1

s∑

l=1

CklΦk ·Φl

]
.

(III C.3)
As in Eq. (14.9), P (R) may be expanded as

P (R) = P0(R) + β∗
∑

i<j

[
P0(R)P0(0ij)− P0(R, 0ij)

]− · · · , (III C.4)
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where β∗ is the two-dimensional binary cluster integral, and is defined
by

β∗ =
∫ ∞

0

[
1− exp(−wij/kT )

]
2πRij dRij (III C.5)

with wij the pair potential between segments. The probability densities
P0(R, 0ij) and P0(0ij) in Eq. (III C.4) can easily be evaluated from
Eq. (III C.3), and we obtain

〈R2〉 =
∫ ∞

0

R2P (R)2πR dR

= na2(1 + 1
2z∗ − · · ·) (III C.6)

with
z∗ = (1/πa2)β∗n . (III C.7)
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Chapter Four

Thermodynamic Properties
of Dilute Solutions

18. Introduction

Having developed a detailed analysis of the statistical properties of a
single polymer chain in dilute solution in the two chapters preceding, we
now turn to the study of the thermodynamic behavior of polymer solu-
tions. Intermolecular (solute-solute) interactions, which have not been
considered so far, as well as solvent-solute and solvent-solvent interac-
tions, play an important role in the present problem. An extremely
unsymmetrical nature with respect to the sizes of the components is
the primary characteristic of polymer solutions. This leads to large
intermolecular interactions which are unusual in solutions of simple
molecules. Thus, polymer solutions exhibit very large deviations from
ideality, as defined by Raoult’s and van’t Hoff’s laws. However, at infi-
nite dilution; where the intermolecular interactions may be neglected,
the ideal solution properties must be approached as an asymptotic limit
even in polymer solutions.

As is well known, the thermodynamic properties of a solution are
uniquely determined once the chemical potential of the solvent, µ0, in
the solution is known as a function of temperature and solute concen-
tration. µ0 is related to the Gibbs free energy, G , of the solution, the
activity ao of the solvent in the solution, and the osmotic pressure π
by the equations,

µ0 =
(

∂G

∂N0

)

T,P,N1

, µ 0
0 =

(
∂G0

∂N0

)

T,P,N1

, (18.1)

∆µ0 ≡ µ0 − µ 0
0 = kT ln a0 = −V 0

0 π , (18.2)
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where the superscript 0 refers to the pure solvent state, V 0
0 is the

molecular volume of the solvent,and N0 and N1 are the numbers of the
solvent and solute molecules in the solution, respectively, assuming a
binary solution. Thus our problem is to derive theoretical expressions
for G or π with the tools of statistical mechanics, assuming appropriate
models for the polymer solutions.

There are two lines of approach to the problem : one uses a discrete
model and the other a continuum model. The first model leads to a
lattice theory, and was the basis of the statistical thermodynamics of
polymer solutions in the 1940s. It is still useful to interpret the be-
havior of the solvent activity over the whole concentration range. The
second model leads to the distribution function theory, in which the
osmotic pressure may be expressed in terms of the molecular distribu-
tion functions, and therefore is in the spirit of the preceding chapters.
Treatments of polymer solutions along this line are based on either the
general solution theory of McMillan and Mayer1 or the pair correlation
function approach in the theory of simple liquids.2, 3 The McMillan–
Mayer theory is particularly convenient for the study of dilute solutions,
while it is in practice not possible to actually carry out calculations for
the case of concentrated solutions where the latter approach becomes
more useful. It should be noted that Kirkwood and Buff4 have devel-
oped an alternative general solution theory which is necessarily equiva-
lent to the McMillan–Mayer theory since both are formally exact. The
McMillan–Mayer approach is more useful than the Kirkwood–Buff ap-
proach if the osmotic pressure is to be calculated.

Now, the McMillan–Mayer theory verifies that there exists a formal
analogy between the osmotic pressure and gas pressure ; corresponding
to the virial expansion for the gas pressure, the osmotic pressure π may
be expanded in powers of the solute concentration c (in grams per unit
volume) as follows,

π = RT

(
1
M

c + A2c
2 + A3c

3 + · · ·
)

, (18.3)

where R is the gas constant and M is the molecular weight of the
solute. The coefficients Aj are called the jth virial coefficients, and
can be written in terms of the molecular distribution functions. From
Eq. (18.3), van’t Hoff’s law is seen to hold asymptotically at infinite
dilution, and even to be valid under certain conditions over a finite
range of concentration when the second virial coefficient and also higher
virial coefficients vanish.

A large part of the present chapter will be devoted to a calcula-
tion of the second virial coefficient for linear flexible chains. This then
completes the two-parameter theory for the equilibrium properties of
dilute polymer solutions in conjunction with the theory of excluded-
volume effects described in the preceding chapter. Some discussion of
the third virial coefficient and the effects of molecular weight hetero-
geneity and branching will also be given in the later sections of this
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chapter. It will be convenient to give first a relatively brief descrip-
tion of the McMillan–Mayer theory in a form convenient for use in our
applications.

19. The McMillan–Mayer
General Theory of Solutions

The McMillan–Mayer theory1, 2 is an extension of the Ursell–Mayer
theory of imperfect gases to multicomponent systems. It is developed
conveniently from the grand canonical ensemble, which ensemble is very
useful in the statistical-mechanical theory of multicomponent systems.
The system to be considered is of volume V , in a large heat bath at
temperature T , and is open with respect to the molecules in the system.
That is, both heat (energy) and matter (molecules) can be transported
across the walls of the system so that the energy and the numbers N1,
N2, . . ., Nr of molecules of the r species present, 1, 2, . . ., r, may
fluctuate about their mean values. The independent thermodynamic
variables are then V, T and the chemical potentials µ1, µ2, . . ., µr. The
grand partition function Ξ(µ, V, T ) is related to the thermodynamic
function pV for the variables µ, V and T by the equation,

Ξ(µ, V, T ) = epV/kT , (19.1)

where µ denotes a set of chemical potentials, µ = µ1, µ2, . . ., µr,
and p is the pressure of the system. The idea of McMillan and Mayer
consists in expressing the pressure and the distribution functions at any
chemical potential set µ (or activity set) in terms of those at any other
chemical potential set µ∗, and then deriving an expression for the gas
pressure or the osmotic pressure by a suitable choice of the reference
state indicated by µ∗.

Before proceeding to develop the theory, it is appropriate to describe
the McMillan–Mayer symbolism which makes the resulting equations
appear relatively simple. The symbol (is) = q1is , q2is , . . ., qfsis denotes
all the coordinates (internal and external) of the ith molecule of species
s in the Cartesian space of the atoms composing the molecules, where
fs is the number of (classical) translational and rotational (internal
and external) degrees of freedom of an s molecule. Note that for the
classical case in which we are interested, the internal-vibrational degree
of freedom and the electronic contributions may be neglected. The
position and configuration of the molecule are determined completely
by the fs coordinates, q1is , . . ., qfsis . The coordinates of Ns molecules
of species s are represented by {Ns} = (1s), (2s), . . ., (is), . . ., (Ns). In
general, any boldface symbol indicates a set of numbers or variables,
one for each species. Thus, as in the definition of µ, the boldface
N is used to indicate a set of numbers of molecules : N = N1, N2,
. . ., Ns, . . ., Nr, the number of molecules under consideration being
N =

∑r
s=1 Ns. The coordinates of all the molecules of such a set N

are represented by {N} = {N1}, {N2}, . . ., {Nr}. The differential
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volume elements are similarly defined by d(is) = dq1is
dq2is

· · · dqfsis
,

d{Ns} = d(1s)d(2s) · · · d(Ns), and d{N} = d{N1}d{N2} · · · d{Nr}.
We now begin by considering a closed system containing a set of

molecules N. The partition function QN(N, V, T ) (canonical ensemble)
may be written as

QN =
ZN∏

s

(Ns!Λ 3Ns
s )

(19.2)

with

ZN =
∫

exp
(
−UN

kT

)
d{N} , (19.3)

where ZN is the configurational partition function and UN ≡ UN({N})
is the potential energy of the system. The constants Λs (thermal de
Broglie wavelengths) result from integration of exp(−HN/kT ) over the
momenta, where HN is the Hamiltonian. For example, in the sim-
ple case of a classical monatomic fluid mixture, Λs = h/(2πmskT )1/2

where h is Planck’s constant and ms is the mass of species s. The
zero of potential energy for intermolecular interactions is chosen at
infinite separation of all molecules, while the zero for intramolecular
interactions is chosen in such a way that ZN = ΠsV

Ns for a perfect-
gas mixture. Let n be a particular subset of molecules. The (specific)
probability density of finding the set n in the volume element d{n} at
{n} irrespective of the coordinates of the remaining molecules (N−n)
is

P
(n)

N ({n}) = Z −1
N

∫
exp

[
−UN({N})

kT

]
d{N− n} (19.4)

with ∫
P

(n)
N ({n}) d{n} = 1 . (19.5)

If ρ
(n)

N ({n}) is the (generic) probability density of finding any n1

molecules of species 1 (out of N1), . . ., any nr molecules of species
r (out of Nr) in d{n} at {n}, we have

ρ
(n)

N ({n}) =

[∏
s

Ns!
(Ns − ns)!

]
P

(n)
N ({n}) (19.6)

with ∫
ρ

(n)
N ({n}) d{n} =

∏
s

Ns!
(Ns − ns)!

. (19.7)

Next, in an open system, the grand partition function is

Ξ = epV/kT =
∑

N≥0

eN·µ/kT QN

=
∑

N≥0

(∏
s

z Ns
s

Ns !

)
ZN (19.8)
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with

zs ≡ eµs/kT

Λ 3
s

, (19.9)

where we have used Eq. (19.2) and the summation runs over all sets
of numbers N,i.e., 0 ≤ Ns ≤ ∞ for all s. The quantity zs defined by
Eq. (19.9) is called the fugacity (activity) of species s. The probability
PN of the open system containing exactly the numbers N of molecules
is given by

PN = Ξ−1

(∏
s

Z Ns
s

Ns !

)
ZN . (19.10)

Therefore,the generic probability density, in an open system, of finding
any n1 molecules of species 1,etc., in d{n} at {n} is

ρ(n)({n}) =
∑

N≥n

PNρN
(n)({n}) (19.11)

with

∫
ρ(n)({n}) d{n} =

∑

N≥n

PN

[∏
s

Ns!
(Ns − ns)!

]
=

〈∏
s

Ns!
(Ns − ns)!

〉
.

(19.12)
In particular,if n is a single molecule of species s, Eq. (19.12) reduces
to ∫

ρ(1)(is) d(is) = 〈Ns〉 . (19.13)

Further, ρ(1) depends on the internal coordinates (is)int but not on the
external coordinates (is)ext, and we therefore have

∫
ρ(1)(is) d(is)int = 〈Ns〉/V = ρs (19.14)

with ρs the number density of species s. On putting m = N − n,
Eqs. (19.4), (19.6), and (19.10), when substituted in Eq. (19.11), lead
to

Ξ(z, V, T )∏
s

z ns
s

ρ(n)({n}, z, T ) =
∑

m≥0

(∏
s

z ms
s

ms!

)∫
exp

(
−Um+n

kT

)
d{m} ,

(19.15)
where we have indicated explicitly that ρ(n) is also a function of T and
the fugacity set z = z1, . . ., zr with the independent variables changed
from µ to z. Note that in a macroscopic system (V → ∞), ρ(n) is
independent of V .

In the limit of z = 0 (perfect gas), Eq. (19.8) becomes

pV/kT = lnΞ = V
∑

s

zs + · · · . (19.16)
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From the general relation for an open system,

〈Ns〉 = zs

(
∂ lnΞ
∂zs

)

V,T,zα6=s

, (19.17)

we then find that 〈Ns〉 = V zs, or ρs = zs in a perfect gas. That is, zs

is normalized so that zs → ρs as z (and ρ )→ 0. In the limit of z = 0,
Eq. (19.15) reduces to

ρ(n)({n},0, T ) =

(∏
s

ρ ns
s

)
exp

[
−Un({n})

kT

]
. (19.18)

We now define the distribution function Fn({n}) by

Fn({n}) =
ρ(n)({n})∏

s

ρ ns
s

. (19.19)

For the case of a monatomic fluid, this function is identical with the
correlation function g(n)(R1, . . ., Rn). Because of the definition of ρ(n),
when all the molecules of the set n are widely separated,

ρ(n)({n}) →
∏
s

ρ(1)(1s)ρ(1)(2s) · · · ρ(1)(ns) ,

and therefore from Eq. (19.14) we have
∫

Fn({n})d{n}int → 1 . (19.20)

Thus, in a macroscopic system (V →∞), Fn is normalized as

V −n

∫
Fn({n})d{n} = 1 . (19.21)

This normalization property of Fn is very useful. It is to be noted
that Fn is also a function of z and T . In what follows, the equations
are written in terms of Fn instead of ρ(n). Before discussing further
developments, it is pertinent to consider the physical meaning of Fn

from a different point of view.
Let us define a quantity Wn by the equation,

exp
[
−Wn({n}, z, T )

kT

]
= Fn({n}, z, T ) . (19.22)

When there are N molecules in the system in the configuration {N},
including the set n in the configuration {n}, the component fqn of force
along an arbitrary coordinate qn associated with one of the molecules
of the set n, owing to intra-and intermolecular interactions, is given by

fqn = −∂UN

∂qn
. (19.23)
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Now if we keep the set of molecules n fixed in the configuration {n},
but average this force over all configurations of the remaining (N− n)
molecules, we obtain

〈fqn〉 (n)
N =

∫
(−∂UN/∂qn) exp(−UN/kT )d{N− n}∫

exp(−UN/kT )d{N− n} , (19.24)

and therefore from Eqs. (19.4),(19.6) ,and(19.24)

〈fqn〉(n)
N = kT

∂

∂qn
ln ρ

(n)
N . (19.25)

The probability density that the system contains N molecules and a set
of molecules n is found in d{n} at {n} is PNρ

(n)
N , and 〈fqn〉(n)

N is the
average component of force along qn under these conditions. Therefore,
the further average over all values of N for the open system is

〈fqn〉(n) =

∑
N≥n PNρ

(n)
N 〈fqn〉 (n)

N∑
N≥n PNρ

(n)
N

. (19.26)

On the other hand, from Eqs. (19.11), (19.19), and (19.22) we have

exp
(
−Wn

kT

)
=

∑
N≥n PNρ

(n)
N∏

s ρ ns
s

. (19.27)

Differentiating both sides of Eq. (19.27) with respect to qn and com-
paring the resulting equation with Eq. (19.26) with substitution of
Eq. (19.25), we find

〈fqn〉(n) = −∂Wn

∂qn
. (19.28)

Thus Wn (and also Wn+const.) is the potential of mean force. A partic-
ular case of Wn has already been introduced in the preceding chapters.
In the limit of z (or ρ) = 0, Wn becomes Un, as seen from Eqs. (19.18),
(19.19), and (19.22). As already mentioned in Section 13, the potential
energy Un may be expressed as a sum of component potential energies
uij arising from the interaction between pairs of molecules only, but
the potential of mean force Wn must be expressed as a sum of terms of
all kinds of component potentials wν . That is, if we denote a subset of
the set of coordinates {n} of n molecules by the symbol {ν}n, we may
write

Wn =
∑
νn

wν , (19.29)

where the sum is taken over all possible subsets, and the terms wν for
ν > 2 may be regarded as corrections for the deviation of Wn from a
sum of pair terms only.

We return now to the grand partition function. Denote either side
of Eq. (19.15) by f(z). The right-hand side of Eq. (19.15) may be
considered to be the expansion of f(z) around z = 0, the expansion
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coefficients being integrals of the distribution functions Fn+m({n+m},
0, T ). Using Taylor’s theorem,

f(z) =
∑

l≥0

[∏
s

(zs − z ∗
s )ls

ls!

] [
∂l1+···+lrf(z)
∂z l1

1 · · · ∂z lr
r

]

z=z∗

(19.30)

is the expansion of f(z) around z = z∗, where z∗ is some particular
fugacity set. On putting m = l + q, differentiation of the right-hand
side of Eq. (19.15) for f(z) gives

∂l1+···+lrf(z)
∂z l1

1 · · · ∂z lr
r

=
∑

q≥0

(∏
s

z qs
s

qs!

) ∫
exp

(
−Un+l+q

kT

)
d{l+q} . (19.31)

Next, in Eq. (19.15), we replace n by (n + l) and m by q, and inte-
grate both sides of the equation over {l}. Comparing the result with
Eq. (19.31), we find

∂l1+···+lrf(z)
∂z l1

1 · · · ∂z lr
r

=
Ξ(z)∏

s z ns+ls
s

∫
ρ(n+l)({n + l}, z)d{l} . (19.32)

Substituting Eq. (19.32) into Eq. (19.30), we have the desired result
(writing m instead of l)

Ξ(z)∏
s γ ns

s
Fn({n}, z) = Ξ(z∗)

∑

m≥0

[∏
s

(zs − z ∗
s )ms

ms!(γ ∗
s )ns+ms

]

×
∫

Fn+m({n + m}, z∗)d{m} , (19.33)

where we have used Eq. (19.19), and γs is an activity coefficient defined
by γs = zs/ρs with γs ≡ γs(z) and ρs ≡ ρs(z), so that γ ∗

s = z ∗
s /ρ ∗

s .
Equation (19.33) is a generalized form of the grand partition func-
tion for a multicomponent system. It enables us to calculate the pres-
sure p(z), the activity coefficients γs(z), and the distribution functions
Fn({n}, z), at any fugacity set z in terms of the pressure p(z∗), the
activity coefficients γs(z∗), and the distribution functions Fn({n}, z∗),
at any other fugacity set z∗. In particular, if n = 0 in Eq. (19.33),
since by definition ρ(0) = F0 = 1, we obtain for the difference between
pressures at different fugacities (writing M instead of m)

Ξ(z)
Ξ(z∗)

= exp
{[

p(z)− p(z∗)
]
V

kT

}

=
∑

M≥0

[∏
s

1
Ms!

(
zs − z ∗

s

γ ∗
s

)Ms
] ∫

FM({M}, z∗)d{M} .

(19.34)

We now proceed to deduce the cluster expansion for the pressure.
We denote, as before, a subset of coordinates of m particular molecules
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of the set M by the symbol {m}M, and a complete set of k unconnected
subsets {mi}M (1 ≤ i ≤ k) of the set M by the symbol {k{mi}M} with∑k

i=1 mi = M. By unconnected subsets we mean that no molecule
occurs in more than one subset, but every molecule of the set M occurs
in one of the k subsets. Further, it must be noted that two subsets of
identical size are different if they do not contain the same particular
molecules. We then define g functions implicitly by

FM({M}, z) =
∑

{k{mi}M}

k∏

i=1

gm({mi}M, z) , (19.35)

where the sum is taken over all possible sets of unconnected subsets.
For example, if molecules of the set M are of the same species and
M = 1, 2, or 3, we have

F1(1) = g1(1) ,

F2(1, 2) = g2(1, 2) + g1(1)g1(2) ,

F3(1, 2, 3) = g3(1, 2, 3) + g2(2, 3)g1(1) + g2(1, 3)g1(2) ,

+g2(1, 2)g1(3) + g1(1)g1(2)g1(3) , (19.36)

where we have used the symbol (1,2,. . ., n) to represent explicitly the
set of coordinates {n} of n molecules of the same species. The functions
gm({m}, z) are so defined that they approach zero if the values of the
coordinates {m} are such that there exist two subsets {µ} and {ν}
(µ + ν = m) with all distances large between any molecule of {µ} and
any molecule of {ν}. For example, g2(1, 2) = F2(1, 2)−F1(1)F1(2) → 0,
as the distance R12 between molecules 1 and 2 →∞, since by definition
F2(1, 2) → F1(1)F1(2) [and W2(1, 2) → W1(1) + W1(2) ], as R12 →
∞; g2(1, 2) represents the amount by which F2(1, 2) deviates from the
simple product F1(1)F1(2). We further define cluster integrals bm(z)
by

V

(∏
s

ms!
)

bm(z) =
∫

gm({m}M, z)d{m}M . (19.37)

It must be noted that the integrals of (19.37) depend only on the nu-
merical value of m = m1, . . ., mr, and not on which of the Ms molecules
constitute the ms, and that in a macroscopic system, bm(z) is indepen-
dent of V if the interaction forces drop to zero sufficiently rapidly with
increasing separation. A subdivision of the set M into µm subsets of
size m may be obtained in

∏
s Ms!/

∏
m(

∏
s ms!)µmµm! different ways,

all of which appear in the sum of (19.35). Integration over {M} thus
gives

∫
FM({M}, z)d{M} =

(∏
s

Ms!
) ∑

µm

∏
m

[V bm(z)]µm/µm! , (19.38)

where the sum over µm is subject to the restriction
∑

m mµm = M, i.e.,∑
m msµm = Ms for all s. Substitution of Eq. (19.38) into Eq. (19.34)



146 THERMODYNAMIC PROPERTIES OF DILUTE SOLUTIONS

leads to

exp
{{[p(z)− p(z∗)]V

kT

}
=

∑
µm

∏
m

1
µm!

[
V bm(z∗)

∏
s

(
zs − z ∗

s

γ ∗
s

)ms
]µm

= exp
∑

m≥0

[
V bm(z∗)

∏
s

(
zs − z ∗

s

γ ∗
s

)ms
]

,

(19.39)

where the summation over M removes the restriction on the µm, and
the sum of the first line is just the expansion of the exponential of the
second line. We therefore have

p(z)− p(z∗) = kT
∑

m≥0

bm(z∗)
∏
s

(
zs − z ∗

s

γ ∗
s

)ms

, (19.40)

where b0 = 0, and bm = 1 for the subscript set ms = δrs. Equation
(19.40) is the cluster expansion for the pressure. We note that the in-
tegrals of FM relate to the integrals of gm according to the relationship
between the moments and cumulants. Since from Eq. (19.17) we have
the relation, (∂p/∂zs)T,zα 6=s

= kTρs/zs, differentiation of Eq. (19.40)
leads to a similar expansion for the density,

ρs(z) =
(

zs

zs − z ∗
s

) ∑

m≥0

msbm(z∗)
∏
r

(
zr − z ∗

r

γ ∗
r

)mr

. (19.41)

Equations (19.40) and (19.41) lead to the virial expansion for the gas
pressure or the osmotic pressure;the pressure may be expanded in pow-
ers of the densities instead of the fugacity differences by inverting the
series of (19.41). Although we have a general method for doing this,
the procedure followed is to evaluate explicitly the first few coefficients
in the virial expansions.

Gas Pressure. As an illustration, we consider a one-component gas,
and drop the subscript s. Set z∗ = 0, in which case γ∗ = 1 and
p(z∗) = 0, and then Eqs. (19.40) and (19.41) become

p(z) = kT
∑

m≥1

b 0
mzm , (19.42)

ρ(z) =
∑

m≥1

mb 0
mzm , (19.43)

where b 0
m = bm(0); that is, the cluster integrals are to be evaluated

at zero fugacity or density. The coefficients a2, a3, . . . in the inverted
series, z = ρ + a2ρ

2 + a3ρ
3 + · · ·, are found by substituting this series

into Eq.(19.43) for z. Having found the coefficients, the inverted series
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is then introduced in Eq. (19.42), and we obtain the virial expansion
for the gas pressure,

p = kT (ρ− 1
2β 0

1 ρ2 − 2
3β 0

2 ρ3 − · · ·)
= kT (ρ + B 0

2 ρ2 + B 0
3 ρ3 + · · ·) , (19.44)

where
B 0

n = −n− 1
n

β 0
n−1 , (19.45)

β 0
1 = 2b 0

2 ,

β 0
2 = 3b 0

3 − 6(b 0
2 )2 . (19.46)

The quantity βn is called the nth irreducible cluster integral.

Osmotic Pressure. We consider a solution composed of a solvent,
species 0, and solutes, species 1, 2, . . ., σ, . . ., τ , . . ., r. Suppose we have
a membrane permeable to solvent species 0 but not to solute species 1,
. . ., r. Let the state z∗ in Eqs. (19.40) and (19.41) refer to pure solvent
on one side of the membrane (which therefore contains species 0 only).
Let the value of z0 be denoted by z ∗

0 , while each zσ = ρσ = 0. We
summarize this by z∗ = z ∗

0 , 0σ. Let the state z in Eqs. (19.40) and
(19.41) refer to a solution on the other side of the membrane which
contains species 0, 1, . . ., r and which is in equilibrium, with respect to
solvent species 0, with the pure solvent. We represent this by z = z ∗

0 ,
zσ, since at equilibrium z0 must have the same value, z ∗

0 , on the solvent
and solution sides of the membrane. Under these conditions (osmotic
conditions) the pressure difference across the membrane [p(z)−p(z∗)] is,
by definition, just the osmotic pressure π. With this particular choice
of z and z∗ in Eqs. (19.40) and (19.41), the only terms in the sums that
contribute to π and ρσ are those for which m represents a set of solute
molecules only, that is, m = m1, . . ., mr. Thus we have

π = kT
∑

m≥0

b 0
m

r∏
σ=1

α mσ
σ , (19.47)

ρσ =
∑

m≥0

mσb 0
m

r∏
τ=1

α mτ
τ , (19.48)

where ασ = (zσ − z ∗
σ )/γ ∗

σ = zσ/γ 0
σ with γ 0

σ (≡ γ ∗
σ ) the activity coef-

ficient of solute species σ in the pure solvent with fugacity set z ∗
0 , 0σ,

that is, in a solution which is infinitely dilute with respect to all solute
species but not with respect to solvent species. Similarly, b 0

m is the
cluster integral for a set of solute molecules m in a solution which is in-
finitely dilute with respect to solute molecules, that is, for a set of solute
molecules in a pure solvent. Thus Eqs. (19.42), (19.43), (19.47), and
(19.48) show that the gas pressure as a function of the densities of all
the species present, and the osmotic pressure as a function of the densi-
ties of the solutes present may be expressed formally in the same form;
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the only difference is that the cluster integrals are evaluated in different
states. Since zσ = γσρσ, the quantity ασ in Eqs. (19.47) and (19.48)
may be written as (γσ/γ 0

σ )ρσ. Thus γσ/γ 0
σ is a number-concentration

activity coefficient and ασ is a number-concentration activity such that,
as the solution becomes dilute with respect to all solutes, γσ/γ 0

σ → 1
and ασ → ρσ.

The first few terms in Eqs. (19.47) and (19.48) may be written
explicitly in the form,

π = kT

(∑
σ

ασ −
∑

σ

∑
τ

B 0
2,στασατ − · · ·

)
, (19.49)

ρσ = ασ − 2
∑

τ

B 0
2,στασατ − · · · (19.50)

with
B0

2,στ = − 1
2 (1 + δστ )b0

2,στ , (19.51)

where b 0
2,στ is the cluster integral for the set of a single molecule of

solute species σ and a single molecule of solute species τ , and is to be
evaluated at zero solute concentration. By inversion of the series of
(19.50), we obtain

π = kT

(∑
σ

ρσ +
∑

σ

∑
τ

B 0
2,στρσρτ + · · ·

)
, (19.52)

Finally, in the case of a single solute species in a solvent, from the
discussion above and Eq. (19.44) the osmotic pressure may be written
as

π = kT (ρ + B 0
2 ρ2 + B 0

3 ρ3 + · · ·) , (19.53)

where ρ is the density of the solute and the coefficients B 0
2 , B 0

3 , . . . are
given formally by Eqs. (19.45) and (19.46). Thus, by use of the relation
ρ = NAc/M with NA the Avogadro number, c the solute concentration
(g/cc), and M the solute molecular weight, from Eqs. (19.36), (19.37),
(19.45), (19.46), and (19.53) we obtain the final results,

π = RT

(
1
M

c + A2c
2 + A3c

3 + · · ·
)

, (19.54)

where
A2 = − NA

2V M2

∫
g2(1, 2)d{2} , (19.55)

A3 = − N 2
A

3V M3

∫
g3(1, 2, 3)d{3}+ 4A 2

2 M , (19.56)

g2(1, 2) = F2(1, 2)− F1(1)F1(2) , (19.57)

g3(1, 2, 3) = F3(1, 2, 3)− F2(2, 3)F1(1)− F2(1, 3)F1(2)
−F2(1, 2)F1(3) + 2F1(1)F1(2)F1(3) . (19.58)
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Here, the distribution functions F1, F2, and F3 for the solute molecules
are to be evaluated at zero concentration. In practice, calculations of
the virial coefficients begin with assumed forms for the potentials of
mean force guessed to be suitable to a given system.

20. The Second Virial Coefficient (A):
Random-Flight Chains

The first application of the McMillan–Mayer theory to solutions of flex-
ible chain polymers was made by Zimm.5 The calculations led to a
dependence on the polymer molecular weight of the second virial co-
efficient in contradiction with the early lattice theories. About the
same time, a molecular weight dependence was suggested indepen-
dently by Flory,6 who used the uniform-density sphere model of a poly-
mer molecule. Subsequently, using a Gaussian chain model, Flory and
Krigbaum7 developed an approximate theory which shows explicitly
that the second virial coefficient is a decreasing function of the poly-
mer molecular weight. This prediction is qualitatively in accord with
experimental results but underestimates the molecular weight depen-
dence of the second virial coefficient. As a result of this discrepancy, a
number of attacks on the problem have been made since the mid-1950s.
In this section and the succeeding sections we shall give a detailed de-
scription of these investigations. However, it must be pointed out that
there is a difficulty in the theory which is similar to that encountered
in the excluded-volume problem, namely the many-body problem. For
mathematical convenience, the present section is confined to the use
of the random-flight model for a monodisperse system of linear chains.
The effect of the intramolecular excluded volume on the second virial
coefficient will be treated in the next section. Further, a treatment of
solutions of rigid macromolecules is given in Appendix IV A to provide
an elementary description of the physical meaning of the second virial
coefficient.

20a. Perturbation Theory

It will be desirable to describe first the exact form of perturbation
theory which can be developed by the cluster expansion method, as used
in the perturbation theory of the excluded-volume effect. In the present
problem, the expansion is made with respect to intermolecular clusters
formed among segments of two polymer chains at infinite dilution. The
formulation presented here is due to Zimm5 and Albrecht.8

The second virial coefficient A2 may be expressed, from Eqs. (19.22),
(19.55), and (19.57), as

A2 = − NA

2V M2

∫
[F2(1, 2)− F1(1)F1(2)]d(1, 2) (20.1)
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with

F2(1, 2) = exp
[
−W2(1, 2)

kT

]
,

F1(1) = exp
[
−W1(1)

kT

]
. (20.2)

From Eq. (19.29), the potential W2(1, 2) of mean force on two polymer
molecules 1 and 2 at infinite dilution is given by a sum of the self-
potentials W1(1) and W1(2) of the two molecules and the intermolecular
potential W12(1, 2), where W1 = w1 and W12 ≡ w2. The potential
W12 may be assumed to be a sum of the pair potentials of mean force
between the segments w(Ri1i2), where Ri1i2 is the distance between
the i1th segment of molecule 1 and the i2th segment of molecule 2.
That is,

W2(1, 2) = W1(1) + W1(2) + W12(1, 2) (20.3)

with

W12(1, 2) =
n∑

i1=0

n∑

i2=0

w(Ri1i2) . (20.4)

The distribution function F2(1, 2) for the two molecules may then be
written as

F2(1, 2) = F1(1)F1(2) exp
[
−

∑

i1,i2

w
(
Ri1i2

)

kT

]
. (20.5)

Substitution of Eq. (20.5) into Eq. (20.1) leads to

A2 = − NA

2V M2

∫
F1(1)F1(2)

[∏

i1,i2

(
1 + χi1i2

)− 1
]
d(1, 2) , (20.6)

where χi1i2 is a short-range function as defined by Eqs. (13.1) and
(13.2). Necessarily the potentials of mean force between the segments
of the same molecule and between the segments of the two different
molecules must be of the same form. Thus χi1i2 may be expressed
in terms of the same binary cluster integral β as for intramolecular
interactions; that is,

χi1i2 = −β δ(Ri1i2) . (20.7)

The distribution function F1(1) for a single molecule depends only on
the internal coordinates and is just identical with the instantaneous
distribution P ({rn}) for the entire chain introduced in the preceding
chapter,

F1(1) = Z−1

[ n∏

i1=1

τ
(
ri1

)]
exp

(
−W

kT

)
, (20.8)

where Z is the configurational partition function for the chain with
the external coordinates fixed and W is given by Eq. (10.6). Clearly,
Eq. (20.8) satisfies the normalization condition of (19.21), since the
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integral of F1(1) over the internal coordinates {rn} is just unity. Equa-
tions (20.2) and (20.8) give

W1(1) = U0(1) + W (1) + kT ln Z , (20.9)

where U0 is the formal potential associated with τ(r) and is given by
Eq. (16.5). Thus W1 is equivalent to the potential U of (3.2) except for
a constant term. In this section we consider the case W (1) = W (2) =
0, the random-flight chain without intramolecular excluded volumes.
Equation (20.8) then reduces to

F 0
1 (1) =

n∏

i1=1

τ(ri1) . (20.10)

We now expand the integrand in Eq. (20.6) as follows,

A2 = − NA

2V M2

∫
F 0

1 (1)F 0
1 (2)

×
(∑

i1,i2

χi1i2 +
∑

i1,i2

∑

j1,j2

χi1i2χj1j2 + · · ·
)

d(1, 2) , (20.11)

where there exist restrictions on the summations, which will be indi-
cated later using cluster diagrams. For convenience, each term of this
expansion is referred to as Term and the individual terms arising from
the multiple summations are referred to simply as terms, without cap-
italizing or italicizing. Thus, altogether there are (n + 1)2 Terms, the
σth Term (σ-ple contact term) having

(
(n+1)2

σ

) ' (
n2

σ

)
terms when the

multiple summation is expanded. A given term of the σth Term in the
integral in Eq. (20.11) may be written as

J (σ) =
∫

F 0
1 (1)F 0

1 (2)
∏

σ pairs

χi1i2d(1, 2)

= (−1)σβσ

∫
F 0

1 (1)F 0
1 (2)

∏

σ pairs

δ(Ri1i2)d(1, 2) , (20.12)

where we have used Eq. (20.7). First, integration is performed over co-
ordinates specifying the relative positions of segments i1 and i2. These
segments are arbitrarily chosen to take part in the first of σ inter-
molecular contacts. This integration yields a new distribution function
which we write as F 0

1 (1 ∗ 2) to symbolize the fact that the presence of
δ(Ri1i2) in the integrand has brought molecules 1 and 2 into contact
forming a single star molecule of functionality 4 whose configuration is
symbolized by (1 ∗ 2). Then integration is performed over the external
coordinates of the star molecule. Since F 0

1 (1 ∗ 2) is independent of the
external coordinates, this integration gives V F 0

1 (1 ∗ 2) which we write
as V F 0

1 (1 ∗ 2)int to indicate explicitly that the integration over the ex-
ternal coordinates has been carried out. The unperturbed distribution
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function F 0
1 (1 ∗ 2)int is given by

F 0
1 (1 ∗ 2)int d(1 ∗ 2)int =

n∏

i1=1

n∏

i2=1

τ(ri1)τ(ri2)dri1dri2

∣∣∣∣
Ri1i2=0

(20.13)

with ∫
F 0

1 (1 ∗ 2)int d(1 ∗ 2)int = 1 .

Thus Eq, (20.12) becomes

J (σ) = (−1)σβσV

∫
F 0

1 (1∗2)int

∏

(σ−1) pairs

δ(Rj1j2) d(1∗2)int . (20.14)

We now introduce the distribution function P0(Rj1j2 ,Rk1k2 , . . . ,
Rt1t2)i1i2 of (σ − 1) vectors, Rj1j2 , Rk1k2 , . . ., Rt1t2 , for the unper-
turbed star molecule,

P0(Rj1j2 ,Rk1k2 , . . . ,Rt1t2)i1i2

=
∫

F 0
1 (1 ∗ 2)int d(1 ∗ 2)int/dRj1j2 dRk1k2 . . . dRt1t2 , (20.15)

where the subscript i1i2 indicates that segments i1 and i2 are in contact.
Equation (20.14) then becomes

J (σ) = (−1)σβσV

∫
P0(Rj1j2 , . . . ,Rt1t2)i1i2

×
∏

(σ−1) pairs

δ(Rj1j2)dRj1j2 · · · dRt1t2

= (−1)σβσV P0(0j1j2 , . . . , 0t1t2)i1i2 (20.16)

with J (1) = −βV . The quantity P0(0j1j2 , . . . , 0t1t2)i1i2 represents a
conditional probability density that, given an initial contact between
segments i1 and i2, there are (σ − 1) additional specified contacts be-
tween segments j1 and j2, . . ., and t1 and t2. From Eqs. (20.11) and
(20.16), we obtain

A2 =
NAn2β

2M2

[
1− βn−2

∑

i1,i2

∑

j1,j2

P0(0j1j2)i1i2

+ β2n−2
∑

i1,i2

∑

j1,j2

∑

k1,k2

P0(0j1j2 , 0k1k2)i1i2 − · · ·
]

. (20.17)

Since each of the (σ − 1) victors, Rj1j2 , . . . ,Rt1t2 , is given by a linear
combination of the 2n bond vectors, r11 , . . ., rn1 , r12 , . . ., rn2 , by the
use of the Wang–Uhlenbeck theorem (Section 6), we find

P0(0j1j2 , . . . , 0t1t2)i1i2 = (3/2πa2)3s/2C −3/2
s , (20.18)

where s = σ−1, a is the effective bond length, and Cs is the determinant
of the s × s symmetric matrix with elements Ckl formally defined by
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Eqs. (6.3) and (6.12). Thus, in terms of the parameter z defined by
Eq. (13.32), A2 may be written in the form,

A2 = (NAn2β/2M2)h0(z) (20.19)

with

h0(z) = 1− zn−5/2
∑

i1,i2,j1,j2

C
−3/2

1 + z2n−3
∑

i1,i2,j1,j2,k1,k2

C
−3/2

2 − · · · ,

(20.20)
where the subscript 0 on h indicates that there are no intramolecular
interactions. The problem now reduces to an evaluation of the deter-
minants followed by the multiple summations.

Let us consider the general properties of Cs. This is the determinant
belonging to the (s + 1)th Term, for which molecules 1 and 2 may
be considered in simultaneous contact at (s + 1) points. Choosing
one point of contact as a reference point, it is possible to associate
with each of the s additional contacts a loop containing parts of both
molecules. The loop to be associated with the kth additional contact,
for example, begins at the reference point, includes a part of molecule
1 up to the point of the kth additional contact, and closes by including
the part of molecule 2 which leads back to the reference contact. The
diagonal element Ckk represents the number of segments contained in
the loop just described. The s loops so defined obviously contain certain
segments in common. The number of segments contained commonly
by loops k and l is represented by the off-diagonal element Ckl (= Clk).

Now the detailed conditions on the multiple summations in Eq.
(20.20) indicate that while the order of contact segments on molecule 1
is preserved (i1 ≤ j1 ≤ k1 ≤ · · · ≤ t1) the contact segments of molecule
2 (i2, j2, . . ., t2) are allowed to vary independently. This gives rise to
a set of types of multiple contacts, each type corresponding to one of
the σ! (for σ contacts) possible orderings of the contact segments of
molecule 2. This division into types is necessary, since in general the
Cs, determined as just described, are not the same for all types. The
discussion of the various types of contacts is greatly aided by the use
of cluster diagram technique as in Section 14. In Fig. IV.1 are depicted
the two (2!) possible types which can appear in the double-contact
term and the six (3!) types which appear in the triple-contact term.
As seen from the figure, in general, to generate all possible types of σ
contacts, for example, we need only write all permutations of the index
set i2, j2, . . ., t2 for the σ segments of molecule 2 and interpret each
permutation in the diagrammatic sense.

Consider now diagrams C1−1 (i1 ≤ j1, i2 ≤ j2), C2−1 (i1 ≤ j1 ≤ k1,
i2 ≤ j2 ≤ k2), and C2−3 (i1 ≤ j1 ≤ k1, j2 ≤ i2 ≤ k2) of Fig. IV.1.
If we denote the number of segments separating the contact segments
of molecule 1 and of molecule 2 by xi and yi, respectively, as shown
in the figure, following the procedure outlined above we obtain for the
corresponding determinants

C1−1 = x1 + y1 ,
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Fig. IV.1. Cluster diagrams for the double and triple intermolecular contact

terms. The heavy lines connect the contact segments.

C2−1 =
∣∣∣∣
x1 + y1 x1 + y1

x1 + y1 x1 + x2 + y1 + y2

∣∣∣∣ ,

C2−3 =
∣∣∣∣
x1 + y1 y1

y1 x2 + y1 + y2

∣∣∣∣ , (20.21)

where we have chosen (i1i2) and (j1j2) as the reference contacts in C2−1

and C2−3, respectively. Upon simple transformation, from C2−1 there
is obtained a diagonal determinant with diagonal elements (x1 + y1)
and (x2 + y2). The formal definition of Cs is, as expected, not unique,
since determinants are invariant to a variety of transformations. In
fact, every equivalent representation of Cs corresponds to a particular
manner in which s loops are chosen. This suggests that an alternative
method of defining loops be adopted in order to lead directly to a
simplified form for Cs. If the s loops are chosen in a manner such that
there is a minimum number of loops which overlap (contain common
segments), the desired simplification of Cs is obtained.

This method of choosing loops leads directly to two classes of con-
tact types: Class I, containing those types for which Cs is diagonal
(e.g., C2−1); and Class II, containing all those types (the remainder)
for which Cs cannot be diagonalized (e.g., C2−3). It can be shown that
there are only two types which belong to Class I for a given Term.
These are the types whose representative permutation is either the
perfectly ordered set i2, j2, k2, . . ., t2 or the reverse perfectly ordered
set t2, . . ., k2, j2, i2. The remaining types (σ! − 2 for the σth Term)
belong to Class II. The Class I representatives in Fig. IV.1 are diagrams
C1−1 and C1−2 for σ = 2 and diagrams C2−1 and C2−6 for σ = 3.

There are two kinds of symmetry which appear among the types.
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The first symmetry is a property common to both classes; the second
belongs only to Class II. The first is a symmetry which causes two
different types to yield two Cs differing only in that in one the yi are
labeled in just the reverse manner; these lead to equivalent contribu-
tions once the sum has been carried out. This corresponds to the two
permutations i2, j2, . . ., t2 and t2, . . ., j2, i2 for Class I, and similarly
(for Class II) to all other pairs of representative permutations achieved
by analogous transpositions on the ordered and reverse ordered sets.
Thus, each of the following pairs of diagrams in Fig IV.1 has equivalent
contributions:C1−1, C1−2; C2−1, C2−6; C2−3, C2−5; and C2−2, C2−4.
The second symmetry can be seen as follows. Consider a plane normal
to and bisecting the two are lines (polymer chains) of a given diagram.
It can make no physical difference whether the overlap occurs on one
side or at its mirror image through this plane. Types so related must
lead to the same contribution. In Fig. IV.1, therefore, the contribution
of type C2−2 is equal to that of C2−3 and the contribution of type C2−4

is equal to that of C2−5. The number of unique Cs that require evalu-
ation in the sense of performing the multiple summation is not σ! but
(σ! + 2)/4, the symmetry factors being appropriately applied to give
the correct final answer.

We now turn to the evaluation of the function h0(z) through the
third Term. According to the discussion above, we have the two Class I
types for the double-contact term, and the two Class I types and the
four Class II types for the triple-contact term. The required sums in
Eq.(20.20) may be written as

∑
C
−3/2

1 = 2
∑

i1≤j1

∑

i2≤j2

C
−3/2

1−1 ,

∑
C
−3/2

2 = 2
∑

i1≤j1≤k1

∑

i2≤j2≤k2

C
−3/2

2−1 +4
∑

i1≤j1≤k1

∑

j2≤i2≤k2

C
−3/2

2−3 ,

(20.22)
where C1−1, C2−1, and C2−3 are given by Eqs. (20.21). The sums may
be converted to integrals in the usual fashion. The integrals for types
C1−1 and C2−1 can be evaluated analytically, while the integral for type
C2−3 requires a numerical integration. Thus the final result is

h0(z) = 1− 2.865z + 9.202z2 − · · · . (20.23)

Equation (20.19) with (20.23) represents the second-order perturba-
tion theory of the second virial coefficient for the random-flight chain.
The double-contact term was obtained by Zimm5 (where the symmetry
factor of 2 was erroneously omitted) and Fixman9; the triple-contact
term is due to Albrecht,8 and Tagami and Casassa,10 Albrecht’s original
value being 9.726 instead of 9.202.

In general, it is possible to evaluate the contribution 2Tσ(−z)σ−1

of the Class I types to the σth Term. The associated determinant C I
s
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Fig. IV.2. Theoretical values of h0(z) at small z. Line 1: the first-order pertur-

bation theory. Curve 2: the second-order perturbation theory.

being diagonal, reads simply

C I
s =

σ−1∏

i=1

(xi + yi) . (20.24)

If reduced variables xi
′ = xi/n and yi

′ = yi/n are introduced together
with X ′ =

∑
xi
′ and Y ′ =

∑
yi
′ and the primes are immediately

suppressed, Tσ is found to be

Tσ =
∫
· · ·

∫

0≤P xi=X≤1
0≤P yi=Y≤1

(1−X)(1− Y )
σ−1∏

i=1

[(xi + yi)−3/2dxidyi]dXdY

=
2σ+2π(σ−2)/2

(σ + 1)(σ + 3)Γ(σ/2)
[(σ2 + 3)Iσ−1 − (σ − 1)2−(σ−1)/2]

(20.25)

with

Iσ−1 =
∫ π/4

0

sinσ−1 θ dθ ' 2−σ(σ+1)/2(σ+2)/σ . (20.26)

The integrals for types C1−1 and C2−1 are particular cases of the in-
tegral of (20.25). However, it appears extremely difficult to evaluate
exactly all the contributions of Class II, although it can be shown that
type for type the contribution of Class II must be smaller than that of
Class I.
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From the above analysis, h0 is seen to be a function of the param-
eter z only. Thus Eq. (20.19) with (20.23) represents a two-parameter
theory of the second virial coefficient; A2 may be expressed in terms
of only the two parameters na2 and n2β as in the theory of excluded-
volume effects. Equations (20.19) and (20.23) predict that A2 = 0 and
h0(z) = 1 at the theta temperature at which β and z vanish. Further,
A2 is seen to depend on the polymer molecular weight M through the
function h0(z)(z ∝ M1/2), since the quantity NAn2β/2M2 is indepen-
dent of M . In Fig. IV.2 are shown the values of h0(z) predicted by the
first-and second-order perturbation theories. The series of (20.23) is
very slowly convergent, and is valid only for |z| < 0.15, near the theta
temperature.

20b. Approximate Closed Expressions

Corresponding to the theory of the excluded-volume effect, we now wish
to derive an equation which can describe the behavior of the function
h0(z) over a wide range of z. It may be easily recognized that the
present problem is very similar to the excluded-volume problem in na-
ture. Indeed, various attempts have been made to solve the A2 problem
in parallel with the excluded-volume problem, although some of these
lead only to numerical results. All these theories, although differing in
the functional form of h0(z), predict that h0(z) is a decreasing func-
tion of z. It will be convenient to classify these investigation into three
groups.

20b(i). The Smoothed-Density Model

The theories developed by Flory and Krigbaum,6, 7 by Grimley,11 and
by Isihara and Koyama12 may be discussed together, in a category
termed the smoothed-density theory. We begin by deriving an approx-
imate general expression for A2, written in terms of the average segment
density around the molecular center of mass, from which there result
these theories by assuming appropriate forms for the density function.

Denoting the distance between the center of mass and the i1th
segment of molecule 1 by Si1 , we introduce the distribution function
P0(Si1 ,Sj1 , . . . ,St1) of σ vectors, Si1 , . . ., St1 , for the unperturbed
chain [and also P0(Si2 , . . . ,St2)],

P0(Si1 ,Sj1 , . . . ,St1) =
∫

F 0
1 (1)d(1)int/dSi1 , dSj1 · · · dSt1 . (20.27)

If S12 is the distance between the centers of mass of molecules 1 and 2,
Eq. (20.12) may be rewritten, by the use of Eq. (20.27), as

J (σ) = (−1)σβσV

∫
F 0

1 (1)F 0
1 (2)

∏

σ pairs

δ(Ri1i2)d(1)intd(2)intdS12

= (−1)σβσV

∫
P0(Si1 , . . . ,St1)P0(Si1 − S12, . . . ,St1 − S12)
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×dSi1 · · · dSt1dS12 , (20.28)

where we have used the relation, S12 = Si1 − Si2 + Ri1i2 . We now
introduce the factorization approximation,

P0(Si1 , . . . ,St1) = P0i1(Si1) · · ·P0t1(St1) , (20.29)

and a similar approximation for molecule 2, where P0i1(Si1) ≡ P0(Si1).
With these approximation, we then obtain, from Eqs. (20.11) and
(20.28)

A2 =
NA

2M2

∫ [
β

∑

i1,i2

∫
P0i1(Si1)P0i2(Si1 − S12)dSi1

−β2
∑

i1,i2

∑

j1,j2

∫
P0i1(Si1)P0i2(Si1 − S12)dSi1

×
∫

P0j1(Sj1)P0j2(Sj1 − S12)dSj1 + · · ·
]
dS12 . (20.30)

As mentioned already, the number of terms of the σth Term is
(
(n+1)2

σ

)
,

which may be approximated by n2σ/σ! provided that n is large. In
other words, the restrictions on the summations in Eq. (20.30) may be
removed by introducing a factor 1/σ! in the σth Term. Then the series
in the integrand of the integral over S12 can be summed to yield an
exponential form, and we obtain

A2 =
NA

2M2

∫ {
1− exp

[
−V12(S12)

kT

]}
dS12 (20.31)

with

V12(S12)
kT

= β

n∑

i1=0

n∑

i2=0

∫
P0i1(s)P0i2(s− S12)ds , (20.32)

where we have used s in place of Si1 . Since P0i1(s) is the distribution
function of the distance of the i1th segment from the center of mass of
molecule 1, Eq. (20.32) may be rewritten, by the used of Eq. (7.9), as

V12(S12)
kT

= β

∫
ρ01(s)ρ02(s− S12)ds , (20.33)

where ρ0i(s) represents the average segment density at distance s from
the center of mass of isolated unperturbed chain i. V12 may be consid-
ered to be the average intermolecular potential as a function of sepa-
ration, corresponding to the average intramolecular potential V (S) of
(15.25). The integral in Eq. (20.31) may be regarded as the effective
volume excluded to one molecule by the presence of another, the inter-
molecular excluded volume [compare with Eq. (13.3) for β]. We note
that Eq. (20.33) can also be derived by a procedure similar to that used
in Section 11.7,13
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We first consider the uniform-density sphere model of Flory.6 In this
case, ρ0(s) (with omission of the subscript 1 or 2) is obviously given
by

ρ0(s) = n/(4
3πS̄3) for 0 ≤ s ≤ S̄

= 0 for s > S̄ , (20.34)

where S̄ is the radius of the sphere. We therefore have, from Eqs. (20.33)
and (20.34),

V12(S12)/kT = β(n/ 4
3πS̄3)2V(S12) , (20.35)

where V(S12) is the volume common to two spheres of radius S̄ with a
distance S12 between the centers, and is given by

V(S12) = 2
3πS̄3

(
1− S12

2S̄

)2(
2 +

S12

2S̄

)
(0 ≤ S12 ≤ 2S̄) . (20.36)

On putting t = S12/2S̄ and S̄ ∝ n1/2a (for a random-flight chain), we
obtain, from Eqs. (20.31), (20.35), and (20.36), for the function h0(z)

h0(z) = (12/Kz)
∫ 1

0

{1− exp[−Kz(1− t)2(2 + t)]}t2dt, (F) (20.37)

where K is a constant. This integral must be evaluated numerically,
and the result will be discussed later.

Secondly, we approximate ρ0(s) by the Gaussian function of (8.4).
Performing the integration over s in Eq.(20.33), we find

V12(S12)
kT

= n2β

(
3

4π〈S2〉0

)3/2

exp
(
− 3S 2

12

4〈S2〉0

)
(20.38)

with 〈S2〉0 the unperturbed mean-square radius of gyration. This po-
tential is usually called the Flory–Krigbaum potential. Substituting
Eq.(20.38) into Eq.(20.31) and putting t2 = 9S 2

12 /2na2, we obtain

h0(z) = (4/π1/2)(33/2z)−1

∫ ∞

0

{1− exp[−(33/2z) exp(−t2)]}t2dt

=
∞∑

k=1

(−33/2z)k−1

k!k3/2
. (FKG) (20.39)

This is the result derived first by Flory and Krigbaum,7 and subse-
quently by Grimley.11 In order to obtain numerical results, the integral
in Eq. (20.39) must be evaluated numerically.

Finally, we insert the expression (7.6) for P0i1 and P0i2 in Eq. (20.32)
without using the Gaussian approximation to ρ0(s). We then find

V12(S12)
kT

= β
∑

i1,i2

[
3

2π(〈S 2
i1
〉0 + 〈S 2

i2
〉0)

]3/2

× exp
[
− 3S 2

12

2(〈S 2
i1
〉0 + 〈S 2

i2
〉0)

]
, (20.40)
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where 〈S 2
i 〉0 is the unperturbed mean-square distance from the center

of mass to the ith segment and is given by Eq. (7.8). Substitution of
Eq. (20.40) into Eq. (20.31) leads to the Isihara–Koyama equation,12

h0(z) = (4/π1/2)(33/2z)−1

∫ ∞

0

{1− exp[−(33/2z)f(t)]}t2dt (IK)

(20.41)
with

f(t) = (4/3)3/2

∫ 1

0

∫ 1

0

(x2 +y2 + 2
3 )−3/2 exp[−4t2/3(x2 +y2 + 2

3 )]dxdy ,

(20.42)
where x = 2(i1/n) − 1 and y = 2(i2/n) − 1, and the sums have been
converted to integrals. The numerical results obtained by Isihara and
Koyama show that the IK function is very close to the FKG function de-
spite the improvement of the distribution function for a segment about
the molecular center of mass. This is to be expected, since as discussed
in Section 8a, the agreement between the exact distribution ρ0(s) and
the approximate Gaussian distribution of (8.4) is fairly satisfactory.

By a semiempirical procedure, Orofino and Flory14 found that the
FKG function may be approximated by the close form,

h0(z) =
1

2.30z
ln(1 + 2.30z) . (FKO , o) (20.43)

This is referred to as the original Flory–Krigbaum–Orofino function.
The FKO,o function is in agreement with the FKG function with an
accuracy of a few percents over the range of z of interest. In analogy
with a maneuver used in Chapter III, however, Stockmayer15 recom-
mended that the numerical constant 2.30 in Eq. (20.43) be changed to
5.73 to yield the exact first-order perturbation theory;that is,

h0(z) =
1

5.73z
ln(1 + 5.73z) . (FKO , m) (20.44)

This function is referred to as the modified Flory–Krigbaum–Orofino
function. By a similar argument, the value of the constant K in
Eq. (20.37) can be found to be 8.85 when forced to fit the exact first-
order perturbation theory. The F function for the uniform-density
sphere model so determined has a little smaller value than the FKO,m
function at a given positive value of z. A comparison of the values of
h0(z) from various approximate theories will be deferred to the end of
this section.

Our final problem is to show the correspondence between our no-
tation and Flory’s notation. The parameter X used by Flory and
Krigbaum is equal to 4CMψ(1 − Θ/T )M1/2/α3 ≡ X ′/α3, and for
the random-flight chain model X ′ must be equated 33/2z appearing
in Eq. (20.39); that is

z = (4/33/2)CMψ(1−Θ/T )M1/2 . (20.45)
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Further, the single-contact term NAn2β/2M2 in Eq. (20.19) must be
equated to the corresponding term, (v̄2/NAV0)ψ(1−Θ/T ), of Flory and
Krigbaum, where v̄ is the partial specific volume of the polymer and V0

is the molecular volume of the solvent. Recalling that nVs = Mv̄/NA

with Vs the volume of the segment, we therefore have

β = 2V −1
0 V 2

s ψ(1−Θ/T ) . (20.46)

Equations (20.45) and (20.46) have already been used in Section 14
without proof.

20b(ii). The Factored Random-Flight Model

This model is similar to the smoothed-density model, but the segment
distribution function is factored in a different manner. The Fixman–
Casassa–Markovitz theory9, 16, 17belongs to this class.

We introduce the following factorization approximation to the con-
ditional probability density for segment contacts, P0(0j1j2 , 0k1k2 , . . .,
0t1t2)i1i2 , appearing in Eq. (20.16)

P0(0j1j2 , . . . , 0t1t2)i1i2 = P0(0j1j2)i1i2 · · ·P0(0t1t2)i1i2 . (20.47)

This approximation is equivalent to introducing the alternative factor-
ization approximation,

P0(Ri1j1 ,Ri1k1 , . . . ,Ri1t1) = P0(Ri1j1)P0(Ri1k1) · · ·P0(Ri1t1) ,
(20.48)

and also a similar approximation for molecule 2. Substitution of Eq.
(20.16) with (20.47) into Eq. (20.11) leads to

n2h0(z) =
∑

i1,i2

1− β
∑

i1,i2

∑

j1,j2

P0(0j1j2)i1i2

+β2
∑

i1,i2

∑

j1,j2

∑

k1,k2

P0(0j1j2)i1i2P0(0k1k2)i1i2 − · · · . (20.49)

We now remove, as before, the restrictions on the summations by intro-
ducing a factor 1/σ! in the σth Term. Equation (20.49) then becomes

h0(z) = n−2
n∑

i1=0

n∑

i2=0

∞∑
σ=0

1
(σ + 1)!


−β

n∑

j1=0

n∑

j2=0

P0(0j1j2)i1i2




σ

,

(20.50)
where P0(0j1j2)i1i2 is given by Eq. (20.18) with C1 = |j1− i1|+ |j2− i2|.
Recalling that the series in β of Eq. (20.50) may be summed in expo-
nential form, and replacing the summations over the indices by inte-
grations, we obtain

h0(z) =
∫ 1

0

∫ 1

0

1− exp[−4zw(x, y)]
4zw(x, y)

dxdy (20.51)
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with

w(x, y) = 2x1/2 + 2y1/2 + 2(1− x)1/2 + 2(1− y)1/2

− (x + y)1/2 − (1− x + y)1/2 − (1 + x− y)1/2 − (2− x− y)1/2 ,

(20.52)

x = i1/n, y = i2/n .

The surface representing w(x, y) over the range of integration (0 ≤
x ≤ 1, 0 ≤ y ≤ 1) is quite flat, falling away rapidly only near the edges.
Therefore, a reasonable approximation can be obtained by replacing
the actual surface with a rectangular box of height w0 and enclosing
the same volume.17 In other words, w(x, y) may be replaced by w0

given by

w0 =
∫ 1

0

∫ 1

0

w(x, y)dx dy =
16
15

(7− 4 · 21/2) = 1.4327 . (20.53)

This replacement is equivalent to approximating P0(0j1j2)i1i2 by its
value averaged over i1, i2 pairs,9

P0(0j1j2)i1i2 ' n−2
n∑

i1=0

n∑

i2=0

P0(0j1j2)i1i2 . (20.54)

Thus we have

h0(z) =
1− exp(−5.73z)

5.73z
. (FCM) (20.55)

By numerical calculation Casassa Markovitz17 showed that the devia-
tion of the FCM function from h0(z) given by Eq. (20.51) with (20.52)
never exceeds 1.8%. To minimize the error over the important range,
they proposed that the value 5.73 in Eq. (20.55) be changed to 5.68.
However, we retain the value 5.73, since Eq.(20.55) yields the exact
first-order perturbation theory result for h0(z).

The essential difference between the smoothed-density theory and
the present theory consists in the manner of factoring the segment dis-
tribution function. That is, the molecular center of mass is chosen as
the reference point for factorization in the former, whereas an arbitrary
initial contact point is taken in the latter. The former approximation
causes an appreciable error in taking into account the connective nature
of the polymer chain (the error appears first in the double-contact term
as evidenced by the failure to give the correct linear term). Further,
we note that the FCM factorization approximation is the same as the
Grimley approximation of (12.10). It must be recalled that this approx-
imation failed in the description of the intramolecular excluded-volume
effect.
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20b(iii). The Differential-Equation Approach

This approach is similar to the differential-equation approach to the
excluded-volume problem described in Section 15b. Kurata et al.18

developed a theory corresponding to the F1 theory of α described in
Section 15b(i). Subsequently Yamakawa19 generalized the procedure;
it is consistent with the hierarchy approach in the theory of α described
in Section 15b(iii).

By analogy with Eq. (15.14), the intermolecular potential may be
expressed as

W12(1, 2)
kT

= β

n∑

i1=0

n∑

i2=0

δi1i2 , (20.56)

where δi1i2 is a shorthand notation for δ(Ri1i2). For the random-flight
chain model, Eq. (20.1) then becomes

A2 = − NA

2V M2

∫
F 0

1 (1)F 0
1 (2)

[
exp

(
−β

∑

i1,i2

δi1i2

)
− 1

]
d(1, 2) .

(20.57)
Differentiation of Eq. (20.57) with respect to β leads to

∂A2

∂β
=

NAn2

2M2
ψ , (20.58)

where

ψ = n−2
n∑

i1=0

n∑

i2=0

ψi1i2 , (20.59)

ψi1i2 = V −1

∫
δi1i2F

0
1 (1)F 0

1 (2) exp
(
−W12

kT

)
d(1, 2)

=
∫

F 0
1 (1 ∗ 2)int exp

(
−W12

kT

)
d(1 ∗ 2)int . (20.60)

The second line of Eqs. (20.60) has been obtained from the first line by
the same procedure as used in going from Eq. (20.12) to Eq. (20.14), and
F 0

1 (1 ∗ 2)int is, as before, the unperturbed distribution function which
describes the internal configuration of a star molecule of functionality 4
(joined at i1 and i2). On the other hand, differentiation of Eq. (20.19)
with respect to β leads to

∂A2

∂β
=

(
∂A2

∂z

)

n

∂z

∂β
=

NAn2

2M2

∂

∂z
[zh0(z)] . (20.61)

Comparing Eq. (20.61) with Eq. (20.58), we have

ψ =
∂

∂z
[zh0(z)] . (20.62)

Thus our problem is to derive a differential equation for ψ.
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Now, successive differentiation of Eq. (20.60) leads to

∂ψi1i2

∂β
= −

∑

j1,j2

∫
δj1j2F

0
1 (1 ∗ 2)int exp

(
−W12

kT

)
d(1 ∗ 2)int ,

∂2ψi1i2

∂β2
=

∑

j1,j2

∑

k1,k2

∫
δj1j2δk1k2F

0
1 (1 ∗ 2)int exp

(
−W12

kT

)
d(1 ∗ 2)int ,

∂kψi1i2

∂βk
= (−1)k

∑

j1,j2

· · ·
∫ ( ∏

k pairs

δj1j2

)
F 0

1 (1 ∗ 2)int exp
(
−W12

kT

)

×d(1 ∗ 2)int . (20.63)

Let us introduce the perturbed distribution function,

F1
′(1 ∗ 2)int = ψ −1

i1i2
F 0

1 (1 ∗ 2)int exp
(
−W12

kT

)
(20.64)

with ∫
F1

′(1 ∗ 2)intd(1 ∗ 2)int = 1 .

The prime on F1 indicates that interactions exist only between two par-
ent chains 1 and 2. Note that the quantity ψ −1

i1i2
plays the role of a nor-

malizing constant. Given the distribution function F1
′(1∗2)int, the dis-

tribution function P ′(Rj1j2 , . . . ,Rt1t2)i1i2 of k(= σ − 1) vectors Rj1j2 ,
. . ., Rt1t2 for this star molecule may be defined as in Eq. (20.15).From
Eqs. (20.59), (20.63), and (20.64), we then obtain

∂kψ

∂βk
= (−1)kn−2

∑

i1,i2

∑

j1,j2

· · ·
∑
t1,t2

ψi1i2P
′(0j1j2 , . . . , 0t1t2)i1i2 . (20.65)

This equation is formally exact. It is easy to see that at β = 0 the
right-hand side of Eq. (20.65) becomes equal to the coefficient of βk in
the series in square brackets of Eq.(20.17) if the restrictions, i1 ≤ j1 ≤
· · · ≤ t1, on the summations are introduced. We therefore have

[
∂kψ

∂zk

]

z=0

= (−1)k(k + 1)!Ck , (20.66)

where Ck are the coefficients in the expansion,

h0(z) = 1− C1z + C2z
2 − · · ·+ (−1)kCkzk + · · · , (20.67)

C1 and C2 being 2.865 and 9.202, respectively (not to be confused with
the determinants Cs).

We now approximate P ′ in Eq. (20.65) by its value averaged over
i1, i2 pairs, as in Eq.(20.54); that is,

P ′(0j1j2 , . . . , 0t1t2)i1i2 ' n−2
∑

i1,i2

P ′(0j1j2 , . . . , 0t1t2)i1i2 , (20.68)
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which gives

∂kψ

∂βk
= (−1)kψn−2

∑

i1,i2

· · ·
∑
t1,t2

P ′(0j1j2 , . . . , 0t1t2)i1i2 . (20.69)

We evaluate the sum in Eq. (20.69) in the unperturbed state, followed
by the replacement of a by aᾱk; and we obtain

dkψ

dzk
= (−1)k(k + 1)!Ck

ψ

ᾱ 3k
k

(k = 1, 2, . . .) . (20.70)

This is to be compared with Eq. (15.70), ψ corresponding to α2. Equa-
tion (20.70) may be considered rather defining equations for the scale
factors ᾱk. Defining new factors αk by

ᾱk =
( k∏

i=1

αi

)1/k

(20.71)

(with ᾱ1 = α1) as before, we eliminate ψ from Eqs. (20.70) with (20.71)
to obtain

dα 3
k

dz
=

(k + 2)Ck+1

Ck

α 3
k

α 3
k+1

− (k + 1)Ck

Ck−1
(k = 1, 2, . . .) . (20.72)

with C0 ≡ 1. Equations (20.72) form a hierarchy of differential equa-
tions for α 3

k which can be truncated to obtain the solution for α 3
1 . The

solution for ψ can then be obtained from the k = 1 equation of (20.70),

dψ

dz
= −2C1

ψ

α 3
1

, (20.73)

and from Eq. (20.62), the function h0(z) can be found by integration
of ψ.

Before proceeding to further developments using the hierarchy, we
describe briefly the procedure of Kurata et al.18 The scale factor α1 may
be considered to be the expansion factor of the star molecule (joined
at i1 and i2) with partial intramolecular interactions between parent
chains 1 and 2, averaged over i1, i2 pairs. Thus we may evaluate it
approximately from

na2α 2
1 = n−2

∑

i1,i2

〈R 2
1 〉i1i2 , (20.74)

where R1 is the end-to-end distance of parent chain 1. Note that the
average of 〈R 2

2 〉i1i2 for parent chain 2 also gives the same α1. As in
Eq. (15.49), differentiation of the general expression for 〈R 2

1 〉i1i2 with
respect to β leads to

∂〈R 2
1 〉i1i2

∂β
=

∑

j1,j2

∫
R 2

1 [P ′(R1)i1i2P
′(0j1j2)i1i2−P ′(R1, 0j1j2)i1i2 ]dR1 .

(20.75)



166 THERMODYNAMIC PROPERTIES OF DILUTE SOLUTIONS

In a first approximation, we replace the P ′ by the P0 with aα1 in place
of a. Equation (20.75) then reduces to a differential equation for α1 of
the Fixman type, and we have the solution,

α 3
1 = 1 + 0.683z . (20.76)

Since ψ(0) = h0(0) = 1, from Eqs. (20.62), (20.73), and (20.76) we find

h0(z) =
1− (1 + 0.683z)−7.39

5.047z
. (K) (20.77)

We now turn to the hierarchy approach. In order to examine the
behavior of αk, we assume the forms ψ = γz−ν and α νk

k = γkz at large
z. In particular, if we consider only the contribution 2Tσ of the Class I
type clusters to the σth Term, which is given by Eq. (20.25), it can
be shown that ν = 2.8 By the same argument as in Section 15b(iii),
substitution of these asymptotic forms into Eqs. (20.72) and (20.73)
leads to

lim
z→∞

α 3
k = γkz . (20.78)

We impose the following condition on αk as before,

αk = αk+1 (for large k) . (20.79)

It is then straightforward to find approximate solutions for αk, since
the differential equations of (20.72) and the conditions of (20.78) and
(20.79) are formally the same as those in the YT theory of α. By the
same argument as before, we therefore arrive at

α 3
k = 1 + Kz (for k ≥ 1) (20.80)

with
K =

3C2

C1
− 2C1 . (20.81)

Thus our approximate theory yields the sequence α1 = α2 = α3 = · · ·.
It is important to recall that in the theory of α the corresponding factors
αk become equal for k ≥ 2. This difference arises from the fact that
C0 is positive in the present case, whereas C0 is negative in the case of
the theory of the expansion factor α. From Eqs. (20.62), (20.73), and
(20.80) we find

h0(z) =
1− (1 + Kz)−(2C1−K)/K

(2C1 −K)z
. (20.82)

If we use the exact values for the coefficients C1 and C2, we have

h0(z) =
1− (1 + 3.903z)−0.4683

1.828z
. (KY) (20.83)

Naturally Eq. (20.83) yields the exact second-order perturbation theory.
All the approximate expressions for h0(z) described so far can be

reproduced from Eq. (20.82). Suppose K in Eq. (20.82) is taken to be
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TABLE IV.1. THE COEFFICIENTS C1 AND C2 IN THE EXPAN-
SION OF h0(z) FROM VARIOUS APPROXIMATE
THEORIES

C1 C2

Exact 2.865 9.202
FKG 0.918 0.867
IK 1.043 1.135
FKO,o 1.151 1.767
FKO,m 2.865 10.944
KY 2.865 9.202
S 2.865 8.208
K 2.865 6.124
FCM 2.865 5.472

an arbitrary constant ranging from 0 to 2C1, where C1 is kept equal
to 2.865. Then if K = 0, Eq. (20.82)reduces to the FCM function of
(20.55), in which all αk are identically equal to unity. If K = 0.683,
Eq. (20.82) reduces to the K function of (20.77). If K = C1, Eq. (20.82)
becomes

h0(z) =
1

1 + 2.865z
. (S) (20.84)

This is a semi-empirical equation proposed by Stockmayer.15 Further,
Eq. (20.82) can be shown to reduce to the FKO,m function of (20.44)
in the limit for K = 2C1. In Table IV.1 are given the values for the
first two coefficients in the expansion of h0(z) from various approximate
theories. The second coefficient is seen to vary from 5.472 (the FCM
value) to 10.944(the FKO,m value) as K in Eq.(20.82) is increased from
0 to 5.73, C1 being kept equal to 2.865.

We now compare the numerical results obtained from various ap-
proximate theories. In Fig. IV.3 are plotted the values of h0(z) pre-
dicted by the FKO,o theory, Eq. (20.43), the FKO,m theory, Eq. (20.44),
The KY theory, Eq. (20.83), the S theory, Eq. (20.84), the K theory,
Eq. (20.77), and the FCM theory, Eq. (20.55). The values predicted by
the FKG theory, Eq. (20.39),and the IK theory, Eq. (20.41), are very
close to those predicted by the FKO,o theory. All the functions h0(z)
but the FKO,o (and also FKG and IK) function have the correct initial
slope, and there is seen to be a correlation between the value of K
in Eq. (20.82) and the rate of decrease of h0(z). The FKO,o function
decreases with increasing z less rapidly than the others. It is because
of this behavior that a number of attempts have been made to improve
the theory.

Finally, we give a brief discussion of the asymptotic behavior of
h0(z) for large z.Albrecht8 showed that h0(z) is asymptotically pro-
portional to z−1 for large z, considering only the contribution 2Tσ
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Fig. IV.3. Theoretical values of h0(z) calculated from various approximate the-

ories. Curve FKO,o: the original Flory–Krigbaum–Orofino theory, Eq. (20.43).

Curve FKO,m: the modified Flory–Krigbaum–Orofino theory, Eq. (20.44). Curve

KY: the Kurata–Yamakawa theory, Eq. (20.83). Curve S: the Stockmayer equa-

tion, Eq. (20.84). Curve K: the Kurata theory, Eq. (20.77). Curve FCM: the

Fixman–Casassa–Markovitz theory, Eq. (20.55).

of the Class I type clusters to the σth Term. It can now be shown
that both the FKG and IK functions have the asymptotic form, const.
z−1(ln z)3/2, while the FKO,o or FKO,m function has the form, z−1 ln z.
For extremely large z, these functions vary as z−1. Further, it is easy
to see that variation of h0(z) with z−1 at large z is also given by Flory’s
uniform-density sphere model and by Eq. (20.82) including the KY, S,
K, and FCM functions. Thus all the theories of A2 described above
predict that

lim
z→∞

h0(z) = const.z−1 . (20.85)

21. The Second Virial Coefficient (B):
Real Polymer Chains with
Intramolecular Interactions

Since the effect of intramolecular interactions has been neglected through-
out the preceding treatment of the second virial coefficient, the theory
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thus far presented is not self-consistent at nonzero values of the param-
eter z. Our problem in the present section is to investigate this effect
and complete the theory of A2 for linear flexible chains. We shall first
describe the perturbation theory and then approximate treatments. Fi-
nally, a general analysis of the behavior of A2 will be given.

21a. Perturbation Theory

We consider the effect of intramolecular interactions only through the
single-contact term in the one-body molecular distribution function
F1(1) or F1(2). The cluster analysis for this case was first presented
by Yamakawa and Kurata.20 We expand the double product in the
integrand of Eq. (20.6) and split the integral into two parts,

A2 = − NA

2V M2




∫
F1(1)F1(2)

∑

i1,i2

χi1i2d(1, 2)

+
∫

F1(1)F1(2)
(∑

i1,i2

∑

j1,j2

χi1i2χj1j2 +
∑

i1,i2

∑

j1,j2

∑

k1,k2

χi1i2χj1j2χk1k2

+ · · ·
)

d(1, 2)
]

. (21.1)

Since the distribution functions F1(1) and F1(2) depend only on the
internal coordinates, the first integral is easily seen to yield the value,
−V n2β. We now use Eq. (20.8) instead of Eq. (20.10) for the F1(1)
appearing in the second integral. Recalling that the Boltzmann factor
in Eq. (20.8) is identical with that in Eq.(14.1), F1(1) may be expanded
as

F1(1) = Z−1F 0
1 (1)

(
1 +

∑
s1<t1

χs1t1 + · · ·
)

(21.2)

with
Z = 1− β

∑
s1<t1

P0(0s1t1) + · · · . (21.3)

A similar expansion is possible for F1(2). Equation (21.1) may therefore
be rewritten as

A2 = − NA

2V M2

[
−V n2β + Z−2

∫
F 0

1 (1)F 0
1 (2)

(∑∑
χi1i2χj1j2

+
∑∑ ∑

χi1i2χj1j2χs1t1 +
∑∑ ∑

χi1i2χj1j2χs2t2 + · · ·)d(1, 2)
]

,

(21.4)
where the second and third Terms of the integrand are new triple-
contact terms which correspond to single intramolecular and double
intermolecular contacts in coexistence. The integrations in Eq. (21.4)
can be performed using the same procedure as that of Section 20a;
the result may be expressed in terms of the probability densities for
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Fig. IV.4. Cluster diagrams for the double intermolecular contact term with a

single intramolecular contact.

segment contacts. Expanding Z−2 in a geometric series and collecting
powers of β, we obtain

A2 = (NAn2β/2M2)h(z) (21.5)

with

h(z) = h0(z) + 2βn−2∑∑ ∑[
P0(0j1j2 , 0s1t1)i1i2

−P0(0j1j2)i1i2P0(0s1t1)
]
+ · · · , (21.6)

where h0(z) is given by Eq. (20.23). The symmetry factor of 2 in
Eq. (21.6) arises from the fact that the two new triple-contact terms
of Eq. (21.4) lead to equivalent contributions, since it can make no
difference whether the single intramolecular contact exists in chain 1 or
2. From Eqs. (21.5) and (21.6), intramolecular interactions are seen to
have no influence on the single- and double-contact terms of A2 but do
alter the higher-order terms. Equation (21.6) can readily be rewritten
as

h(z) = 1− 2.865z + (9.202 + D)z2 − · · · (21.7)

with
D = 2n−3

∑
[(C 1

2 )−3/2 − C
−3/2
1 (C1)−3/2] , (21.8)

where C 1
2 , C1, and C1 are the determinants associated with the prob-

ability densities P0(0j1j2 , 0s1t1)i1i2 , P0(0j1j2)i1i2 , and P0(0s1t1) in Eq.
(21.6), respectively, and the sum is taken over the indices.

We now make a cluster analysis. Twelve possible types of triple
contacts can appear in C 1

2 . However there is inherent symmetry which
causes two different types to yield two C 1

2 differing only in that in
one the indices i2 and j2 are labeled in just the reverse manner; these
lead to equivalent contributions. This symmetry occurs also in C1 and
is just the first kind of symmetry discussed in Section 20a. Thus we
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need only consider the six types with i1 ≤ j1 and i2 ≤ j2, applying
the symmetry factor of two to each of them. Among these six types,
two types (with s1 < t1 < i1 and j1 < s1 < t1) make no contribution,
since for these types C 1

2 = C1C
1. In Fig. IV.4 there are depicted the

remaining four types which contribute to D. Now types C 1
2−3 and

C 1
2−4 are easily seen to lead to equivalent contributions once the sum

has been evaluated. Thus the types that require evaluation are C 1
2−1 ,

C 1
2−2 , and C 1

2−3 , the symmetry factors to be applied being 4, 4, and 8,
respectively [with inclusion of the factor of 2 in Eq. (21.8)]. The sums
may be converted to integrals. Denoting the integrals corresponding
to the above three types by D1, D2, and D3, respectively, we have
D = 4D1 + 4D2 + 8D3. The integrals D1 and D2 can be evaluated
analytically, but D3 requires a numerical integration. The result is10, 18

D = 5.076 . (21.9)

We note that D1 was first erroneously evaluated by Yamakawa and
Kurata,20 and then Kurata et al.18 corrected it and evaluated D2 and
D3 with the result D = 5.097, and finally Tagami and Casassa10 reeval-
uated D3 and arrived at Eq. (21.9).

Substitution of Eq. (21.9) into Eq.(21.7) leads to

h(z) = 1− 2.865z + 14.278z2 − · · · . (21.10)

Equation (21.5) with (21.10) represents the second-order perturbation
theory of the second virial coefficient for real polymer chains with in-
tramolecular interactions. Equation (21.10) is to be compared with
Eq. (20.23) for the function h0(z).

21b. Approximate Treatments

We must now derive an approximate closed expression for the function
h(z) which can be applied also when z is large. Equations (20.11)
and (21.1) suggest that in the uniform-expansion approximation the
distribution function F1(i) may be replaced by F 0

1 (i) with an effective
bond length aα∗ in place of a, where a∗ is the expansion factor of one
polymer molecule in contact with another. We then obtain

h(z) = h0(z̄) (21.11)

with
z̄ = z/(α∗)3 . (21.12)

This implies that h(z) may be approximated by the function h0 with
the argument z̄ in place of z. In other words, an approximate theory
of A2 is given by Eq. (21.5) with (21.11) if any of the approximate
closed expressions for h0 as described in Section 20b is adopted in
conjunction with an expression for α∗. Thus the problem is to find a
closed expression for α∗.
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The first-order perturbation theory of α∗ can readily be derived.
Let us expand (α∗)2 in powers of z,

(α∗)2 = 1 + Az − · · · . (21.13)

By assumption, h(z) may be expanded in the form,

h(z) = 1− 2.865(z/α∗3) + 9.202(z/α∗3)2 − · · · . (21.14)

Substituting Eq. (21.13) into Eq. (21.14) and setting the coefficient of
z2 equal to that in Eq.(21.10), we find

A = 1.181 . (21.15)

This value is a little smaller than the value of 1.276 for the corre-
sponding coefficient in the expansion of α 2

s for an isolated molecule.
The reason for the differences is easy to understand:the expansion of
one molecule is suppressed by intermolecular interactions with another.
However, this difference is of rather minor importance; and for practi-
cal purpose, we may assume that α∗ = αS , as was done by Flory and
Krigbaum.7 Thus we redefine the parameter z̄ by

z̄ = z/α 3
S . (21.16)

Casassa21 and Ptitsyn and Eizner22 obtained the values 1.858 and
2.93 for the coefficient A, respectively, using different assumptions, and
adopted an equation for α∗ of Flory type, (α∗)5 − (α∗)3 = Az. How-
ever, their values for A have no great significance, since the exact value
is now available.

We now proceed to a general analysis of the behavior of the second
virial coefficient. If Eq (21.16) is combined with any of the equations
for αs with the exponent ν in Eq. (15.1) greater than three, the param-
eter z̄ is seen to increase with z. Therefore, h(z) is still a decreasing
function of z, and A2 decreases with increasing molecular weight. Also,
the previous conclusion that A2 = 0 at T = Θ or at β = z = 0 remains
unaltered. Thus, we use the vanishing of A2 to define the theta temper-
ature. Equation (21.5) with (21.11) and (21.16) may now be rewritten
as

A2 = 4π3/2NA
〈S2〉3/2

M2
Ψ (21.17)

with
Ψ = z̄h0(z̄) . (21.18)

The values of Ψ from various approximate theories of h0 are plotted
against z̄ in Fig. IV.5. It is seen that Ψ is an increasing function of z̄,
and hence of z. In addition, the mean-square radius 〈S2〉 is an increas-
ing function of β. Thus A2 increases with β; the greater the solvent
power, the larger the second virial coefficient. From Eq. (20.85), Ψ is
predicted to approach a constant as z̄ tends to infinity. Then A2 be-
comes proportional to 〈S2〉3/2/M2 in the limit of z = ∞. This form
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Fig. IV.5. Theoretical values of Ψ as a function of z from various approximate

theories. The curves correspond to those in Fig.IV.3.

of A2 is equivalent to that for rigid sphere molecules with a diame-
ter proportional to 〈S2〉1/2 (see Appendix IV A). Therefore polymer
chains in very good solvents may be regarded as thermodynamically
noninterpenetrating spheres. On the other hand, polymer molecules
are completely interpenetrable at the theta temperature, at which Ψ
vanishes. Thus the function Ψ represents the degree of interpenetration
of polymer molecules in dilute solution.

We now ask the following question: which expression for αS is to
be combined with a given expression for h0 in order to complete the
form of Ψ as a function of z. Necessarily this must be done from the
point of view of maintaining the self-consistency of the intramolecular
and intermolecular theories. First, there is no reason why the FKO,o
equation for h0 should not be combined with the F,o equation for αS ,
since both are based on the smoothed Gaussian density model. Sim-
ilarly, the FKO,m equation for h0 should be combined with the F,m
equation for αS . Further, the KY equation for h0 may be combined
with the YT equation for αS , since both were derived by the hierarchy
approach. However, there is no explicit justification of any other com-
bination. The above three combinations will be tested by comparison
with experiment in Chapter VII.
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22. The Third Virial Coefficient

The first investigation of the third virial coefficient, A3, for flexible
chain polymers is again Zimm’s formulation,5 developed on the ba-
sis of the McMillan–Mayer theory. To avoid complications, Flory and
Krigbaum7 simply assumed that A3 has the same relation to A2 as in
the case of rigid sphere molecules; that is (see Appendix IV B),

A3/A
2

2 M = 5
8 . (22.1)

Subsequently, smoothed-density theories of A3 were developed by Stock-
mayer and Casassa23 and by Koyama,24 and an approximate closed ex-
pression for A3 was derived by Yamakawa.25 Investigations of the third
virial coefficient are very few in number compared to the numerous
theories of the second virial coefficient. Nevertheless some knowledge
of A3 is required for the accurate evaluation of M and A2 by extrap-
olation of experimental data to infinite dilution, especially in the case
of high-molecular-weight polymers in good solvents.

22a. Perturbation Theory

The perturbation theory of A3 was formulated first by Zimm5 and
subsequently developed by Stockmayer15 and Yamakawa.25 Our start-
ing point is Eq. (19.56) with (19.58). Integrations must then be per-
formed over the distribution function F3(1,2,3) related to the potential
W3(1,2,3) as well as over F2 related to W2. Although W2(1,2) is given
exactly by Eq. (20.3), it is necessary to make the superposition approx-
imation in W3(1,2,3). In this approximation, the component potential
w3 is neglected in Eq. (19.29) with n = 3 and W3 may be expressed as
a sum of self and pair potentials only; that is,

W3(1, 2, 3) = W1(1) + W1(2) + W1(3)
+W12(1, 2) + W23(2, 3) + W13(1, 3) . (22.2)

In terms of the distribution functions, the superposition approximation
reads, from Eqs. (19.22), (20.3), and (22.2),

F3(1, 2, 3) =
F2(1, 2)F2(2, 3)F2(1, 3)

F1(1)F1(2)F1(3)
. (22.3)

From Eqs. (19.57), (19.58), and (22.3), the function g3(1,2,3) may then
be reduced to

g3(1, 2, 3) =
g2(1, 2)g2(2, 3)g2(1, 3)

F1(1)F1(2)F1(3)
+

g2(1, 2)g2(1, 3)
F1(1)

+
g2(2, 3)g2(1, 2)

F1(2)
+

g2(1, 3)g2(2, 3)
F1(3)

. (22.4)

The last three terms on the right-hand side of Eq. (22.4) lead to equiva-
lent contributions to A3 after integration over (1,2,3). From Eqs. (19.56)
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and (22.4), we therefore have

A3 = − N 2
A

3V M3

∫
g2(1, 2)g2(2, 3)g2(1, 3)

F1(1)F1(2)F1(3)
d(1, 2, 3)

− N 2
A

V M3

∫
g2(1, 2)g2(1, 3)

F1(1)
d(1, 2, 3) + 4A 2

2 M . (22.5)

Zimm5 and Stockmayer and Casassa23 used Eq. (22.5) with omission
of the last two terms. These two terms, in fact, cancel each other for
rigid sphere molecules and also for smoothed-density models, but this
is not necessarily the case for random-flight chain models.25

To proceed further, we assume the random-flight chain to be ex-
panded uniformly by the factor αS , as in Section 21b. The distribution
function F1(i) then reduces to F 0

1 (i) of (20.10) with aαS in place of
a. This approximation is used throughout Section 22. Now Eq. (20.4)
and similar equations are used for the pair potentials Wij , and the χ
functions, as given by Eq. (20.7), are introduced. The ternary cluster
integral β2 as well as the binary cluster integral β will then occur in
A3

5, 15, 26 where β2 may be defined by

β2 = −
∫ ′

χi1i2χi2i3χi1i3dRi1i2dRi2i3dRi1i3 . (22.6)

The prime indicates that the integration is carried out under the condi-
tion, Ri1i2 +Ri2i3 +Ri3i1 = 0. Now, experimentally, A3 is nearly equal
to zero at the theta temperature at which A2 and β vanish.27, 28 Fur-
thermore, possibilities for ternary clustering will be much smaller than
those for binary clustering, provided n is very large. Thus we here ne-
glect β2. Introduction of this approximation leads to a two-parameter
theory of A3.

The perturbation theory can now be formulated without difficulty.
Expanding Eq. (22.5) and integrating, we may write A3 in the form,

A3 = (N 2
A n4β2/3M3){z̄n−9/2∑D

−3/2
1

−3z̄2n−5[
∑

D
−3/2

2 +
∑

K
−3/2

2 − (
∑

C
−3/2

1 )2] + · · ·} , (22.7)

where z̄ is given by Eq. (21.16). The summations in Eq. (22.7) are
performed with respect to the indices k1, k2, i2, i3, and so on. D1,
D2, . . ., Ds, . . . are the determinants arising from the conditional prob-
ability densities P0(0i2i3 , . . .)j1j3,k1k2 , that, when two initial contacts
between segments j1 and j3, and k1 and k2 exist, there also exist s ad-
ditional specified contacts between segments i2 and i3, . . ., and so on,
where at least one of the s additional contacts must exist between seg-
ments of molecules 2 and 3. Similarly, the determinant K2 arises from
P0(0l1l2 , 0m1m3)j1j3,k1k2 , and C1 from Eq. (20.18). It must be noted
that the terms involving D1, D2, . . ., in Eq. (22.7) result from the lead-
ing term on the right-hand side of Eq. (22.5), and the terms involving
K2 and C1 from the second and last terms of Eq. (22.5), respectively.
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Thus an approximation to A3 by the leading term of Eq. (22.5) is seen
to yield the correct term linear in z̄, but not the correct higher-order
terms.

We evaluate only the first term in the expansion of (22.7), the eval-
uation of the second term being too laborious to present. Replacing
the summations by integrations, we find

A3 = (N 2
A n4β2/3M3)(λ1z̄ − · · ·) (22.8)

with

λ1 = 8
∫ 1

0

∫ 1

0

∫ 1

0

∫ X

0

∫ Y

0

∫ Z

0

(x+y+z)−3/2dXdY dZdxdydz = 1.664 .

(22.9)
Equation (22.8) with (22.9) represents the first-order perturbation the-
ory of A3 developed by Stockmayer15 (where a symmetry factor of 4
was erroneously introduced) and by Yamakawa.25

22b. Approximate Closed Expressions

For convenience, we first describe a smoothed-density theory following
Stockmayer and Casassa.23 This theory may be considered to be an
extension of the A2 theory of Flory and Krigbaum. For the Gaussian
smoothed-density model, A3 may be approximated by the leading term
on the right-hand side of Eq. (22.5), which becomes equivalent to the
expression for A3 for rigid sphere molecules,

A3 = − N 2
A

3M3

∫ ′
f12f23f13dS12dS23dS13 (22.10)

with
fij = exp(−Vij/kT )− 1 , (22.11)

where Sij is the distance between the centers of molecules i and j, and
Vij is the Flory–Krigbaum potential,

Vij/kT = 33/2z̄ exp(−3S 2
ij /4〈S2〉) (22.12)

[compare with Eq. (20.38)]. Equation (22.12) leads to Eq. (21.17) for
A2 with h0(z̄) given by Eq. (20.39) with z̄ in place of z. Since A3 is
not easily obtained from Eqs. (22.10) to (22.12), we consider another
expression for Vij or fij ,

fij = −A exp(−B2S 2
ij ) , (22.13)

where the parameters A and B will be determined later. Equations (22.13)
gives the second and third virial coefficients,

A2 = π3/2NAA/2M2B3 , (22.14)
A3 = π3N 2

A A3/35/2M3B6 . (22.15)
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From these equations, we have

A3/A
2

2 M = 0.257A . (22.16)

Now we determine the parameters A and B. On assuming that
the Flory–Krigbaum potential is valid, the requirement that the second
virial coefficients of (21.17) and (22.14) be the same gives one condition,

B3Ψ = A/8〈S2〉3/2 . (22.17)

However, another condition is still required to fix A and B uniquely.
Probably the most trustworthy second condition is obtained in the
following manner. Let us define a function ϕ(Sij) by

Sijfij = −(2〈S2〉1/2/31/2)ϕ(Sij) . (22.18)

The alternative expressions for ϕ given by Eqs. (22.12) and (22.13) are
then

ϕ1(t) = t{1− exp[−33/2z̄ exp(−t2)]} , (22.19)

ϕ2(t) = At exp[−(A/33/2Ψ)2/3t2] , (22.20)

respectively, where we have put t2 = 3S 2
ij /4〈S2〉, and applied the con-

dition of (22.17) in writing ϕ2. Plots of ϕ1(t) and ϕ2(t) against t are
then compared and that value of A is chosen which causes the two
curves to coincide as nearly as possible. Thus we can find the values of
A, and therefore of A3/A

2
2 M from Eq. (22.16), as functions of z̄. The

results are shown by the points in Fig. IV.6, where the horizontal line
segment indicates the asymptotic value (rigid sphere value) for large z̄.
The present theory predicts that A3/A

2
2 M becomes zero at z = 0, and

increases monotonically with increasing z̄ or z.
Next we describe briefly the differential-equation approach of

Yamakawa,25 which is in the spirit of Section 20b(iii). For our present
purposes, it is better to use different coupling parameters for the poten-
tials W23, W13, and W12, and differentiate A3 with respect to the cou-
pling parameters. The procedure is similar to the coupling-parameter
method in the theory of liquids.2, 3 Thus, we write the above potentials
in the form,

W23(2, 3; ξ1)
kT

= ξ1β
∑

i2,i3

δi2i3 , (22.21)

and similar equations for W13(1, 3; ξ2) and W12(1, 2; ξ3). Each of the
ξi’s ranges from zero to unity. The real system has ξ1 = ξ2 = ξ3 = 1.
The third virial coefficient A3(ξ) as a function of ξ = (ξ1, ξ2, ξ3) consists
of three parts,

A3(ξ) = A
(1)

3 (ξ) + A
(2)

3 (ξ) + A
(3)

3 (ξ) , (22.22)

where A
(1)

3 , A
(2)

3 , and A
(3)

3 correspond to the first, second, and last
terms on the right-hand side of Eq. (22.5), respectively. Now successive
differentiations of A3(ξ) with respect to ξ1, ξ2, and ξ3, lead to
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Fig. IV.6. Theoretical values of A3/A 2
2 M as a function of z. Curve SC: the

Stockmayer–Casassa theory. Curve Y: the Yamakawa theory, Eq. (22.32). The

horizontal line segment indicates the rigid sphere value of 5/8.

∂3A3

∂ξ1 ∂ξ2 ∂ξ3
=

∂3A
(1)

3

∂ξ1 ∂ξ2 ∂ξ3
= −N 2

A n4β2

3M3
H , (22.23)

where

H =
1
3

3∑

i=1

∂Ii

∂ξi
, (22.24)

∂I1

∂ξ1
= −βn−4I1

∑

i2,i3

∑

j1,j3

∑

k1,k2

P ′(0i2i3)j1j3,k1k2 , (22.25)

and similar equations for I2 and I3. In obtaining Eq. (22.25), we have
used an approximation analogous to Eq. (20.54). The prime on P
indicates, as before, that there are interactions only among three par-
ent chains. For simplicity, we now introduce the Fixman–Casassa–
Markovitz approximation, in which the scale factor α1 appearing in P ′

is set equal to unity. Equation (22.25) then reduces to

∂ ln I1

∂ξ1
= −λ1z̄ , (22.26)

where λ1 is given by Eq. (22.9). In the same approximation, it can
easily be verified that

A
(2)

3 + A
(3)

3 = 0 , (22.27)
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I1(0, ξ2, ξ3) = ψ(ξ2)ψ(ξ3) = exp[−2C1z̄(ξ2 + ξ3)] , (22.28)

where ψ is the same function as that appearing in Eq. (20.58), and
C1 = 2.865.

Now integration of Eq. (22.26) leads to

I1 = I1(0, ξ2, ξ3) exp(−λ1z̄ξ1)
= exp[−λ1z̄ξ1 − 2C1z̄(ξ2 + ξ3)] , (22.29)

where we have used Eq. (22.28). Solutions for I2 and I3 can easily be
written down by exchanging ξ1 and ξ2, and ξ1 and ξ3, respectively, in
Eq. (22.29). From these equations and Eqs. (22.23) and (22.24), we
obtain the desired solution with ξ = 1,

A3 = (N 2
A n4β2/3M3)[1− exp(−λ1z̄)][1− exp(−2C1z̄)]2/(2C1z̄)2 .

(22.30)
At small z̄, Eq. (22.30) may be expanded in the form,

A3 = (N 2
A n4β2/3M3)(1.664z̄ − 10.920z̄2 + · · ·) . (22.31)

Thus Eq. (22.30) is seen to yield the exact first-order perturbation
theory result, as expected. Necessarily Eq. (22.30) should be combined
with the FCM theory of A2, and we therefore have

A3/A
2

2 M = 4
3 [1− exp(−λ1z̄)] . (22.32)

The present theory predicts that A3/A
2

2 M is zero at the theta temper-
ature, and has the asymptotic value 1.333, which is greater than the
hard sphere value. We note that Koyama24 obtained the correspond-
ing value of 0.704 for the Gaussian smoothed-density model of IK. The
values of A3/A

2
2 M from Eq. (22.32) are shown by curve Y in Fig. IV.6.

In any case, it may be concluded that for flexible chains A3/A
2

2 M is
an increasing function of z. A comparison of theory and experiment
based on osmotic pressure data will be considered in Chapter VII.

23. Remarks

23a. Heterogeneous Polymers

The osmotic pressure of a solution of heterogeneous polymers may eas-
ily be formulated through the second term of the virial expansion. The
solute is considered to be a mixture of chain polymers differing only in
molecular weight. If Ni is the number of polymer species i of molecular
weight Mi in the solution, the number density ρi and concentration
ci(g/cc) of species i and the whole concentration c are given by

ρi = NAci/Mi ,

ci = MiNi/NAV ,

c =
∑

i

ci . (23.1)
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For this case, the osmotic pressure π may be written, from Eq. (19.52),
as

π = RT

(
1

〈M〉n c + A2c
2 + · · ·

)
, (23.2)

where
〈M〉n =

∑

i

MiNi/
∑

i

Ni , (23.3)

A2 =
∑

i

∑

j

NAB 0
2 ,ijNiNj

/(∑

i

MiNi

)2

. (23.4)

The quantity 〈M〉n is referred to as the number-average molecular
weight of the polymer.

We now introduce the weight fraction wi of polymer species i defined
by

wi = MiNi/
∑

i

MiNi . (23.5)

The alternative expressions for 〈M〉n and A2 are5, 7, 29

〈M〉n = 1/
∑

i

(wi/Mi) , (23.6)

A2 =
∑

i

∑

j

Aijwiwj (23.7)

with

Aij = − NA

2V MiMj

∫
g2(i, j)d(i, j) , (23.8)

where we have used Eqs. (19.37) and (19.51) in writing A2. The discrete
function wi is often replaced by a continuous function w(M), which
represents the molecular-weight distribution of the whole polymer such
that w(M)dM is the weight fraction of polymer of molecular weight
between M and M + dM . Equations (23.6) and (23.7) may then be
rewritten as

〈M〉n = 1
/∫ ∞

0

M−1w(M) dM , (23.9)

A2 =
∫ ∞

0

∫ ∞

0

Aijw(Mi)w(Mj)dMidMj . (23.10)

In the particular case of homogeneous polymers, w is represented by
a delta function, w(Mi) = δ(Mi − M), and Eq. (23.10) reduces to
Eq. (19.55). The problem is to evaluate A2 from Eq. (23.10) assuming
an appropriate form for the distribution w. This problem is deferred
to the next chapter, where another average of Aij will be defined in
formulating the intensity of light scattering from a multicomponent
system, and the two kinds of second virial coefficients will be compared
with each other.
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TABLE IV.2. VALUES OF C FOR UNIFORM STAR MOLECULES
OF FUNCTIONALITY f30

f C

1 2.865
2 2.865
3 3.279
4 3.873
5 4.586
6 5.390
8 7.219

12 11.585
∞ 0.2201f3/2

23b. Branched and Ring Polymers

We consider the effects of branching and ring formation on the second
virial coefficient for the same types of molecules as those discussed
in Section 17a. We first describe the first-order perturbation theory.
Evidently the differences in molecular structure do not alter the single-
contact term for given values of n and β. We may therefore write

A2 = (NAn2β/2M2)(1− Cz + · · ·) . (23.11)

The evaluation of the coefficient C involves no fundamental difficulty,
and the details are omitted. For a uniform star molecule of functionality
f , C is given by30

Cu(star) =
32

15f1/2
[7− 4 · 21/2 + (f − 1)(17 · 21/2 − 9 · 31/2 − 8)

+ (f − 1)2(9 · 31/2 − 6 · 21/2 − 7)] . (23.12)

In Table IV.2 are given the values of C calculated from Eq. (23.12) for
various values of f . The coefficient C increases with f from the value
2.865 for the linear chain. For a uniform normal (comb) molecule of m
branch units of functionality 3, the coefficient C cannot be expressed in
simple analytic form; the numerical results obtained by Casassa31 are
given in Table IV.3. The coefficient C is seen to increase with increas-
ing number of branch units. More general types of comb molecules
have also been investigated,31, 32 but we do not reproduce the resul-
tant expressions here. For a single-ring molecule, Casassa33 obtained
the result,

C(ring) = 4.457 , (23.13)

which is also greater than the value for the linear chain.
We now examine the effects at large z, using a semiempirical pro-

cedure. Let A2,l, A2,b, and A2,r, be the second virial coefficients for
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TABLE IV.3. VALUES OF C FOR UNIFORM NORMAL (COMB)
MOLECULES OF m BRANCH UNITS OF FUNC-
TIONALITY 331

m C

2 3.536
3 3.753
4 3.939
5 4.100

10 4.672
20 5.293

linear, branched, and ring molecules, respectively. For given values of
n and β, we then have

A2,b/A2,l = [h0(z̄)]b/[h0(z̄)]l , (23.14)

and a similar equation for A2,r/A2,l where z̄ = z/α 3
S , as before. For

convenience, we assume the FKO,m equation for h0 and the F,m equa-
tion for αS ;

h0(z̄) =
1

2Cz̄
ln(1 + 2Cz̄) , (23.15)

α 5
S − α 3

S = Kz . (23.16)

In Fig. IV.7 are plotted the values of A2,b/A2,l and A2,r/A2,l as func-
tions of z calculated from Eqs. (23.14) to (23.16) using the values of
K and C given in Tables III.3, III.4, IV.2 and IV.3, and in Eqs. (17.4)
and (23.13). The second virial coefficient (for z > 0) is seen to be di-
minished by branching or ring formation, the effects being exaggerated
for high-molecular-weight polymers in good solvents.

23c. General Comments

In the preceding and present chapters, we have discussed in detail
the most important equilibrium properties of dilute polymer solutions,
namely the expansion factor and the second virial coefficient. All the
theories of these properties described so far are within the framework
of the two-parameter theory, and emphasis has been focused on the
dependences of the properties on the excluded-volume parameter z.
Quantitatively these theories predict different dependences on z, but
the two-parameter theory may be considered to provide a correct de-
scription of the qualitative aspects of the solution properties insofar as
it is concerned with very dilute solutions of the flexible-chain polymers
of high molecular weights of ordinary interest.

The two-parameter theory will break down for stiff chains, and
also for concentrated solutions. Some effects of chain stiffness on the
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Fig. IV.7. Ratios of the second virial coefficients for branched and ring polymers

to those for linear chains. Full curves: uniform star molecules of functionality f.

Chain curves: uniform normal (comb) molecules of m branch units of functionality

3. Broken curve : ring polymer.

expansion factor and the second virial coefficient were discussed by
Yamakawa.34 However, no available theory of α and A2 has as yet been
derived for wormlike chains. Thus our further comments are limited to
the thermodynamics of concentrated solutions. The McMillan–Mayer
theory ceases to be convenient when the fourth and higher virial co-
efficients are important. One of the possible approaches is to use the
pair correlation function familiar from the theory of simple fluids. If
the potential of mean force for solute molecules is pairwise decompos-
able (superposition approximation), for the smoothed-density model
the osmotic pressure π may be expressed in the closed form,2, 3

π = ρkT − ρ2

6

∫
S12V12

′(S12)g(S12)dS12 , (23.17)

where V12
′ = ∂V12/∂S12, and S12 is the distance between the centers

of two molecules, as before. The pair correlation function g and the
intermolecular potential V12 in Eq. (23.17) are dependent on concen-
tration. Fixman35, 36 adopted the Flory–Krigbaum potential and used
an approximate solution of the Born–Green–Yvon–Kirkwood equation
for g. A similar approach was also attempted by Yamakawa37 for ran-
dom flight chains. These theories are still within the framework of the
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two-parameter theory, and are valid for solutions up to a polymer vol-
ume fraction of about 0.1, at which concentration a particular polymer
molecule begins to overlap considerably the domain occupied by other
molecules. At higher concentrations, the ternary and higher-order clus-
ter integrals for segments become important, and the Flory–Huggins
entropy plays an important role. Thus, Fixman13 attempted to derive
a theory which reduces to the two-parameter theory at low concentra-
tions and to the Flory–Huggins theory at high concentrations, expand-
ing the local free energy of mixing in a Taylor series around the bulk
volume fraction, instead of around zero concentration as in Eq. (11.6).
However, no numerical results were obtained.

As is well known, a lattice theory is the alternative convenient
approach to the problem of the thermodynamics of concentrated so-
lutions. Extensive investigations based on this model were made in
the 1940s, and are well reviewed in the books by Flory38, Muenster,39

and Tompa.40 Subsequent investigations are very few in number.∗ We
merely note here that Kurata41, 42 developed a lattice theory which
can account for the decrease of A2 with increasing M ; early theories
failed in predicting the molecular weight dependence of A2. Some other
topics in this field, although not very recent, are the lattice theory of
solutions of stiff chains developed by Flory,43 and the simple model of
solutions of polar polymers introduced by Yamakawa et al.44

Appendix IV A. The Second Virial Coefficient for Rigid
Macromolecules

There are several features which arise in applying the McMillan–Mayer
theory to solutions of rigid macromolecules. First, since the solute
molecules are so large that the solvent may be considered a continuous
medium, the effect of averaging the intermolecular force with respect to
all coordinates of the solvent molecules disappears. Thus the superpo-
sition approximation becomes asymptotically exact;the pair potential
of mean force on solute molecules is not essentially different from the
potential energy of interaction between molecules of a gas except that
the force constants in a solution are to be modified by taking account
of the presence of the solvent molecules. Secondly, for most nonelec-
trolyte solutions, the range of the intermolecular forces is negligibly
small compared to the dimensions of the solute molecules, and thus
only the (repulsive) core part of the intermolecular potential need be
considered. Thirdly, the solute molecule has no internal-rotational free-
dom, and the integrals over the molecular distribution functions can be
evaluated exactly in many cases.

In the present problem, the second virial coefficient may be written,

∗Many papers on the cell-theory approach have recently been published, espe-
cially by Flory and his co-workers, but we omit the literatures.
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from Eq. (19.55), as

A2 = −(NAC2/2V M2)
∫

f12d(1)′d(2)′ (IV A.1)

with
f12 = exp(−V12/kT )− 1 , (IV A.2)

F1(1) = F1(2) = C , (IV A.3)

where (1)′ and (2)′ represent all translational and external-rotational
coordinates of solute molecules 1 and 2, respectively, V12 is the inter-
molecular potential depending on the relative positions and orientations
of the two molecules and hence on the molecular size and shape, and C
is a constant independent of the molecular coordinates and determined
from the normalization condition of (19.21).

We first consider rigid sphere molecules of radius S̄. If S12 is the
distance between the centers of spheres 1 and 2, V12 may be expressed
as

V12 = + ∞ for 0 ≤ S12 ≤ 2S̄

= 0 for S12 > 2S̄ . (IV A.4)

From Eqs. (IV A.1) and (IV A.4), we readily obtain (with C = 1)

A2 = (NA/2M2)
∫ 2S̄

0

(1− e−V12/kT )4πS 2
12 dS12

= 16πNAS̄3/3M2 , (IV A.5)

which are to be compared with Eqs. (20.31) and (21.17), respectively. If
vm is the volume of the solute molecule, Eq. (IV A.5) may be rewritten
as

A2 = 4NAvm/M2 . (IV A.6)

Since the volume of a spherical molecule is proportional to the molec-
ular weight M , the second virial coefficient for rigid sphere molecules
is inversely proportional to M .

We next consider rigid rod molecules of diameter d and length l,
with l much greater than d. To describe the position and direction of
rod 1, we use three Cartesian coordinates x1, y1, and z1 of one end of
the rod, and two polar angles θ1 and ϕ1. As in the case of spheres,
the potential V12 becomes infinite in the region in which overlapping
of the two molecules occurs, and vanishes elsewhere. Thus, only those
configurations are considered in which the two rods overlap, as depicted
in Fig. IV.8. Then, to specify the direction of the axis of rod 2, we use
two polar angles θ2 and ϕ2 as shown in the figure, assuming l À d. At
constant θ2 and ϕ2, these configurations will occur when the center of
rod 2 lies within the parallelepiped of volume 2dl2 sin θ2 as shown in
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Fig. IV.8. Overlapping of two rods of diameter d and length l, with l much

greater than d.

the figure. From Eqs. (IV A.1) and (19.21), we therefore have

A2 = (NA/2M2)C2

∫ π

0

∫ 2π

0

sin θ1 dθ1 dϕ1

×
∫ π

0

∫ 2π

0

(2dl2 sin θ2) sin θ2 dθ2 dϕ2 .

C

∫ π

0

∫ 2π

0

sin θ1 dθ1 dϕ1 = 1 ,

where integration over x1, y1, and z1 has been carried out to yield V .
Thus we obtain5

A2 = πNAdl2/4M2 . (IV A.7)

Since l is proportional to M at constant d, the second virial coefficient
for rigid rod molecules is independent of the molecular weight. We note
that the single-contact term of A2 for flexible chains is independent of
chain configurations, and is equivalent to the second virial coefficient
for rigid rod molecules.

Finally, we consider briefly arbitrary rigid ovaloid molecules. Ac-
cording to Isihara,45, 46 the second virial coefficient for rigid nonspher-
ical molecules may be written in the general form,

A2 = (4NAvm/M2)f , (IV A.8)

where f is a factor (always greater than unity) which represents devia-
tion from the rigid sphere behavior and depends only on the molecular
shape. When f = 1, Eq. (IV A.8) reduces to Eq. (IV A.6). Isihara has
shown how to evaluate the factor f for any rigid ovaloid molecule by the
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use of group theory and differential geometry; it has been calculated
for a number of such molecules.47, 48 Without reproducing the details,
we describe the results of interest to us. For example, for ellipsoids of
revolution f is given by

f = 1
4 + 3

16 [1 + (1− ε2)−1/2(sin−1 ε)/ε]{1 + [(1− ε2)/2ε]
× ln[(1 + ε)/(1− ε)]} , (IV A.9)

where ε is the eccentricity defined by ε2 = (l2 − d2)/l2, l and d being
the major and minor axes of the generating ellipse, respectively. At
small ε, Eq. (IV A.9) may be expanded as

f = 1 +
1
15

ε4 +
1
15

ε6 + · · · . (IV A.10)

Another example is a rod molecule, for which f is given by

f = 1
4 [1 + (l/d)(1 + d/2l)(1 + πd/2l)] . (IV A.11)

In the case l À d, Eq. (IV A.8) with (IV A.11) reduces to Eq. (IV A.7),
since vm = πd2l/4.

Appendix IV B. The Third Virial Coefficient for Rigid
Sphere Molecules

The third virial coefficient for rigid sphere molecules may be written,
from Eq. (19.56), as

A3 = −(N 2
A /3M3)

∫ ′
f12f23f13dS12dS23dS13 , (IV B.1)

where the functions fij are given by Eq. (IV A.2) and similar equations,
and the Sij are the distances between the centers of spheres i and j.
The prime indicates that integration is carried out under the condition,
S12 + S23 + S31 = 0. Equation (IV B.1) is equivalent to Eq. (22.10).

Now the integral in Eq. (IV B.1) is nonzero only for 0 ≤ S12 ≤ 2S̄,
0 ≤ S23 ≤ 2S̄, and 0 ≤ S13 ≤ 2S̄, where S̄ is the radius of the sphere.
Therefore, if S12 is fixed, the integral is nonzero when the center of
sphere 3 lies in the region overlapped by two spheres of radius 2S̄ and
concentric with spheres 1 and 2, respectively. The volume V ′ of this
region is given, from Eq. (20.36), by

V ′ = 2
3π(2S̄)3

(
1− S12

4S̄

)2(
2 +

S12

4S̄

)
. (IV B.2)

Thus, we obtain

A3 = (N 2
A /3M3)

∫ 2S̄

0

V ′4πS 2
12 dS12

= 160π2N 2
A S̄6/9M3 . (IV B.3)
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From Eqs. (IV A.5) and (IV B.3), we have

A3/A
2

2 M = 5
8 . (IV B.4)
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Chapter Five

Light Scattering
from Dilute Solutions

24. Introduction

The scattering of light by the molecules of a gas or by colloidal particles
suspended in a liquid medium has been known for many years under
the name Rayleigh scattering.1 The first application of Rayleigh scat-
tering to the study of polymer solutions was made by Debye and his
co-workers2−4 in the 1940s. Further progress was made principally by
Zimm and co-workers,5−8 and the theoretical and experimental foun-
dations were essentially complete by 1950. Measurements of light scat-
tering from dilute polymer solutions are the principal method in use
at the present time for the determination of molecular weights, second
virial coefficients, and average molecular dimensions. The object of
this chapter is to derive equations for the intensity of scattered light,
and also to describe various aspects of the utility of light-scattering
measurements in polymer solutions.

When a light beam falls upon matter, the electric field associated
with the incident light induces oscillating electric dipoles on the par-
ticles (molecules) constituting the matter. The induced oscillating
dipoles then become secondary sources of light and give rise to elec-
tromagnetic radiation, Rayleigh scattering. For the case of an ideal
gas, in which the molecules are randomly distributed, there are no par-
ticular phase relationships between the scattered waves, and the total
intensity of scattered light is simply the sum of the contributions from
the individual molecules in the system. On the other hand, for the case
of a perfect crystal, in which the particles are fixed at the points of a
perfect lattice, there occurs destructive interference between the scat-
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tered waves because of the particular phase relationships, and no light
is scattered, i.e., a perfect crystal is transparent. This is true provided
the wavelength of light is much greater than the distance between the
particles. However, this is not so for a perfect crystal when the wave-
length is of the same order of magnitude as the distance between the
particles; that is, in the scattering of x-rays there occurs constructive
interference according to Bragg’s law. A pure liquid is intermediate
between an ideal gas and a perfect crystal in that the molecular distri-
bution has some short-range order but no long-range order. Therefore,
a pure liquid is not perfectly transparent, but the intensity of scattered
light is much less than that for a gas of the same density. For the
case of a solution, there is an excess scattering from the solute particles
over that of the solvent alone. When considering the excess intensity of
scattered light, we note that at infinite dilution the situation is similar
to that of an ideal gas. If the concentration is increased, there occurs
destructive interference between the waves scattered from the different
solute particles. When the solute molecules are large, as in polymer so-
lutions, there is intramolecular destructive interference even at infinite
dilution.

As seen from the above arguments, the problem of evaluating the in-
tensities of light scattered from liquids or solutions may be approached
conveniently from two standpoints. One is the fluctuation theory ap-
proach suggested originally by Smoluchowski9 and by Einstein.10 The
fact that a perfect crystal is transparent means that no scattered light is
observed when there is no optical inhomogeneity in the region of volume
of the order of magnitude of (wavelength)3. If optical inhomogeneities
exist in such a region, light is scattered. For the case of a liquid or
solution, the optical inhomogeneities arise from the fluctuations in lo-
cal density or concentration because of the thermal Brownian motions
of the molecules. Thus, the problem is reduced to that of evaluating
the density or composition fluctuations in the fluid. This approach will
be described in Section 26. The other is the distribution function ap-
proach, which will be described in Section 27. This approach is easy
to understand : the intensity of scattered light is strongly affected by
the distribution of the scattering particles in the system, as mentioned
above, and therefore the intensity may be expressed in terms of the
molecular distribution functions.

However, both the approaches begin with an equation for the inten-
sity of light scattered by a single-small particle. In the next section, we
therefore describe some of the fundamental physics of this simplest sys-
tem and also describe the properties of a system of independent small
particles. Most of the calculations are carried out using the assumption
that the scattering particles are optically isotropic. The effects of the
optical anisotropies will be discussed in Section 28. In that section,
some other topics will also be described.
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25. Scattering by Independent
Small Isotropic Particles

We begin by discussing the radiation field around a single small isotropic
particle in a homogeneous medium of optical refractive index ñ. Sup-
pose that the incident light is plane-polarized, and that the electric
field E0 associated with the incident light at the point of location of
the particle oscillates according to the equation,

E0 = E 0
0 exp(iωt) (25.1)

with E 0
0 the amplitude, ω the angular frequency, and t the time. The

field E0 then induces an oscillating electric dipole p on the particle,

p = αE0

= p0 exp(iωt) (25.2)

with
p0 = αE 0

0 , (25.3)

where α is the polarizability of the particle, and is, by assumption, a
scalar quantity. This oscillating dipole radiates electromagnetic waves,
and the radiation electric field E and magnetic field H at the distance
r from the particle can be calculated by a simple application of elec-
tromagnetic theory. The results are (see Appendix V A)

E = −
(

ω

c̃

)2 r× (r× {p})
r3

, (25.4)

H = ñ

(
ω

c̃

)2 r× {p}
r2

, (25.5)

where c̃ is the velocity of light in a vacuum, and the curly brackets
indicate that p is to be evaluated at the retarded time (t− r/c̃′) with
c̃′ = c̃/ñ the velocity of light in the medium. Equations (25.4) and
(25.5) give the field associated with the scattered light.

Suppose, now, that the particle lies at the origin of a coordinate
system, the incident light travels along the z axis, and E0 is parallel to
the x axis (see Fig. V.1). Then E lies in the plane containing the vector
r and the x axis and is perpendicular to r, while H is perpendicular
to E and r. If θx is the angle between the vector r and x axis, the
magnitudes (real parts) of E and H are given by

E = p0

(
ω

c̃

)2 sin θx

r
cos

[
ω

(
t− r

c̃′

)]
, (25.6)

H = ñE . (25.7)

Next we consider the case for which the incident light is unpolarized
(natural light). It is then convenient to decompose E0 into the x and
y components,
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Fig. V.1. Electromagnetic field due to an oscillating electric dipole.

E 0
x = E 0

0x exp[i(ωt + δx)] ,
E 0

y = E 0
0y exp[i(ωt + δy)] . (25.8)

In the present case (unpolarized light) the amplitudes and also the
difference between the phases δx and δy vary with time irregularly, but
on the average E 0

0x = E 0
0y ≡ E 0

0 . The induced moments px and py

in the directions of the x and y axes are

px = exp0 exp[i(ωt + δx)] ,
py = eyp0 exp[i(ωt + δy)] , (25.9)

where ex and ey are the unit vectors, and p0 = αE 0
0 . If E1 and H1

are the contributions of px to the electric and magnetic radiation fields
at r, respectively, and E2 and H2 are those of py, the total radiation
fields at r are

E = E1 + E2 ,

H = H1 + H2 , (25.10)

where E1 and H1 are given by Eqs. (25.4) and (25.5) with {px} in
place of {p}, respectively, and E2 and H2 are also given by the same
equations with {py} in place of {p}. The equations for E1 and H1 are
the same as Eqs. (25.6) and (25.7), respectively, except that the cosine
factor involves the phase δx, and E2 and H2 are obtained from E1 and
H1 by replacing δx and θx by δy and θy, respectively, where θy is the
angle between r and the y axis. We note that Ei and Hi, and also E
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and H, are perpendicular to each other, but this is not always the case
for E1 and E2, and for H1 and H2.

We now derive equations for the intensity of the scattered light. The
intensity of an electromagnetic wave is defined as the time average of
the energy per unit time which crosses a unit area perpendicular to the
direction of the propagation of the electromagnetic wave. The energy
flow across an infinitesimal area dA per unit time is equal to S · dA
with S the Poynting vector defined by

S =
c̃

4π
(E×H) . (25.11)

The intensity is therefore equal to S̄;

S̄ =
ñc̃

4π
E2 ≡ ñc̃

8π
I , (25.12)

where we have used Eq. (25.7), and the bar indicates the time average.
Thus, we may define the intensity by the quantity I in Eq. (25.12)
instead of S̄; that is,

I = 2E2 = 2(E 2
x + E 2

y ) , (25.13)

where Ex and Ey are the x and y components of E, and are to be
written in the cosine representation. Recalling that cos2(ωt + δ) = 1

2 ,
we have

I = E 2
0x + E 2

0y

= |Ex|2 + |Ey|2 , (25.14)

where E0x = |Ex| and E0y = |Ey| are the amplitudes of Ex and Ey,
respectively, and the second line of Eqs. (25.14) is useful when E is
written in the complex representation. We note that Ix = E 2

0x and
Iy = E 2

0y are the intensities in the directions of the x and y axes,
respectively.

For the case of plane-polarized incident light, from Eqs. (25.6) and
(25.14) we obtain for the intensity of scattered light.

I = p 2
0

(
ω

c̃

)4 sin2 θx

r2
. (25.15)

Since the intensity I0 of the incident light is I0 = (E 0
0 )2 = p 2

0 /α2, we
find

I

I0
=

16π4α2

λ4r2
sin2 θx , (25.16)

where we have used the relation ω/c̃ = 2π/λ with λ the wavelength
of the incident light (and also of the scattered light) in vacuum. In
this case, the scattered light is also plane-polarized. When r lies in the
yz plane, Eq. (25.15) with sin θx = 1 gives the intensity of scattered
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light in the direction of the x axis, and the intensity in the direction
perpendicular to this is zero.

For the case of unpolarized incident light, the intensity of scattered
light may be written, from Eqs. (25.10) and (25.13), as

I = 2(E1 + E2)2

= 2(E 2
1 + E 2

2 + 2E1 ·E2) . (25.17)

Since there is no correlation between E1 and E2, the average of E1 ·E2,
vanishes, and we obtain

I = E 2
01 + E 2

02

= p 2
0

(
ω

c̃

)4 sin2 θx + sin2 θy

r2

= p 2
0

(
ω

c̃

)4 1 + cos2 θ

r2
, (25.18)

where θ is the angle between r and the z axis, i.e., the angle between
the incident and scattered rays. The intensity of the incident light is
I0 = (E 0

0x )2 + (E 0
0y )2 = 2(E 0

0 )2 = 2p 2
0 /α2, and we therefore have

I

I0
=

8π4α2

λ4r2
(1 + cos2 θ) . (25.19)

In particular, when r lies in the yz plane, E1 and E2 are perpendicular
to each other, E1 being parallel to the x axis. The term unity of the
factor (1 + cos2 θ) corresponds to the intensity of E1, while the term
cos2 θ corresponds to the intensity of E2.

We now proceed to discuss a system of volume V containing N
independent identical scattering particles. Since Eq. (25.16) for the
case of polarized incident light is obtained from Eq. (25.19) for the
case of unpolarized incident light by replacing the factor (1+cos2 θ) by
2 sin2 θx, the following discussion is confined to the latter case. Then
the total intensity I of light scattering from the system is

I

I0
=

8π4α2N

λ4r2
(1 + cos2 θ) . (25.20)

Defining the Rayleigh ratio Rθ (experimentally determinable) by

Rθ =
r2I

V I0(1 + cos2 θ)
, (25.21)

we have

Rθ =
8π4α2

λ4
ρ (25.22)

with ρ = N/V . Thus the problem remaining is to express α in terms
of a measurable quantity. For the case of solution, the Rθ given by
Eq. (25.22) is the excess intensity over that of the solvent alone, with ρ
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the number density of the solute, and α the excess polarizability. Then,
α may be related to the dielectric constants ε and ε0 of the solution
and solvent by the equation,

ε− ε0 = 4πρα . (25.23)

For a dilute solution, Eq. (25.23) may be rewritten as

α =
1
4π

(
∂ε

∂ρ

)

0

=
M

2πNA
ñ0

(
∂ñ

∂c

)

0

, (25.24)

where we have used the relations ε = ñ2 and ρ = NAc/M with NA

the Avogadro number, M the molecular weight of the solute, and c the
concentration in grams per unit volume. Note that for the case of a
gas ε0 = ñ0 = 1. Substitution of Eq. (25.24) into Eq. (25.22) leads to

Rθ = KMc (25.25)

with

K =
2π2ñ 2

0

NAλ4

(
∂ñ

∂c

)2

0

. (25.26)

The constant K is determinable experimentally.
In light-scattering experiments, the turbidity τ is sometimes mea-

sured instead of Rθ. Suppose that the intensity I0 of light decreases, as
a result of scattering, by the amount −∆I, in traveling the distance ∆l
through a medium containing scattering particles. Then the turbidity
τ of the system is defined by

∆I = −τI0∆l . (25.27)

Consider now an area ∆A perpendicular to the direction of propagation
of the light in the medium. The principle of conservation of energy
requires that the average energy (per unit time) flowing into a domain
of volume V = ∆A∆l across ∆A be equal to the average energy flowing
out of the domain; that is,

I0∆A = (I0 + ∆I)∆A + 2π

∫ π

0

Ir2 sin θdθ , (25.28)

where the second term on the right-hand side represents the average
energy of radiation in all directions, and I in the integrand is the in-
tensity of scattered light. From Eqs. (25.20), (25.27), and (25.28), we
obtain for the turbidity

τ =
128π5α2

3λ4
ρ , (25.29)

or
τ = HMc (25.30)

with

H =
32π3ñ 2

0

3NAλ4

(
∂ñ

∂c

)2

0

. (25.31)

Note that the constant H is also determinable experimentally, and
that for a solution the τ given by Eq. (25.29) or (25.30) is the excess
turbidity.
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26. Fluctuation Theory

Consider a region (element) of volume V of a liquid of solution which
is small compared to the wavelength of the incident light, but which
is large enough to contain many molecules. (V is not to be confused
with the volume of the whole scattering system.) The fluctuation in
the number of molecules in the subvolume just defined will cause the
dielectric constant ε therein to fluctuate about its mean value 〈ε〉. At
any instant, any particular region may be considered to be a small
particle with (excess) dielectric constant ∆ε = ε−〈ε〉 which is immersed
in the surrounding homogeneous medium of dielectric constant 〈ε〉. The
instantaneous excess polarizability, ∆α = α−〈α〉, of the region is given
by

∆α =
V

4π
∆ε =

V

2π
ñ∆ñ . (26.1)

Since the inhomogeneities are randomly distributed throughout the
whole system, the total intensity of scattered light is the sum of the
contributions from each of the regions. The Rayleigh ratio is then ob-
tained from Eq. (25.22) by replacing α2 and ρ by (∆α)2 and V −1,
respectively. The time average may be replaced by the ensemble av-
erage, and we therefore obtain in the basic equation for the Rayleigh
ratio,

R ∗
θ =

2π2ñ2V

λ4
〈(∆ñ)2〉 , (26.2)

where the asterisk indicates that R ∗
θ includes the scattering from the

pure solvent. Similarly, the turbidity may be expressed, from Eq.
(25.29), in the form,

τ ∗ =
32π3ñ2V

3λ4
〈(∆ñ)2〉 . (26.3)

To use Eq. (26.2) or (26.3) we must evaluate 〈(∆ñ)2〉. In the next
subsection, we discuss the fluctuation in ñ arising from the density
and composition fluctuations in a multicomponent system. The gen-
eral theory is then applied to special cases of interest, such as a two-
component system, heterogeneous polymers in a single solvent, and a
single polymer in a mixed solvent. We note that Eqs. (26.2) and (26.3)
cannot account for intramolecular destructive interferences and,strictly,
Eq. (26.2) is valid only at θ = 0. However, effects of thermodynamic
interactions between molecules can be taken into account.

26a. General Theory

The theory of light scattering arising from density and composition
fluctuations in multicomponent systems was developed by Brinkman
and Hermans,11 by Kirkwood and Goldberg,12 and by Stockmayer.13

Kirkwood and Goldberg, and also Brinkman and Hermans, used the
grand canonical ensemble to evaluate these fluctuations. Alternatively,
we may use a “hybrid” ensemble, as shown by Stockmayer. Since the
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grand canonical ensemble approach is discussed in detail in the book
by Hill,14 the hybrid ensemble approach is described here.

The system to be considered is of volume V at constant temperature
T and pressure p containing a constant number N0 of molecules of
species 0. The energy, the volume, and the numbers N1, N2, . . ., Nr

of molecules of the other r species present, 1, 2, . . ., r may fluctuate
about their mean values 〈E〉, 〈V 〉, 〈N1〉, . . ., 〈Nr〉. The independent
thermodynamic variables are then T , p, N0, and the chemical potentials
µ1, µ2, . . ., µr. If we use the symbols N = N0, N1, . . ., Nr, N′ = N1,
. . ., Nr, and µ′ = µ1, . . ., µr, the partition function Γ(T, p, N0, µ

′) for
the hybrid ensemble, a collection of the systems just described, is given
by

Γ(T, p, N0, µ
′) =

∑

V

∑

N′≥0

e−pV/kT eN′·µ′/kT Q(T, V,N) , (26.4)

where Q is the canonical ensemble partition function. Γ is also related
to the thermodynamic function N0µ0 for the variables T, p, N0 and µ′

by the equation,
Γ(T, p,N0,µ

′) = e−N0µ0/kT . (26.5)

The probability P (V,N′;T, p,N0,µ
′) that the system has exactly the

volume V and contains exactly the number of molecules N′ for given
T , p, N0, and µ′ is

P (V,N′) = Γ−1 exp

[(
−pV +

r∑

i=1

Niµi −A

)/
kT

]
, (26.6)

where A = −kT ln Q is the Helmholtz free energy in the canonical
ensemble for T , V , and N.

We now derive the fluctuation distribution function. We recall that
except for critical phases, fluctuations are so small that the mean values
are also the most probable values and a Gaussian distribution about the
most probable values may be used. We therefore expand ln P (V,N′)
about 〈V 〉, 〈N1〉, . . ., 〈Nr〉, and obtain (with neglect of terms higher
than quadratic)

P (V,N′) = C exp(−ϕ/kT ) (26.7)

with

ϕ =
1
2

(
∂2A

∂V 2

)

T,N

(∆V )2 +
r∑

i=1

(
∂2A

∂V ∂Ni

)

T,V,Nk

∆V ∆Ni

+
1
2

r∑

i=1

r∑

j=1

(
∂2A

∂Ni∂Nj

)

T,V,Nk

∆Ni∆Nj , (26.8)

where C is the normalizing constant, ∆V = V − 〈V 〉, and ∆Ni =
Ni − 〈Ni〉. Note that linear terms drop out since ln P has a maximum
at 〈V 〉, 〈N1〉, . . ., 〈Nr〉, and that the derivatives are to be evaluated at
〈V 〉, 〈N1〉, . . ., 〈Nr〉.



200 LIGHT SCATTERING FROM DILUTE SOLUTIONS

From thermodynamics, we have
(

∂2A

∂V 2

)

T,N

= −
(

∂p

∂V

)

T,N

=
1

κ〈V 〉 , (26.9)

(
∂2A

∂V ∂Ni

)

T,V,Nk

= −
(

∂p

∂Ni

)

T,V,Nk

=
(∂V/∂Ni)T,p,Nk

(∂V/∂p)T,N
= − Vi

κ〈V 〉 ,

(26.10)
where Vi is the partial molecular volume of species i, and κ is the
isothermal compressibility defined by

κ = − 1
〈V 〉

(
∂V

∂p

)

T,N

. (26.11)

Further, we may use the relations
(

∂2A

∂Ni∂Nj

)

T,V,Nk

=
(

∂µi

∂Nj

)

T,V,Nk

=
(

∂µj

∂Ni

)

T,V,Nk

=
(

∂µi

∂p

)

T,N

(
∂p

∂Nj

)

T,V,Nk

+
(

∂µi

∂Nj

)

T,p,Nk

. (26.12)

Using Eq. (26.10) for (∂p/∂Nj)T,V,Nk
and

(
∂µi

∂p

)

T,N

= Vi , (26.13)

Eq. (26.12) may be rewritten as
(

∂2A

∂Ni∂Nj

)

T,V,Nk

=
ViVj

κ〈V 〉 +
Mj

M0N0

(
∂µi

∂mj

)

T,p,mk

, (26.14)

where we have introduced concentrations of species i,

mi = MiNi/M0N0 (26.15)

with Mi the molecular weight of species i, as was done by Kirkwood
and Goldberg and by Stockmayer. We note that the composition fluc-
tuation cannot be simply treated with concentrations in conventional
units (g/cc). Let us introduce the reduced variables,

ξ = −∆V

〈V 〉 +
r∑

i=1

Vi∆Ni

〈V 〉 , (26.16)

xi =
∆Ni

〈Ni〉 =
∆mi

〈mi〉 (i = 1, . . . , r) . (26.17)

Substitution of Eqs. (26.9), (26.10), and (26.14) into Eq. (26.8) then
leads to

ϕ =
V

2κ
ξ2 +

M0N0

2

r∑

i=1

r∑

j=1

mimj

Mi

(
∂µi

∂mj

)

T,p,mk

xixj , (26.18)
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where we have replaced 〈V 〉 and 〈mj〉 by V and mj , respectively, and it
is to be understood that V and mi in Eq. (26.18) are thermodynamic
quantities. The physical meaning of the variable ξ is easily seen as
follows. From thermodynamics, we have

κV ∆p = −∆V +
r∑

i=1

Vi∆Ni (26.19)

as constant T and N0. From Eqs. (26.16) and (26.19), we find ξ = κ∆p,
where ∆p is the change in pressure of the system at constant T and
N0 which would accompany the variations ∆V , ∆N1, . . ., ∆Nr, if the
pressure were not held fixed.

Having changed independent variables from V , N1, . . ., Nr, or ∆V ,
∆N1, . . ., ∆Nr, to ξ, x1, . . ., xr, the fluctuation distribution function
now becomes

P (ξ, x1, . . . , xr) = C exp
(
− V

2κkT
ξ2 − M0N0

2

r∑

i=1

r∑

j=1

ψijxixj

)
,

(26.20)
where

ψij =
mimj

MikT

(
∂µi

∂mj

)

T,p,mk

= ψji . (26.21)

From Eq. (26.20), we can readily deduce that

〈ξxi〉 = 0 . (26.22)

In order to evaluate the averages 〈ξ2〉 and 〈xixj〉, we must first de-
termine the normalizing constant C. To do this, we transform the
coordinates x1, . . ., xr into ξ1, . . ., ξr with an orthogonal matrix Q;
that is, x = Qξ and Q−1ψQ = Λ, where ψ is the r × r symmetric
matrix with elements ψij , and Λ is a diagonal matrix (see Appendix II
B). Equation (26.20) then becomes

P = C exp
(
− V

2κkT
ξ2 − M0N0

2

r∑

i=1

λiξ
2

i

)
, (26.23)

where the λi
′s are the diagonal elements of Λ. Integration of P over

ξ, ξ1, . . ., ξr from −∞ to +∞ must give unity, and we therefore find

C =
[
V (M0N0/2)r|ψ|

2πr+1κkT

]1/2

, (26.24)

where |ψ| is the determinant of ψ. From Eq. (26.23) with (26.24), we
readily obtain

〈ξ2〉 =
κkT

V
. (26.25)

Further, recalling that

xixj =
∑

k

∑

l

QikQjlξkξl
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with Qij the elements of Q, we obtain

〈xixj〉 =
∑

k

QikQjk〈ξ 2
k 〉 =

1
M0N0

∑

k

QikQjk

λk
. (26.26)

The sum in Eq. (26.26) may be rewritten as

∑

k

QikQjk

λk
= (QΛ−1QT )ij

= (ψ−1)ij = ψij |ψ|−1 (26.27)

with ψij the cofactor of the element ψij of ψ. We therefore have

〈xixj〉 =
ψij

M0N0|ψ| . (26.28)

We now consider the meaning of 〈ξ2〉. In particular, at constant
composition, we have ∆Ni = 0 for i = 1, . . ., r since N0 is fixed in the
hybrid ensemble. Equation (26.16) then reduces to

ξ = −∆V

〈V 〉 . (26.29)

Recalling that−∆V/〈V 〉 = ∆ρ/〈ρ〉 with ρ = 〈N〉/V and N =
∑r

i=0 Ni,
we obtain from Eq. (26.29)

〈ξ2〉 = 〈(∆ρ)2〉/〈ρ〉2 . (26.30)

Thus 〈ξ2〉 represents the density fluctuation at constant composition.
Note that the quantity κkT/V of (26.25) is just the density fluctuation
in a one-component system. From Eq. (26.17), it is easily seen that
〈xixj〉 represents the composition or concentration fluctuation.

The fluctuation in optical refractive index ñ may be expressed in
terms of 〈ξ2〉 and 〈xixj〉. In the hybrid ensemble, the variation in ñ is

∆ñ =
(

∂ñ

∂V

)

T,N

∆V +
r∑

i=1

(
∂ñ

∂Ni

)

T,V,Nk

∆Ni . (26.31)

From thermodynamics, we have
(

∂ñ

∂V

)

T,N

=
(

∂ñ

∂p

)

T,m

(
∂p

∂V

)

T,N

= − 1
κV

(
∂ñ

∂p

)

T,m

, (26.32)

(
∂ñ

∂Ni

)

T,V,Nk

=
(

∂ñ

∂p

)

T,m

(
∂p

∂Ni

)

T,V,Nk

+
(

∂ñ

∂Ni

)

T,p,Nk

=
Vi

κV

(
∂ñ

∂p

)

T,m

+
Mi

M0N0

(
∂ñ

∂mi

)

T,p,mk

, (26.33)
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where we have replaced 〈V 〉 by V as before. Introducing the reduced
variables ξ and xi, we obtain, from Eqs. (26.31) to (26.33),

〈(∆ñ)2〉 =
〈ξ2〉
κ2

(
∂ñ

∂p

)2

T,m

+
∑

i

∑

j

mimj〈xixj〉
(

∂ñ

∂mi

)

T,p,mk

(
∂ñ

∂mj

)

T,p,mk

, (26.34)

where we have used Eq. (26.22).
Thus, substituting Eq. (26.34) with (26.25) and (26.28) into Eq.

(26.2), we obtain for the Rayleigh ratio

R ∗
θ = Rθ,0 + Rθ (26.35)

with

Rθ,0 =
2π2ñ2kT

λ4κ

(
∂ñ

∂p

)2

T,m

, (26.36)

Rθ =
2π2ñ2

NAλ4c0

r∑

i=1

r∑

j=1

mimj
ψij

|ψ|
(

∂ñ

∂mi

)

T,p,mk

(
∂ñ

∂mj

)

T,p,mk

, (26.37)

where c0 is the concentration of species 0 in g/cc, c0 = M0N0/NAV .
Rθ,0 is the scattering arising from the density fluctuation, while Rθ is
the (excess) scattering arising from the concentration fluctuation. The
corresponding turbidities τ0 and τ can be written down by replacing
the factor 2π2 in Rθ,0 and Rθ by 32π3/3. Necessarily the results are
exactly the same as those obtained by Kirkwood and Goldberg using
the grand canonical ensemble.

In the study of light scattering from polymer solutions, our atten-
tion is directed to only the excess scattering Rθ. It is then convenient
to expand the excess chemical potentials in a power series in the con-
centrations mi; that is,

µi = µ 0
i (T, p) + kT ln γi mi (i = 1, . . . , r) (26.38)

with

ln γi = Mi

( r∑

j=1

B2,ijmj +
r∑

j=1

r∑

k=1

B3,ijkmjmk + · · ·
)

, (26.39)

so that γi is an activity coefficient such that γi → 1 as m1, . . ., mr → 0.
For a two-component system, a useful result can readily be derived

from Eq. (26.37). Let species 0 and 1 be a solvent and a solute, respec-
tively. For this case, ψ11|ψ|−1 is equal to ψ −1

11 , and Eq. (26.37) reduces
to

Rθ =
2π2ñ2M1kT

NAλ4c0

(
∂ñ

∂m1

)2

T,p

/(
∂µ1

∂m1

)

T,p

. (26.40)

From the Gibbs–Duhem equation, we have
(

∂µ1

∂m1

)

T,p

= −N0

N1

(
∂µ0

∂m1

)

T,p

. (26.41)
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Furthermore, if we denote the solute concentration in g/cc by c =
M1N1/NAV , the differential operator is transformed by

(
∂

∂m1

)

T,p

=
c0V0N0

V

(
∂

∂c

)

T,p

. (26.42)

Now using Eq. (18.2)

µ0 − µ 0
0 = −V 0

0 π , (26.43)

we have
(

∂µ0

∂c

)

T,p

= −V 0
0

∂π

∂c

= −V 0
0 RT

(
1
M

+ 2A2c + 3A3c
2 + · · ·

)
, (26.44)

where we have used Eq. (18.3), and M is the molecular weight of the
solute(with omission of the subscript 1). For dilute solutions, V0 ' V 0

0

and ñ ' ñ0, and Eq. (26.40) therefore becomes

Kc

Rθ
=

1
M

+ 2A2c + 3A3c
2 + · · · , (26.45)

where K is given by Eq. (25.26). At infinite dilution, Eq. (26.45) re-
duces to Eq. (26.25). Equation (26.45) is strictly valid at θ = 0, as
mentioned already, and it is seen that the solute molecular weight M
and the second virial coefficient A2 may be determined from the ob-
served values of Kc/Rθ plotted against c.

26b. Heterogeneous Polymers

We consider a solution containing a single solvent (species 0) and poly-
mer species i (≥ 1) differing only in molecular weight. From Eqs. (26.21)
and (26.38) with (26.39), ψij may be expanded as

ψij =
mj

Mi
(δij + MiB2,ijmi + · · ·) (26.46)

with δij the Kronecker delta. In order to expand the quantity ψij |ψ|−1

in Eq. (26.37) in powers of m1, m2, . . ., we expand the determinant |ψ|
in the form,

|ψ| =
(∏

i

ψij

)(
1−

∑

i<j

ψijψji

ψiiψjj
+ · · ·

)
. (26.47)

Recalling that the cofactor of ψij is equal to ψij = ∂|ψ|/∂ψij , we obtain,
from Eqs. (26.46) and (26.47),

ψij

|ψ| =
Mi

mi
δij −MiMjB2,ij + · · · , (26.48)
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where B2,ij = B2,ji, since ψij = ψji and ψij = ψji. Now, the refrac-
tive increment is independent of the polymer molecular weight, and we
therefore assume that(

∂ñ

∂mi

)

T,p,mk

=
(

∂ñ

∂m

)

T,p

for all i (26.49)

with
m =

∑

i

mi . (26.50)

Substitution of Eqs. (26.48) and (26.49) into Eq. (26.37) leads to

Rθ =
2π2ñ2

NAλ4c0

(
∂ñ

∂m

)2(∑

i

Mimi −
∑

i

∑

j

MiMjB2,ijmimj + · · ·
)

=
2π2ñ2

NAλ4c0

(
∂ñ

∂m

)2(
〈M〉wm−

∑

i

∑

j

MiMjB2,ijwiwjm
2 + · · ·

)
,

(26.51)

where 〈M〉w is the weight-average molecular weight of the polymer de-
fined by

〈M〉w =
∑

i

M 2
i Ni/

∑

i

MiNi , (26.52)

and wi(= mi/m) is the weight fraction of polymer species i (in the
whole polymer) and is also given by Eq. (23.5).

Let us now convert the concentration m to the concentration c in
conventional units, c being given by Eqs. (23.1). If the partial specific
volume v̄ of the polymer is assumed to be independent of Mi, the
relations

m =
c

c0
=

NAV0

M0

c

1− v̄c
, (26.53)

∂

∂m
=

c0N0V0

V

∂

∂c
(26.54)

are valid. Equation (26.51) may then be rewritten as

Rθ

K
= 〈M〉wc−2

∑

i

∑

j

MiMj

[
v̄0

2
B2,ij +

v̄

2

(
1

Mi
+

1
Mj

)]
wiwjc

2+· · · ,

(26.55)
where v̄0(= NAV0/M0) is the partial specific volume of the solvent. In
order to compare Eq. (26.55) with the virial expansion for the osmotic
pressure π, we must expand π in terms of B2,ij . From the Gibbs–
Duhem equation with Eqs. (26.38) and (26.39), we have

−N0dµ0 = kT
∑

i

Nid ln γimi , (26.56)

or

−dµ0 = kTM0

(∑

i

1
Mi

dmi +
∑

i

∑

j

B2,ijmidmj + · · ·
)

. (26.57)
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Integration over m1, m2, . . . gives

π = −µ0 − µ 0
0

V 0
0

=
RTM0

NAV 0
0

(∑

i

1
Mi

mi +
1
2

∑

i

∑

j

B2,ijmimj + · · ·
)

=
RTM0

NAV0

(
1

〈M〉n m +
1
2

∑

i

∑

j

B2,ijwiwjm
2 + · · ·

)
, (26.58)

where we have replaced V 0
0 by V0. Equation (26.58) may be rewritten

as

π

RT
=

1
〈M〉n c +

∑

i

∑

j

[
v̄0

2
B2,ij +

v̄

2

(
1

Mi
+

1
Mj

)]
wiwjc

2 + · · · .

(26.59)
On the other hand, we have, from Eqs. (23.2) and (23.7),

π

RT
=

1
〈M〉n c +

∑

i

∑

j

Aijwiwjc
2 + · · · . (26.60)

Comparing Eq. (26.59) with Eq. (26.60), we obtain the relation between
Aij and B2,ij ,

Aij =
v̄0

2
B2,ij +

v̄

2

(
1

Mi
+

1
Mj

)
. (26.61)

Thus, substitution of Eq. (26.61) into Eq. (26.55) leads to

Kc

Rθ
=

1
〈M〉w + 2A2c + · · · , (26.62)

where
A2 =

1
〈M〉 2

w

∑

i

∑

j

MiMjAijwiwj . (26.63)

Equation (26.63) is to compared with Eq. (23.7). For heterogeneous
polymers, the osmotic and light-scattering second virial coefficients, A2,
are seen to differ from each other. For a monodisperse system, both are,
of course, the same, and Eq. (26.62) reduces to Eq. (26.45). Further
analysis of the second virial coefficients of heterogeneous polymers will
be deferred to Section 27d.

26c. Mixed-Solvent Systems

We consider a solution containing two solvents (species 0 and 1) and a
single polymer (species 2). In this case, Rθ may be written in the form,

Rθ =
2π2ñ2

NAλ4c0|ψ|

[(
∂ñ

∂m1

)2

m 2
1 ψ22 − 2

(
∂ñ

∂m1

)(
∂ñ

∂m2

)
m1m2ψ12

+
(

∂ñ

∂m2

)2

m 2
2 ψ11

]
, (26.64)
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Fig. V.2. Hc2/τ ′ as a function of concentration c2 of polystyrene in benzene–

methanol mixtures.3 The number attached to each curve indicates the concen-

tration (%) of methanol in the mixed solvent.

where we have abbreviated (∂ñ/∂mi)T,p,mj to ∂ñ/∂mi. From Eqs. (26.21)
and (26.38) with (26.39), ψij may be expanded in the form

ψij =
mj

Mi

(
δij + MiB2,ijmi + 2Mi

2∑

k=1

B3,ijkmimk + · · ·
)

, (26.65)

where we have used the symmetry property that permutation of the
indices i, j, k, does not alter the value of B3,ijk. Suppose now that Rθ

becomes R 0
θ as m2 goes to zero at constant m1. Then the quantity

Rθ
′ ≡ Rθ−R 0

θ represents the excess scattering over that of the mixed
solvent of composition m1. After a tedious calculation, we obtain for
Rθ

′
Kmm2

Rθ
′ =

1
M2,ap

+ 2B2,apm2 + · · · , (26.66)

where

Km =
2π2ñ2

NAλ4c0

(
∂ñ

∂m2

)2

, (26.67)

M2,ap = M2(1− 2γmM1B2,12m1 + · · ·) , (26.68)
B2,ap = 1

2B2,22 + [(1 + 2γmM1M
−1

2 )B3,122

− 1
2M1B

2
2,12 + γmM1B2,12B2,22]m1 + · · · , (26.69)
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γm =
(

∂ñ

∂m1

)/(
∂ñ

∂m2

)
. (26.70)

We do not here convert mi to ci, since the distribution function theory
(Section 27e) gives the equivalent of Eq. (26.66) written in terms of the
c-concentration units.

From Eqs. (26.66) and (26.68), the intercept M −1
2,ap of a plot of

Kmm2/Rθ
′ against m2 is seen to depend on the composition of the

mixed solvent unless γm = 0, and not to give the true molecular weight
M2 of the polymer. Thus the quantity M2,ap is called the apparent
molecular weight. In addition, one-half of the slope of the same plot,
B2,ap, is not the true second virial coefficient (in the m-concentration
units) for polymer molecules in the mixed solvent, and is called the ap-
parent second virial coefficient. For illustrative purposes, in Fig V.2 are
shown the turbidity data of Ewart et al.3 on solutions of polystyrene
in benzene-methanol mixtures, where the c-concentration scale is used,
and methanol is assumed to be species 1. An analysis of the data
by means of Eqs. (26.68) to (26.70) yields some information concern-
ing thermodynamic interactions. For example, the values of B2,12 and
B2,22 estimated by Kirkwood and Goldberg12 for this system are the
following: B2,12 = 3.3 × 10−2 and B2,22 = 9.9 × 10−4. The positive
value of the coefficient B2,12 for polystyrene and methanol means that a
polystyrene molecule exhibits a preference for benzene molecules in its
statistical environment. This is consistent with the fact that benzene
is a good solvent for polystyrene, but methanol is a nonsolvent.

We now consider the problem of determining the true molecular
weight of the polymer and the second virial coefficient from light-
scattering measurements in mixed-solvent systems. Suppose that there
is a membrane permeable to species 0 and 1 but not to species 2, and
two solutions of concentrations (c1, c2) and (c′1, 0), or (m1,m2) and
(m′

1, 0), are in equilibrium with each other separated by the membrane.
The concentration of species 1 on one side is different from that on the
other, but the chemical potentials µ0 and µ1 of species 0 and 1 have
the same values in the two solutions, respectively. From the McMillan–
Mayer theory (Section 19), the pressure difference p(c1, c2) − p(c′1, 0),
i.e., the osmotic pressure π(c1, c2|c′1, 0), may then be expanded in the
form

π(c1, c2|c1
′, 0) = RT

[
1

M2
c2 + A2,22(c1

′)c 2
2 + · · ·

]
, (26.71)

where A2,22(c1
′) is the second virial coefficient for polymer molecules in

the mixed solvent, and may also be defined in terms of the distribution
functions for polymer molecules at concentrations (c1

′, 0). We antic-
ipate that the quantities M2 and A2,22(c1

′) may be determined from
light-scattering measurements if we study solutions of concentrations
(c1, c2) at constant chemical potential µ1. This method was suggested
by Casassa and Eisenberg,15−17 and is called the “dialysis”technique.

In order to demonstrate the above statement, we rewrite Eq. (26.64)
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as

Rθ

K ′ =
1

c0(ψ22 − ψ 2
12 /ψ11)

[
m2

(
∂ñ

∂m2

)
−m1

(
∂ñ

∂m1

)
ψ12

ψ11

]2

+
(

∂ñ

∂m1

)2
m 2

1

c0ψ11
(26.72)

with

K ′ =
2π2ñ2

NAλ4
. (26.73)

Let us now examine the thermodynamic properties of the solution with
concentration (m1,m2). Since V dπ = V dp = N2dµ2 at constant T , µ0,
and µ1, we have

V

N2

(
∂π

∂m2

)

T,µ1

=
(

∂µ2

∂m2

)

T,µ0,µ1

. (26.74)

We write the chemical potentials µi(i = 1, 2) as functions of m1, m2,
and p; that is

dµi =
(

∂µi

∂m1

)

T,p,m2

dm1 +
(

∂µi

∂m2

)

T,p,m1

dm2 + Vidp . (26.75)

We obtain, from Eq. (26.75) with i = 2,

(
∂µ2

∂m2

)

T,µ0,µ1

=
(

∂µ2

∂m1

)

T,p,m2

(
∂m1

∂m2

)

T,µ0,µ1

+
(

∂µ2

∂m2

)

T,p,m1

+ V2

(
∂π

∂m2

)

T,µ1

,(26.76)

and from Eq. (26.75) with i = 1,

(
∂µ1

∂m1

)

T,p,m2

(
∂m1

∂m2

)

T,µ0,µ1

= −
(

∂µ1

∂m2

)

T,p,m1

− V1

(
∂π

∂m2

)

T,µ1

,

(26.77)(
∂m1

∂m2

)

T,p,µ1

= −
(

∂µ1

∂m2

)

T,p,m1

/(
∂µ1

∂m1

)

T,p,m2

. (26.78)

Since dV = V1dN1 +V2dN2 at constant T and p (N0 is fixed as before),
we have

V ∗
2 ≡

(
∂V

∂N2

)

T,p,µ1

= V2 +
V1M2

M1

(
∂m1

∂m2

)

T,p,µ1

= V2 − V1M2

M1

(
∂µ1

∂m2

)

T,p,m1

/(
∂µ1

∂m1

)

T,p,m2

,

(26.79)
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where we have used Eq. (26.78) in obtaining the second line. Substi-
tuting Eqs. (26.76), (26.77), and (26.79) with (26.21) into Eq. (26.74),
we obtain

c0

(
ψ22 − ψ 2

12

ψ11

)
=

m2(1− V ∗
2 ρ2)

RT

(
∂π

∂m2

)

T,µ1

(26.80)

with ρ2 = N2/V . Further, we write the refractive index ñ as a function
of m1 and m2,

dñ =
(

∂ñ

∂m1

)

T,p,m2

dm1 +
(

∂ñ

∂m2

)

T,p,m1

dm2 , (26.81)

and obtain

m2

(
∂ñ

∂m2

)

T,p,µ1

= m2

(
∂ñ

∂m2

)

T,p,m1

−m1

(
∂ñ

∂m1

)

T,p,m2

ψ12

ψ11
, (26.82)

where we have used Eqs. (26.21) and (26.78).
Now, if Rθ approaches R 0

θ as m2 becomes zero at constant T , p,
and µ1, the quantity Rθ − R 0

θ ≡ R ∗
θ represents the excess scattering

over that of the mixed solvent of composition m1
′. For solutions dilute

with respect to the polymer the refractive index and the last term on
the right-hand side of Eq. (26.72) may be assumed to be independent
of m2. Substitution of Eqs. (26.80) and (26.82) into Eq. (26.72) then
leads to

R ∗
θ

K ′ =
(

∂ñ

∂m2

)2

T,p,µ1

(
∂π

∂m2

)−1

T,µ1

RTm2

1− V ∗
2 ρ2

. (26.83)

We now convert m2 to c2 by the use of the relation, m2 = c2/c0 =
NAV c2/M0N0 and

(
∂

∂m2

)

T,p,µ1

= c0(1− V ∗
2 ρ2)

(
∂

∂c2

)

T,p,µ1

. (26.84)

The result is
K∗c2

R ∗
θ

=
1

M2
+ 2A2,22(c

′
1 )c2 + · · · , (26.85)

where we have used Eq. (26.71), and K∗ is defined by

K∗ =
2π2ñ2

NAλ4

(
∂ñ

∂c2

)2

T,p,µ1

. (26.86)

Equation (26.85) with (26.86) implies that the equation for a three-
component system is formally identical with that for a two-component
system when the chemical potential of species 1 is kept constant; it
enables us to determine M2 and A2,22(c1

′). The theory may easily
be extended to a multicomponent system containing two or more “dif-
fusible ”species. In particular, the dialysis technique is useful in light-
scattering studies of polyelectrolyte solutions.16, 18
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Fig. V.3. Paths of light scattered from two different scattering units.

27. Distribution Function Theory

The fluctuation theory of light scattering is valid only at zero scat-
tering angle or, strictly, for a system of small scattering particles. In
order to discuss the effect of intramolecular destructive interference in
a system of large molecules, we must return to the distribution function
approach.

Consider first a localized system of volume V containing N scat-
tering units, not all identical. Let the kth unit be at the distance
Rk from the origin of a coordinate system, and the incident light be
plane-polarized, its electric field and the direction of propagation being
parallel to the x and z axes, respectively. The moment pk induced on
the kth unit may then be written as (see Fig. V.3)

pk = exp0k exp
[
iω

(
t− Rk · ez

c̃′

)]
. (27.1)

From Eq. (25.4), the magnitude of the radiation electric field Ek due
to pk is given by

Ek = p0k

(
ω

c̃

)2 sin θx

rk
exp

[
iω

(
t− rk + Rk · ez

c̃′

)]
, (27.2)

where rk is the distance between the kth unit and the observer. If r
is the distance between the origin and the observer, rk = r −Rk · er

with er the unit vector in the direction of r, and r −1
k ' r −1 since

r À V 1/3. Further, Ek is parallel to El for all k, l, pairs. We therefore
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obtain for the total radiation field E

E =
N∑

k=1

Ek =
(

ω

c̃

)2 sin θx

r
exp

[
iω

(
t− r

c̃′

)] ∑

k

p0k exp(s′ ·Rk) ,

(27.3)
where

s′ = 2πis/λ′ ,

s = er − ez ,

s = 2 sin(θ/2) (27.4)

with λ′ the wavelength of light in the medium. Recalling that I =
|E|2 = EE∗ with E∗ the complex conjugate of E, I0 = (E 0

0 )2, and
p0k = αkE 0

0 with αk the polarizability of the kth unit, we obtain

I

I0
=

16π4 sin2 θx

λ4r2
G , (27.5)

where

G =
N∑

k=1

N∑

l=1

αkαl exp(s′ ·Rkl) (27.6)

with Rkl the distance between the kth and lth units. When the incident
light is unpolarized, it is easy to see that we have, instead of Eq. (27.5),

I

I0
=

8π4(1 + cos2 θ)
λ4r2

G . (27.7)

For a nonlocalized system, G must be replaced by the ensemble
average,

〈G〉 =
∑

k

∑

l

αkαl

∫
P (Rkl) exp(s′ ·Rkl)dRkl , (27.8)

where P (Rkl) is the distribution function of Rkl. Then the Rayleigh
ratio is given by

Rθ =
8π4

λ4

〈G〉
V

. (27.9)

It is to be understood that the Rθ given by Eq. (27.9) is the excess scat-
tering over that of species 0 alone, and we do not discuss the scattering
of a pure liquid. We note that Fixman19 has developed the molecular
theory of light scattering for a one-component system, results of which
are in agreement with the fluctuation theory. Thus, our problem is to
evaluate the integral in 〈G〉 with the distribution functions for “solute”
molecules.

27a. General Theory

The distribution function theory for a two-component system was de-
veloped by Zimm6 and Albrecht,20 and subsequently the theory was
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extended to a multicomponent system by Yamakawa.21 Consider a so-
lution of volume V containing molecules of species 0, 1, 2, . . ., r, and
let Nσ be the number of molecules of species σ in V . Suppose that
a molecule of species σ is composed of nσ identical scattering units.
Then the total number of scattering units entering into Eq. (27.8) is

N =
r∑

σ=1

Nσnσ . (27.10)

The αk
′s in Eq. (27.8) are the same for Nσnσ units, and we put αk = ασ

if the kth unit belongs to a molecule of species σ.
Now, the integral in Eq. (27.8) depends upon which species the kth

and lth units belong to, and also upon which units of molecules of those
species they are, but not upon which molecules of those species they
belong to. We therefore separate the N2 terms of the double summa-
tion into intramolecular and intermolecular terms, and it is sufficient
to consider the distribution function P (Ri1j1) of the distance Ri1j1

between the i1th and j1th units of molecule 1 of species σ and the dis-
tribution function P (Ri1i2) of the distance Ri1i2 between the i1th unit
of molecule 1 and the i2th unit of molecule 2, where molecules 1 and 2
are assumed to be those of species σ and τ , respectively. Clearly, these
functions may be expressed in terms of the McMillan–Mayer distribu-
tion functions defined by Eq. (19.19) with (19.21); that is,

P (Ri1j1) = V −1

∫
F1(1σ)d(1σ)/dRi1j1 , (27.11)

P (Ri1i2) = V −2

∫
F2(1σ, 2τ )d(1σ, 2τ )/dRi1i2 . (27.12)

Equation (27.8) may then be rewritten as

〈G〉 =
r∑

σ=1

Nσα 2
σ

nσ∑

i1=1

nσ∑

j1=1

V −1

∫
F1(1σ) exp(s′ ·Ri1j1)d(1σ)

+
r∑

σ=1

Nσ(Nσ − 1)α 2
σ

nσ∑

i1=1

nσ∑

i2=1

V −2

×
∫

F2(1σ, 2σ) exp(s′ ·Ri1i2)d(1σ, 2σ)

+
r∑

σ=1

r∑
τ=1

σ 6=τ

NσNτασατ

nσ∑

i1=1

nτ∑

i2=1

V −2

×
∫

F2(1σ, 2τ ) exp(s′,Ri1i2)d(1σ, 2τ ) . (27.13)

We note that F1 and F2 in Eqs. (27.11) to (27.13) are also functions of
a set of concentrations c = c1, c2, . . ., cr, with cσ = MσNσ/NAV the
concentration (g/cc) of species σ.
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When the distribution of the molecules is random, as it will be if
there are no intermolecular interactions, the second and last terms on
the right-hand side of Eq. (27.13) make no contribution to the scatter-
ing. In fact, this conclusion can be verified as follows. For the random
distribution we have F2(1σ, 2τ ) = F1(1σ)F1(2τ ), and the integral in the
second or last term becomes
∫

F1(1σ)F1(2τ ) exp(s′ ·Ri1i2)d(1σ, 2τ ) = V

∫
exp(s′ ·Ri1i2)dRi1i2 ,

(27.14)
where the normalization condition on F1 has been used. The right-
hand side is just a Fourier representation of the three-dimensional delta
function, i.e., (λ′)3δ(s), and is therefore zero except at θ = 0. Thus we
may replace F2(1σ, 2σ) and F2(1σ, 2τ ) by the g functions g2(1σ, 2σ) and
g2(1σ, 2τ ), respectively, in Eq. (27.13);

g2(1σ, 2τ , c) = F2(1σ, 2τ , c)− F1(1σ, c)F1(2τ , c) , (27.15)

where we have indicated explicitly that F1, F2, and g2, are functions of
c.

We now introduce an intramolecular interference factor P1,σ(θ, c)
and intermolecular interference factor P2,στ (θ, c) defined by

P1,σ(θ, c) = n −2
σ

nσ∑

i1=1

nσ∑

j1=1

V −1

∫
F1(1σ, c) exp(s′ ·Ri1j1)d(1σ) ,

(27.16)

P2,στ (θ, c) = (nσnτ ) −1
nσ∑

i1=1

nτ∑

i2=1

∫
g2(1σ, 2τ , c) exp(s′ ·Ri1i2)d(1σ, 2τ )∫

g2(1σ, 2τ , c)d(1σ, 2τ )
.

(27.17)
In the limit of s′ = 0 (or θ = 0), we have

lim
θ→0

P1,σ(θ, c) = 1 ,

lim
θ→0

P2,στ (θ, c) = 1 , (27.18)

irrespective of the values of c. Further, we define a coefficient A2,στ (c)
by

A2,στ (c) = − NA

2V MσMτ

∫
g2(1σ, 2τ , c)d(1σ, 2τ ) , (27.19)

which represents interactions between a molecule of species σ and a
molecule of species τ at concentrations c, and is equal to the ordinary
second virial coefficient at c = 0. By the use of Eqs. (27.16), (27.17),
and (27.19), Eq. (27.13) may then be simplified (for Nσ À 1) to

〈G〉
NAV

=
r∑

σ=1

(nσασ)2M −1
σ P1,σ(θ, c)cσ

−2
r∑

σ=1

r∑
τ=1

(nσασ)(nτατ )A2,στ (c)P2,στ (θ, c)cσcτ , (27.20)
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where the second and third terms on the right-hand side of Eq. (27.13)
have been combined to yield the last term of Eq. (27.20).

Let us now express the excess polarizability ασ in terms of the
refractive index increment. Assuming that the dielectric increment is
independent of Mσ, we have

ñ2 − ñ 2
0 = 4πNA

r∑
σ=1

nσ

Mσ
ασcσ (27.21)

with ñ0 the refractive index of species 0. To solve Eq. (27.21), we
further assume that ασ is independent of c in a first approximation.
Then differentiation of Eq. (27.21) with respect to cσ leads to

nσασ =
Mσñ0

2πNA

(
∂ñ

∂cσ

)

0

, (27.22)

where the derivative is to be evaluated at infinite dilution with respect
to all “solute”species σ(≥ 1).

Substituting Eq. (27.20) with (27.22) into Eq. (27.9), we obtain for
the Rayleigh ratio

Rθ

K ′ =
r∑

σ=1

(
∂ñ

∂cσ

) 2

0

MσP1,σ(θ, c)cσ

−2
r∑

σ=1

r∑
τ=1

(
∂ñ

∂cσ

)

0

(
∂ñ

∂cτ

)

0

MσMτA2,στ (c)P2,στ (θ, c)cσcτ ,

(27.23)

where K ′ is given by Eq. (26.73) with ñ = ñ0. Equation (27.23) is the
basic equation in the distribution function theory of light scattering for
a multicomponent system, from which various cases of interest can be
derived.

In particular, for a two-component system, Eq. (27.23) becomes

Rθ

K
= MP1(θ, c)c− 2M2A2(c)P2(θ, c)c2 , (27.24)

where the subscript σ(= 1) has been omitted, and K is given by
Eq. (25.26). We expand P1(θ, c) in powers of c,

P1(θ, c) = P1(θ) + P
(1)

1 (θ)c + · · · (27.25)

with P1(θ) ≡ P1(θ, 0). With the shorthand notation, A2(0) ≡ A2 and
P2(θ, 0) ≡ P2(θ), Eq. (27.24) may then be rewritten as

Kc

Rθ
=

1
MP1(θ)

+ 2A2Q(θ)c + · · · , (27.26)

where
Q(θ) = Q2(θ)−Q1(θ) , (27.27)
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Q1(θ) =
P

(1)
1 (θ)

2MA2P 2
1 (θ)

, (27.28)

Q2(θ) =
P2(θ)
P 2

1 (θ)
. (27.29)

In the limit of θ = 0, Eq. (27.26) becomes identical with Eq. (26.45).

27b. Intramolecular Interferences and Angular
Dissymmetries

In this section, we examine the behavior of the intramolecular interfer-
ence factor P1(θ, c) as a function of θ and c for a two-component system.
For a system of small scattering particles P1(θ) is identically equal to
unity, and the intensity I of scattered light depends on the angle only
through the factor (1 + cos2 θ) (for unpolarized incident light). In this
case I is symmetric about θ = 90◦. For large molecules, P1(θ) depends
on the size and shape of the molecule as well as on the angle, and the
angular symmetry of I is lost. This enables us to determine the molec-
ular dimensions from light-scattering measurements. For flexible chain
polymers, P1 depends also on the concentration c through the distri-
bution function F1(1, c), whereas for rigid molecules P1 is independent
of c.

27b(i). The Intramolecular Interference Factor
at Infinite Dilution

We consider a flexible chain polymer composed of n segments. There
arises some ambiguity in defining the scattering unit of molecule. How-
ever, since the number of effective segments in the chain is, to some
extent, arbitrary, as discussed already, we regard the segment as the
scattering unit. At infinite dilution, the intramolecular interference
factor may then be written in the form,

P1(θ) = n−2
∑

i

∑

j

∫
P (Rij) exp(s′ ·Rij)dRij , (27.30)

where P (Rij) is the distribution of the distance Rij between the ith
and jth segments of the chain. Since the integral in Eq. (27.30) is of
the same form as that of (4.11), and P (Rij) is spherically symmetric,
P1(θ) may be expanded in terms of the moments 〈R 2p

ij 〉 as

P1(θ) = 2
∞∑

p=0

(−1)p

(2p + 1)!

(
4π

λ′

)2p

n−2
∑

i<j

〈R 2p
ij 〉 sin2p(θ/2) , (27.31)

and at small θ,

P1(θ) = 1− 16π2

3(λ′)2
〈S2〉 sin2(θ/2) + · · · , (27.32)
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Fig. V.4. Zimm plot for the light-scattering data on solutions of polystyrene

in methyl ethyl ketone.25 Filled circles: extrapolation to c = 0. Filled triangles:

extrapolation to θ = 0.

where we have used Eq. (7.22) for the mean-square radius of gyration
〈S2〉.

In particular, for an unperturbed linear chain, we have, by the use
of Eq. (5.33),

n−2
∑

i<j

〈R 2p
ij 〉0 =

(2p + 1)!
6p(p + 2)!

〈R2〉 p
0 . (27.33)

On substituting Eq. (27.33) into Eq. (27.31), the series in sin2(θ/2)
may be summed in exponential form to yield4, 6, 22

P 0
1 (θ) =

2
u2

(e−u − 1 + u) (27.34)

with

u =
8π2

3(λ′)2
〈R2〉0 sin2(θ/2) . (27.35)

The superscript 0 on P1 refers to the unperturbed state. Although sim-
ilar calculations have been carried out for unperturbed branched and
ring molecules,23, 24 we do not reproduce them here. The evaluation of
P1(θ) for rigid sphere and rod molecules is given in Appendix V B.
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From Eqs.(27.26) and (27.32), we have

lim
c→0

Kc

Rθ
=

1
M

+
16π2

3(λ′)2M
〈S2〉 sin2(θ/2) + · · · , (27.36)

This implies that 〈S2〉 can be determined from the initial slope of a
plot of (Kc/Rθ)c=0 against sin2(θ/2). It is important to note that
Eq. (27.36), and hence this procedure of determining 〈S2〉, are indepen-
dent of the molecular model (or of whether the chain is linear, branched,
or stiff). In practice, the data are often treated by a procedure known
as making a Zimm plot.6 This procedure consists of plotting Kc/Rθ

against sin2(θ/2) + k′c, where k′ is an arbitrary constant chosen for
convenience. An example of a Zimm plot is shown in Fig. V.4, using
the data of Doty and Steiner25 on solutions of polystyrene in methyl
ethyl ketone. Extrapolating to c = 0 and θ = 0, we obtain the two lim-
iting curves drawn through the filled circles and triangles, respectively.
We can then determine M , 〈S2〉, and A2 from the intercept of these
two curves at c = θ = 0, and their initial slopes, respectively.

27b(ii). Molecular Dimensions at Finite Concentrations

Evidently, P1(θ, c) is given by Eq. (27.30) with P (Rij , c) in place of
P (Rij), or by Eq. (27.31) with 〈R 2p

ij (c)〉 in place of 〈R 2p
ij 〉, where

〈R 2p
ij (c)〉 are the moments at concentration c. At small θ, we therefore

have

P1(θ, c) = 1− 16π2

3(λ′)2
〈S2(c)〉 sin2(θ/2) + · · · . (27.37)

Thus our problem is to evaluate 〈S2(c)〉, or the expansion factors
αS(c) = 〈S2(c)〉1/2/〈S2〉 1/2

0 and αR(c) = 〈R2(c)〉1/2/〈R2〉 1/2
0 at finite

concentrations.
First, we express the expansion factor as a power series in c, and

evaluate the term linear in c. For this purpose, we expand F1(1, c) in
powers of c. In general, the expansion of the component potential wν

in Eq. (19.29) can be obtained from Eq. (19.33) by a procedure similar
to that used in deriving the virial expansion for the osmotic pressure
from Eq. (19.33). Recalling that F1(1, c) = exp[−W1(1, c)/kT ] with
W1 = w1, we obtain the expansion,26

F1(1, c) = F1(1)+
[
NA

M

∫
g2(1, 2)d(2) + 2MA2F1(1)

]
c+ · · · . (27.38)

The detailed steps by which Eq. (27.38) is obtained are omitted here.
The expansion coefficients in Eq. (27.38) are to be evaluated at c = 0.
We note that the F1(1, c) given by Eq. (27.38) is the distribution func-
tion at the standard atmospheric pressure plus the osmotic pressure.
Under ordinary conditions, however, the molecular distribution func-
tions may be assumed to be independent of pressure, and the effect of



SEC. 27. Distribution Function Theory 219

the pressure difference may be neglected. If Rij is the distance between
segments of molecule 1, we obtain, by the use of Eq. (27.38),

〈R 2
ij (c)〉 = 〈R 2

ij 〉+
[

NA

V M

∫
R 2

ij g2(1, 2)d(1, 2) + 2MA2〈R 2
ij 〉

]
c+· · · .

(27.39)
As in Eq. (20.17), the coefficient of c in Eq. (27.39) may be expanded
in terms of the binary cluster integral β for a pair of segments;

[ ] = (NAn2β/M)
{

βn−2
∑

k1,k2

∑

l1,l2

∫
R 2

ij

×[P (Rij , 0l1l2)k1k2 − P (Rij)P (0l1l2)k1k2 ]dRij + O(β2)
}

.

(27.40)

If the uniform-expansion approximation is made in the probability den-
sities for segment contacts, the leading term of Eq. (27.40) may be
evaluated straightforwardly. Thus, for a linear chain, we obtain

αS(c) = αS [1− (NAn2β/M)(0.1025z̄ + · · ·)c + · · ·] , (27.41)

αR(c) = αR[1− (NAn2β/M)(0.1138z̄ + · · ·)c + · · ·] , (27.42)

where αS = αS(0), αR = αR(0), and z̄ is given by Eq. (21.16). Equa-
tions (27.41) and (27.42) are the results obtained by Yamakawa,26

Eizner,27 and Kotin.28 A similar expansion has also been obtained by
Grimley.29 Equations (27.41) and (27.42), although valid only at small
z and c, predict that the expansion factors of the polymer chain de-
crease with increasing concentration except at the theta temperature.
This may be considered to arise from the fact that intramolecular in-
teractions are compensated by intermolecular interactions.

Closed expressions for α(c) have been derived by several work-
ers.30−33 For example, by the differential-equation approach as in the
theories of A2 and A3, Yamakawa31 derived the equation,

αR(c) = αR exp{−0.0397(NAn2β/M)[1− h0(z̄)]c} , (27.43)

where h0(z̄) is the FCM function given by Eq. (20.55) with z̄ in place of
z. Equation (27.43) is valid over the range of relatively small c in which
extensive overlapping of polymer domains does no occur, because it
was derived within the framework of the two-parameter theory. On the
other hand, Fixman and Peterson33 adopted the Born–Green–Yvon–
Kirkwood approach in the theory of liquids to evaluate the potential
V (S) of (11.9) at concentration c. Their theory predicts that α(c)
decreases first rapidly and then gradually from α(0) as c increases, the
dominant behavior being that α2(c) − 1 is proportional to c−1. This
behavior continues until the solvent volume fraction drops below about
10−1 to 10−3, depending on the polymer molecular weight. At present,
however, we cannot answer the question of whether α is or is not equal
to unity in the pure melt or bulk state.
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As easily seen from Eq. (27.24), 〈S2(c)〉 cannot be determined from
light-scattering measurements, since the slope of a plot of Kc/Rθ against
sin2(θ/2) at concentration c involves the contribution from P2(θ, c).
However, for a particular system containing one solvent and two poly-
mers (1 and 2) with the refractive index of polymer 2 equal to that of
the solvent, we have (∂ñ/∂c2)0 = 0, and therefore from Eq. (27.23),

lim
c1→0

Kc1

Rθ
=

1
M1P1,1(θ, c2)

(27.44)

with K = 2π2ñ 2
0 (∂ñ/∂c1) 2

0 /NAλ4. Thus we can determine the mean-
square radius of a chain of polymer 1 at zero concentration of polymer
1 but a finite concentration of polymer 2.

27c. Intermolecular Interferences

We evaluate the function Q2(θ) defined by Eq. (27.29) for linear chains
at infinite dilution. For this case, the intermolecular interference factor
may be written in the form,

P2(θ) = n−2
∑

i1,i2

∫
g2(1, 2) exp(s′ ·Ri1i2)d(1, 2)∫

g2(1, 2)d(1, 2)
. (27.45)

As in Eq. (27.31), P2(θ) may be expanded in the form,

P2(θ) =
∞∑

p=0

(−1)p

(2p + 1)!

(
4π

λ′

)2p

n−2
∑

i1,i2

〈R 2p
i1i2

〉 sin2p(θ/2) (27.46)

with

〈R 2p
i1i2

〉 =

∫
R 2p

i1i2
g2(1, 2)d(1, 2)∫

g2(1, 2)d(1, 2)
. (27.47)

If we confine ourselves to the range of small θ, we have, from Eqs. (27.29),
(27.32), and (27.46),

Q2(θ) = 1− 8π2

3(λ′)2

[
n−2

∑

i1,i2

〈R 2
i1i2 〉 − 4〈S2〉

]
sin2(θ/2) + · · · . (27.48)

Let us evaluate the first term in the square brackets of Eq. (27.48)
for the random-flight model with the uniform-expansion approximation.
Recalling that the denominator of Eq. (27.47) is equal to −V n2βh0(z̄)
with h0(z̄) the function appearing in A2, we expand the numerator in
terms of β (as in the perturbation theory of A2) to obtain

n−2
∑

i1,i2

〈R 2
i1i2 〉 = [h0(z̄)]−1n−4

∑

i1,i2

∫
R 2

i1i2

[∑

j1,j2

P (Ri1i2)j1j2

−β
∑

j1,j2

∑

k1,k2

P (Ri1i2 , 0k1k2)j1j2 + · · ·
]
dRi1i2 , (27.49)
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where restrictions exist on the summations over j1, j2, k1, k2, . . . as in
Eq. (20.11) or (20.17). We now define a moment 〈R 2

12 〉σ by

〈R 2
12 〉σ =

∑

i1,i2

∑

j1,j2

· · ·
∫

R 2
i1i2 P (Ri1i2 , 0k1k2 , . . .)j1j2dRi1i2

∑

i1,i2

∑

j1,j2

· · ·
∫

P (Ri1i2 , 0k1k2 , . . .)j1j2dRi1i2

. (27.50)

The moment 〈R 2
12 〉σ represents the mean-square distance 〈R 2

i1i2
〉 be-

tween segments i1 and i2 when σ contacts exist between segments
j1 and j2, k1 and k2, . . ., averaged over i1, i2−, j1, j2−, . . . pairs.
Recalling that integration of P (Ri1i2 , 0k1k2 , . . .)j1j2 over Ri1i2 gives
P (0k1k2 , . . .)j1j2 , Eq. (27.49) may be rewritten as

n−2
∑

i1,i2

〈R 2
i1i2 〉 = [h0(z̄)]−1

[
〈R 2

12 〉1

−βn−2
∑

j1,j2

∑

k1,k2

P (0k1k2)j1j2〈R 2
12 〉2 + · · ·

]
, (27.51)

From Eq. (20.17), the coefficient of 〈R 2
12 〉2 in Eq. (27.51) is seen to

equal C1z̄ with C1(= 2.865) the coefficient of z̄ in the expansion h0(z̄) =
1− C1z̄ + · · ·, We therefore have

n−2
∑

i1,i2

〈R 2
i1i2 〉 = 〈R 2

12 〉1 + C1z̄[〈R 2
12 〉1 − 〈R 2

12 〉2] + O(z̄2) . (27.52)

Now the moment 〈R 2
12 〉1 is given by

〈R 2
12 〉1 = n−4

∑

i1,i2

∑

j1,j2

∫
R 2

i1i2 P (Ri1i2)j1j2dRi1i2 . (27.53)

Writing Ri1i2 = Ri1j1 + Rj2i2(Rj1j2 = 0) in Eq. (27.53), and recalling
that 〈Ri1j1 ·Rj2i2〉j1j2 = 0, we have

〈R 2
12 〉1 = n−4

∑

i1,i2

∑

j1,j2

(〈R 2
i1j1 〉+ 〈R 2

j2i2 〉)

= 4〈S2〉 . (27.54)

The evaluation of 〈R 2
12 〉2 is less simple, but may be carried out straight-

forwardly using a cluster diagram technique. The result is (with omis-
sion of the details)

〈R 2
12 〉2 = 0.563na2α 2

s . (27.55)

Substitution of Eqs. (27.52), (27.54), and (27.55) into Eq. (27.48) leads
to

Q2(θ) = 1− 0.296z̄ū + · · · (27.56)

with

ū =
8π2

3(λ′)2
na2α2

s sin2(θ/2) . (27.57)
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This is the result derived by Albrecht.20 Note that Eq. (27.56) is valid
only at small z and θ. Similar calculations for the smoothed-density
models have been made by Albrecht20 and by Flory and Bueche.34

However, we do not reproduce them here.
On the other hand, from Eqs. (27.25), (27.37), and (27.41), we have

for the function Q1(θ) defined by Eq. (27.28)

Q1(θ) = 0.068z̄ū + · · · (27.58)

in the same approximation as that used in deriving Eq. (27.56). From
Eqs. (27.27),(27.56), and (27.58), we obtain for the factor Q(θ) in
Eq. (27.26)

Q(θ) = 1− 0.364z̄ū + · · · . (27.59)

Thus the theory predicts that the slope of a plot of Kc/Rθ against c
decreases with increasing θ for positive z. This is in agreement with
experiment.

27d. Heterogeneous Polymers

In Section 26b, we derived the equation for Rθ which is valid at θ = 0
for heterogeneous polymers. The same result can readily be obtained
from the distribution function theory. If we assume that (∂ñ/∂ci)0 =
(∂ñ/∂c)0 for all polymers of molecular weights Mi with c =

∑
i ci, as

before, we have, from Eq. (27.23),

Kc

Rθ
=

1
〈M〉w〈P1(θ)〉 + 2A2c + · · · , (27.60)

where the factor Q(θ) has been omitted, A2 is given by Eq. (26.63),
and 〈P1(θ)〉 is defined by

〈P1(θ)〉 = 〈M〉 −1
w

∑

i

MiP1,i(θ)wi . (27.61)

At θ = 0, Eq. (27.60) reduces to Eq. (26.62). In this section, we evaluate
the average 〈P1(θ)〉 of the intramolecular interference factor, and also
the light-scattering and osmotic second virial coefficients, assuming a
particular form for the molecular weight distribution.

27d(i). The Intramolecular Interference Factor

The average 〈P1(θ)〉 for small θ may be expressed, from Eqs. (27.32)
and (27.61), as

〈P1(θ)〉 = 1− 16π2

3(λ′)2
〈S2〉z sin2(θ/2) + · · · , (27.62)

where
〈S2〉z = 〈M〉 −1

w

∑

i

Mi〈S2〉iwi (27.63)
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Fig. V.5. 〈P 0
1 (θ)〉−1 plotted against 〈u〉 for three values of h. The curve for

h = 4 is displaced upward one unit and that for h = 1 two units.6 The broken

lines indicate the initial slopes.

with 〈S2〉i the mean-square radius for the homogeneous polymer of
molecular weight Mi. The quantity 〈S2〉z is called the z-average of the
mean-square radius, corresponding to the z-average molecular weight
defined by

〈M〉z = 〈M〉 −1
w

∑

i

M 2
i wi

=
∑

i

M 3
i Ni/

∑

i

M 2
i Ni . (27.64)

We now examine the behavior of 〈P1(θ)〉 over a wide range of θ
for the unperturbed chain, the perturbed chain being too difficult to
treat. If we use the continuous molecular weight distribution w(M)
introduced in Section 23a, Eq. (27.61) may be rewritten in the form,

〈P1(θ)〉 = 〈M〉 −1
w

∫ ∞

0

MP1(θ)w(M)dM . (27.65)

In order to evaluate the integral, we must assume a suitable form for
w(M). One of the forms frequently used is the Schulz distribution,6, 35

w(M) =
yh+1

Γ(h + 1)
Mhe−yM , (27.66)

where Γ is the gamma function, and the parameter y is related to the



224 LIGHT SCATTERING FROM DILUTE SOLUTIONS

various average molecular weights by

y =
h

〈M〉n =
h + 1
〈M〉w =

h + 2
〈M〉z . (27.67)

The w(M) given by Eq. (27.66) is a function with a single peak whose
width is determined by the parameter h; for the homogeneous system
h = ∞ (at which w(M) is a delta function), and the smaller the pa-
rameter h, the broader the distribution. Since the variable u defined
by Eq. (27.35) is proportional to M , i.e., CM , we define an average 〈u〉
by 〈u〉 = C〈M〉w, and obtain, by the use of Eqs. (27.34) and (27.66),6

〈P 0
1 (θ)〉 =

2
h〈u〉2

[
(h + 1)h+1

(〈u〉+ h + 1)h
+ h〈u〉 − (h + 1)

]
. (27.68)

The inverse of 〈P 0
1 (θ)〉 is plotted in Fig. V.5 against 〈u〉 for h = 1, 4,

and ∞. From the figure, it is seen that the curve is concave upward
for the homogeneous system, and the curvature becomes small as the
system becomes heterogeneous.

In the particular case h = 1, we have

〈P 0
1 (θ)〉−1 = 1 + 1

2 〈u〉 . (27.69)

That is, 〈P 0
1 (θ)〉−1 is linear in 〈u〉. In general, 〈P 0

1 (θ)〉 approaches
unity as 〈u〉 becomes zero, while the curve of 〈P 0

1 (θ)〉−1 approaches an
asymptotic straight line as 〈u〉 becomes infinite; that is,

lim
〈u〉→∞

=
1

〈M〉w〈P 0
1 (θ)〉 =

h + 1
2〈M〉wh

+
1
2
〈u〉

=
1

2〈M〉n +
1
2
〈u〉 . (27.70)

This suggests that 〈M〉n may be determined from the intercept of the
asymptote of (27.70) at θ = 0. In practice, however, this procedure
does not lead to an accurate determination of 〈M〉n.

27d(ii). The Second Virial Coefficients

Let A
(π)
2 and A

(R)
2 be the osmotic and light-scattering second virial

coefficients, respectively. As shown already, with the use of the con-
tinuous molecular weight distribution, A

(π)
2 and A

(R)
2 may be written

as
A

(π)
2 =

∫ ∞

0

∫ ∞

0

Aijw(Mi)w(Mj)dMidMj , (27.71)

A
(R)
2 = 〈M〉 −2

w

∫ ∞

0

∫ ∞

0

MiMjAijw(Mi)w(Mj)dMidMj , (27.72)

where
Aij = − NA

2V MiMj

∫
g2(i, j)d(i, j) . (27.73)
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Fig. V.6. q(π), q(R), and A
(π)

2 /A
(R)

2 plotted against h−1 for ν = 1
4 .37

For small z, it is easy to calculate Aij , and therefore A
(π)
2 and A

(R)
2

using the Schulz distribution. The first-order perturbation theory result
shows that A

(π)
2 is slightly greater than A

(R)
2 at small z.36 For large z,

an exact evaluation of Aij is, of course, hopelessly difficult, and we
describe the approximate treatment of Casassa.37 We assume that the
second virial coefficient for homogeneous polymers is of the form,

A2 = A0M
−ν , (27.74)

where A0 and ν are constants independent of M . Further, Aij is as-
sumed to equal the second virial coefficient for hard spheres of radii S̄i

and S̄j ; that is (see Appendix IV A)

Aij = 2πNA(S̄i + S̄j)3/3MiMj . (27.75)

Aii is the second virial coefficient for homogeneous spheres of radius
S̄i,

Aii = 16πNAS̄ 3
i /3M 2

i = A0M
−ν

i . (27.76)

From Eqs. (27.75) and (27.76), we then have

Aij =
A0

8MiMj
(M (2−ν)/3

i + M
(2−ν)/3

j )3 . (27.77)

Using the Schulz distribution, A
(π)
2 and A

(R)
2 may now be calculated

straightforwardly. If A2,n and A2,w are the second virial coefficients for
homogeneous polymers with M = 〈M〉n and 〈M〉w, respectively, the
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results are

A
(π)
2 = q(π)A2,n ,

A
(R)
2 = q(R)A2,w , (27.78)

where

q(π)(h, ν) =
hν

4[Γ(h + 1)]2
[Γ(h− ν + 2)Γ(h)

+3Γ(h− 2
3ν + 4

3 )Γ(h− 1
3ν + 2

3 )] ,

q(R)(h, ν) = q(π)(h + 1, ν) . (27.79)

The coefficients q(π) and q(R) and ratio A
(π)
2 /A

(R)
2 are plotted in Fig. V.6

against h−1 for ν = 1
4 . A

(π)
2 is seen to be still greater than A

(R)
2 .

However, it is important to observe that for h > 5 or 〈M〉w/〈M〉n <
1.2, the coefficients q(π) and q(R) do not differ appreciably from unity.
This suggests that values of A

(π)
2 or A

(R)
2 observed for well-fractionated

samples may be analyzed by means of the theory for homogeneous
polymers, considering an experimental error in determination of A

(π)
2

or A
(R)
2 .

Similar calculations for a mixture of two homogeneous polymers
differing in molecular weight have also been carried out by Flory and
Krigbaum38 and by Casassa.37 The theory predicts that under cer-
tain conditions both A

(π)
2 and A

(R)
2 exhibit a maximum as functions

of the relative compositions of the two polymers. Experimental exam-
ples are provided by the work of Krigbaum and Flory39 on solutions of
polystyrene in toluene, and of polyisobutylene in cyclohexane, and that
of Kato, Miyaso, and Nagasawa40 on solutions of poly-α-methylstyrene
in cyclohexane.

27e. Mixed-Solvent Systems

The distribution function theory of light scattering for mixed-solvent
systems was developed by Yamakawa.21 Let species 0, 1, and 2 be
a first solvent (good solvent), a second solvent (poor solvent), and a
polymer, respectively. We consider the excess scattering Rθ

′ = Rθ−R 0
θ

over that of the mixed solvent, Rθ approaching R 0
θ as c2 becomes

zero at constant c1. For practical purposes, Rθ may be considered to
approach the same limiting value R 0

θ as c2 becomes zero at constant m1

(= M1N1/M0N0), since c2 is usually very small. Now, since the second
solvent is a low-molecular-weight species, P1,1(θ, c) is identically equal
to unity. In addition, there are the symmetric relations, A2,12(c) =
A2,21(c) and P2,12(θ, c) = P2,21(θ, c). Further, we use the shorthand
notation, A(c1, 0) = A(c1), A(0, c2) = A(c2), and A(0, 0) = A for any
function A(c1, c2) of c1 and c2. We then have, from Eq. (27.23),

Rθ
′

KM2c2
= P1,2(θ, c1, c2)− 2M2A2,22(c1, c2)P2,22(θ, c1, c2)c2

−4γM1A2,12(c1, c2)P2,12(θ, c1, c2)c1 + f(θ, c1, c2) , (27.80)
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where K is given by Eq. (25.26) with c = c2, and γ and f are defined
by

γ =
(

∂ñ

∂c1

)

0

/(
∂ñ

∂c2

)

0

, (27.81)

f(θ, c1, c2) = −2γ2M 2
1 M −1

2 [A2,11(c1, c2)P2,11(θ, c1, c2)
−A2,11(c1)P2,11(θ, c1)]c 2

1 c −1
2 . (27.82)

In the following subsections, we consider three cases of interest:(1) the
case for γ = 0, (2) the case for γ 6= 0 and θ = 0, and (3) the case for
γ 6= 0 and c2 = 0.

27e(i). Case for γ = 0

In this case, for which the refractive index of the second solvent is equal
to that of the first solvent, Eq. (27.80) reduces to [with omission of the
factor Q(θ)]

Kc2

Rθ
′ =

1
M2P1,2(θ, c1)

+ 2A2,22(c1)c2 + · · · . (27.83)

Thus, the polymer molecular weight M2 and the mean-square radius
〈S2(c1)〉 and second virial coefficient A2,22(c1) for the polymer in the
mixed solvent of concentration c1, can be determined from the usual
light-scattering measurements, A2,22(c1) being identical with the sec-
ond coefficient in Eq. (26.71). In particular, the temperature at which
A2,22(c1) becomes zero corresponds to the theta point in the binary
system, and under this condition unperturbed dimensions 〈S2(c1)〉0 in
mixed solvents can be determined.

27e(ii). Limit of θ = 0

Recalling that P1(θ, c) and P2(θ, c) approach unity as θ becomes zero,
we obtain from Eq. (27.80)

lim
θ→0

Rθ
′

KM2c2
= 1− 2M2A2,22(c1, c2)c2 − 4γM1A2,12(c1, c2)c1

+f(0, c1, c2) (27.84)

with

f(0, c1, c2) = −2γ2M 2
1 M −1

2 [A2,11(c1, c2)−A2,11(c1)]c 2
1 c −1

2 . (27.85)

We now wish to expand A2,22(c1, c2) and A2,12(c1, c2) in powers of
c1 and c2. This can be done by expanding the distribution functions F1

and F2 as in Eq. (27.38) and substituting the results into Eq. (27.19).
If we make superposition approximation in the three-body distribution
function F3, we find

A2,22(c1, c2) = A2,22 + [ 32A3,122 − 2M1(A2,12)2]c1

+[ 32A3,222 − 2M2(A2,22)2]c2 + · · · , (27.86)
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A2,12(c1, c2) = A2,12 + ( 3
2A3,122 − 2M2A2,12A2,22)c2 + · · · . (27.87)

The c1 term has been omitted in Eq. (27.87), because we neglect the c 2
1

term in the final result. The coefficients A2,22 and A3,222 are just the
second and third virial coefficients (A2 and A3) for the two-component
system containing species 0 and 2, respectively, A3,222 being given by
Eq. (19.56). The coefficient A3,122 may be written as

A3,122 = − N 2
A

3V M1M 2
2

∫
g3(11, 22, 32)d(11, 22, 32) + 4

3M1(A2,12)2

+ 8
3M2A2,12A2,22 . (27.88)

When species 1 and 2 are identical, Eq. (27.88) reduces to Eq. (19.56).
We note that the coefficients in Eqs. (27.86) and (27.87) appear in the
virial expansion for the three-component system. Suppose that two
solutions of concentrations (c1, c2) and (0,0) are in equilibrium with
each other separated by membrane permeable only to species 0. From
the McMillan–Mayer theory, the pressure difference p(c1, c2) − p(0, 0),
i.e., the osmotic pressure π(c1, c2|0, 0) may then be expanded in the
form,

π(c1, c2|0, 0)
RT

=
1

M1
c1 +

1
M2

c2 + A2,11c
2

1 + A2,22c
2

2 + 2A2,12c1c2

+ A3,111c
3

1 + A3,222c
3

2 + 3A3,112c
2

1 c2 + 3A3,122c1c
2

2 + · · · , (27.89)

where all coefficients may be expressed in terms of the molecular dis-
tribution functions at concentration (0,0).

Next, we expand the coefficient A2,11(c1, c2) in the form,

A2,11(c1, c2) = A2,11(c1) + A
(1)

2,11 (c1)c2 + · · · . (27.90)

Equation (27.85) then reduces to

f(0, c1, c2) = −2γ2M 2
1 M −1

2 [A (1)
2,11 (c1) + O(c2)]c 2

1 . (27.91)

The coefficient A
(1)

2,11 (c1) can be evaluated by the same procedure as
used above when we choose the solution of concentration (c1, 0) instead
of (0,0) as the reference states. The result is

A
(1)

2,11 (c1) = 3
2A3,112(c1)− 2M2[A2,12(c1)]2 . (27.92)

The quantity A3,112(c1) is comparable in magnitude with M2[A2,12(c1)]2

and M1A2,11(c1)A2,12(c1). Since M1 < M2 and 0 < A2,11 < A2,12

in the system under consideration for which species 1 is a poor sol-
vent for the polymer, the inequalities, 0 < M1A2,11(c1)A2,12(c1) <
M2[A2,12(c1)]2 must be valid. Therefore, A3,112(c1) must be at most
of the same order of magnitude as M2[A2,12(c1)]2. Thus, |A (1)

2,11 (c1)|
will not exceed 2M2[A2,12(c1)]2, and at small c2

|f(0, c1, c2)| < 4[γM1A2,12(c1)c1]2 . (27.93)
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Now, |γ| is at most of order unity, and A2,12 must be of order 10−3 ∼
10−2 in the present system. (Note that A2,22 is of order 10−4 since
species 0 is assumed to be a good solvent for the polymer.) Under
these conditions, the quantity γM1A2,12(c1)c1 is at most of order 10−2,
and therefore the term f is definitely negligible compared to unity in
Eq. (27.84).

Thus, by the use of Eqs. (27.86) and (27.87), we obtain from Eq.
(27.84)

lim
θ→0

Kc2

Rθ
′ =

1
M2,ap

+ 2A2,apc2 + 3A3,apc 2
2 + · · · (27.94)

with

M2,ap = M2[1− 4γM1A2,12(c1)c1]
= M2[1− 4γM1A2,12c1 + O(c 2

1 )] , (27.95)

A2,ap = A2,22 + [ 32 (1 + 2γM1M
−1

2 )A3,122 − 2M1(A2,12)2

+4γM1A2,12A2,22]c1 + O(c 2
1 ) , (27.96)

A3,ap = A3,222 + O(c1) . (27.97)

Equations (27.95) and (27.96) are to be compared with Eqs. (26.68) and
(26.69), respectively. The term 2γM1M

−1
2 in Eq. (27.96) may be sup-

pressed compared to unity, and we therefore obtain, from Eqs. (27.86)
and (27.96),

A2,ap = A2,22(c1)(1 + 4γM1A2,12c1 + · · ·) , (27.98)

or, combining this with Eq. (27.95), at small c1

A2,22(c1) = (M2,ap/M2)A2,ap . (27.99)

This suggests that A2,22(c1) can be determined from observed values of
M2, M2,ap, and A2,ap provided the concentration of the second solvent
is low.

The conditions under which the term f can be suppressed may
now be stated in a more convenient form. If M2,ap = 1.3M2, or
γM1A2,12(c1)c1 ' −0.075, f is smaller than 0.023 and may be ne-
glected. Thus we have the condition, 0.7 < M2,ap/M2 < 1.3, or more
strictly,

0.8 < M2,ap/M2 < 1.2 . (27.100)

This is, of course, a sufficient condition, and not a necessary condition.
For practical purposes, it is desirable to find experimentally a condition
under which values of A2,22(c1) determined from Eq. (27.99) are in
agreement with those determined using the dialysis technique described
in Section 26c.
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27e(iii). Limit of c2 = 0

In this limit, Eq. (27.80) reduces to

lim
c2→0

Rθ
′

KM2c2
= P1,2(θ, c1)− 4γM1A2,12(c1)P2.12(θ, c1)c1 + f(θ, c1) .

(27.101)
The function P2,11(θ, c1, c2) appearing in f(θ, c1, c2) may be written,
from Eq. (27.17) (with n1 = 1), in the form,

P2,11(θ, c) =
∫

[g(R12, c)− 1] exp(s′ ·R12)dR12∫
[g(R12, c)− 1]dR12

, (27.102)

where R12 is the distance between molecules 1 and 2 of species 1, and
g is the pair correlation function for these molecules. Evidently, g − 1
differs appreciably from zero only for R12 ¿ λ′. Since the exponential
in Eq. (27.102) is effectively unity when R12 ¿ λ′, we have

P2,11(θ, c1, c2) = 1 , (27.103)

and therefore f(θ, c1) becomes equal to f(0, c1), which is given by
Eq. (27.91) with c2 = 0. Thus, the term f may be neglected in
Eq. (27.101), because P1,2(θ, c1) must be ordinarily of order 10−1 ∼ 1.

Next we evaluate the function P2,12(θ, c1). It may be written as

P2,12(θ, c1) = n −1
2

n2∑

i2=1

∫
g2(11, 22, c1) exp(s′ ·R1i2)d(11, 22)∫

g2(11, 22, c1)d(11, 22)
,

(27.104)
where R1i2 = Ri1i2 with i1 ≡ 1. The potential of mean force between
a molecule of species 1 and a polymer segment (at concentration c1)
must also differ appreciably from zero when R1i2 ¿ λ′. As in the
perturbation theory of A2, the function g2 in Eq. (27.104) may therefore
be expanded in terms of short-range functions χ1i2 [with F1(11, c1) = 1],

g2(11, 22, c1) = F1(22, c1)
(∑

j2

χ1j2 +
∑∑

j2<k2

χ1j2χ1k2 + · · ·
)

(27.105)

with
χ1j2 = −β12δ(R1j2) , (27.106)

where β12 is the binary cluster integral representing interactions be-
tween a molecule of species 1 and a polymer segment at concentration
c1. The second term on the right-hand side of Eq. (27.105) is not a pure
double-contact term, but rather corresponds to a ternary clustering. It
is then expected that this and higher terms may be neglected provided
n2 is very large, and therefore that P2,12(θ, c1) may be evaluated in the
single-contact approximation. This can be explicitly demonstrated,21

but we do not reproduce the analysis here. Thus, we obtain, from
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Eqs. (27.104) to (27.106),

P2,12(θ, c1) = −β −1
12 n −2

2

∑

i2,j2

V −1

×
∫

F1(22, c1)χ1j2 exp(s′ ·R1i2)d(11, 22)

= n −2
2

∑

i2,j2

V −1

∫
F1(22, c1) exp(s′ ·Ri2j2)d(22) . (27.107)

Comparing Eq. (27.16) with Eq. (27.107), we find

P2,12(θ, c1) = P1,2(θ, c1) . (27.108)

Now substitution of Eq. (27.108) into Eq. (27.101) leads to (with
omission of f)

lim
c2→0

Kc2

Rθ
′ =

1
M2,apP1,2(θ, c1)

, (27.109)

where we have used Eq. (27.95). This implies that the molecular di-
mensions 〈S2(c1)〉 in mixed solvents can be determined from the usual
light-scattering measurements even if the refractive index increment
with respect to the second solvent does not vanish completely. In par-
ticular, this procedure should be useful in the determination of unper-
turbed dimensions when the theta points cannot be realized without
the use of mixed solvents.

28. Remarks and Topics

28a. Effects of the Optical Anisotropies

In the previous sections, we have assumed that the scattering particles
are optically isotropic. In this section, we study the effects of the optical
anisotropy on the intensity of scattered light. For this case, Eq. (25.3)
for the amplitude of the induced moment must be replaced by

p0 = αE 0
0 , (28.1)

where the polarizability α is a (symmetric) tensor, instead of a scalar.
For convenience, we first consider a system of independent small parti-
cles, and then a solution of polymers composed of anisotropic segments.

28a(i). Systems of Independent Small Particles

Suppose that the incident light is plane-polarized, and the scattered
light is observed with an analyzer, its transmission axis being in the
direction ξ perpendicular to r. From Eq. (25.4), the component of the
total radiation field E in the direction of ξ is then given by

E · eξ =
(

ω

c̃

)2
N

r3
[r2{p} − (r · {p})r] · eξ
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=
(

ω

c̃

)2
N

r
{p} · eξ (28.2)

with N the number of scattering particles in the system. The total
intensity Iξ of scattered light in the direction of ξ may therefore be
written in the form,

Iξ = A〈(αe0 · eξ)2〉I0 (28.3)

with
A = 16π4N/λ4r2 , (28.4)

where e0 is the unit vector in the direction of E 0
0 , and the average in

Eq. (28.3) is taken over all orientations of the particle.
If a coordinate system (X,Y, Z) fixed in the particle is properly cho-

sen, the polarizability tensor α may be expressed as a diagonal tensor in
that molecular coordinate system, whose diagonal elements (α1,α2,α3)
are the principal values of α. After an orthogonal transformation of
the coordinate system (x, y, z) fixed in space into (X, Y, Z), the aver-
age in Eq. (28.3) can readily be evaluated by the use of the averages of
products of the direction cosines of the coordinate axes, assuming that
the orientation of the particle is uniform in all directions. The result is

〈(αe0 · eξ)2〉 = α2 cos2 ϕ +
B2

2
(1 + 1

3 cos2 ϕ) , (28.5)

where ϕ is the angle between e0 and eξ, and α and B are defined by

α = 1
3 (α1 + α2 + α3) , (28.6)

B2 = 1
15 [(α1 − α2)2 + (α2 − α3)2 + (α3 − α1)2] . (28.7)

The α defined by Eq. (28.6) is equal to one-third of the trace of α, and
is the average polarizability related to the optical refractive index by
Eq. (25.24). Note that for isotropic particles α1 = α2 = α3 = α and
B = 0.

In particular, we use the subscript v or h as e0 is parallel to the x
axis (vertical) or to the y axis (horizontal), and the subscript V or H as
eξ is vertical or horizontal (see Fig. V.7). For example, IVh

represents
the vertical component of the scattered intensity when the incident
light is horizontally polarized. From Eqs. (28.3) and (28.5), we then
have

IVv

I 0
v

= A(α2 + 2
3B2) ,

IHv

I 0
v

=
IVh

I 0
h

= A( 1
2B2) ,

IHh

I 0
h

= A

[
α2 cos2 θ +

B2

2
(1 + 1

3 cos2 θ)
]

. (28.8)

Next we consider the case for which the incident light is unpolarized.
In this case, the intensity of the incident light is formally given by
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Fig. V.7. Vertical and horizontal components of the scattered intensity.

(a) The incident light is vertically polarized. (b) The incident light is horizontally

polarized.

I0 = I 0
v + I 0

h = 2I 0
v = 2I 0

h , and the two components of the scattered
intensity by IV = IVv + IVh

and IH = IHv + IHh
. We therefore obtain,

from Eqs. (28.8),

IV

I0
=

A

2
(α2 + 7

6B2) ,

IH

I0
=

A

2
[α2 cos2 θ + B2(1 + 1

6 cos2 θ)] . (28.9)

Without the analyzer, the total scattered intensity is given by I =
IV + IH , and we obtain for the Rayleigh ratio

Rθ =
8π4α2ρ

λ4

6
6− 7∆

(
1 + ∆

1− cos2 θ

1 + cos2 θ

)
, (28.10)

where

∆ =
B2

α2 + 7
6B2

. (28.11)

Equation (28.10) is to be compared with Eq. (25.22). From Eqs. (28.9)
and (28.11), it is seen that41

∆ =
(

IH

IV

)

θ=90◦
. (28.12)

This implies that the quantity ∆ can be determined experimentally,
and thus the anisotropy correction to Rθ can be made according to
Eq. (28.10) to determine the correct molecular weight. For isotropic
particles, IH = 0 at θ = 90◦; that is, the scattered light is completely
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vertically polarized at θ = 90◦ Thus ∆ is called the degree of depolar-
ization. The turbidity τ is readily obtained, from Eq. (28.10), as

τ =
128π5α2

3λ4
ρf (28.13)

with
f =

6 + 3∆
6− 7∆

. (28.14)

The correction factor f is called the Cabannes factor.

28a(ii). Polymer Composed of Anisotropic Segments

The usual light-scattering measurements give apparently negative val-
ues of 〈S2〉 for certain polymers, and it was pointed out first by Nakagaki42

that this anomaly arises from the optical anisotropy of polymer seg-
ments. Subsequently, Utiyama43, 44 derived an equation for Rθ with
anisotropy corrections, and showed how to determine correctly molec-
ular weights, molecular dimensions, and second virial coefficients.

We consider a binary solution containing N polymer molecules, each
composed of n identical anisotropic segments. When the incident light
is plane-polarized, the component of the total radiation field is given
by

E · eξ =
Nn∑

k=1

Ek · eξ

=
(

ω

c̃

)2
E 0

0

r
exp

[
iω

(
t− r

c̃′

)] ∑

k

(αke0 · eξ) exp(s′ ·Rk)

(28.15)

instead of Eq. (27.3). The component Iξ of the scattered intensity may
therefore be written in the form,

Iξ

I0
=

16π4

λ4r2
〈G′〉 (28.16)

with

〈G′〉 =
∑

k

∑

l

〈(αke0 · eξ)(αle0 · eξ)〉
∫

P (Rkl) exp(s′ ·Rkl)dRkl .

(28.17)
The symbol 〈 〉 on the right-hand side of Eq. (28.17) indicates the
average over all orientations of the two segments k and l. If we assume
that there is no correlation between orientations of segments k and l,
we have

〈(αke0 · eξ)(αle0 · eξ)〉 = 〈(αe0 · eξ)2〉 for k = l

= 〈αe0 · eξ〉2 for k 6= l , (28.18)
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where we have omitted the subscripts k and l on the right-hand side
since all the segments are identical. Substitution of Eq. (28.18) into
Eq. (28.17) leads to

〈G′〉 = Nn[〈(αe0 · eξ)2〉 − 〈αe0 · eξ〉2] + α−2〈αe0 · eξ〉2〈G〉 , (28.19)

where 〈G〉 is given by Eq. (27.20) with r = 1, and 〈(αe0 · eξ)2〉 is given
by Eq. (28.5). 〈αe0 · eξ〉2 may also be simply evaluated to be

〈αe0 · eξ〉2 = α2 cos2 ϕ . (28.20)

Thus Eq. (28.16) becomes

r2Iξ

2V I0KMc
=

B2

2α2n
(1 + 1

3 cos2 ϕ) + cos2 ϕ[P1(θ)− 2MA2P2(θ)c + · · ·] ,
(28.21)

where K is given by Eq. (25.26).
From Eq. (28.21), the vertical and horizontal components of the

scattered intensity are obtained as

r2IVv

2V I 0
v KMc

= 4δ + P1(θ)− 2MA2P2(θ)c + · · · ,

r2IHv

2V I 0
v KMc

=
r2IVh

2V I 0
h KMc

= 3δ ,

r2IHh

2V I 0
h KMc

= 3δ(1 + 1
3 cos2 θ) + cos2 θ[P1(θ)− 2MA2P2(θ)c + · · ·]

(28.22)

with

δ =
B2

6α2n
. (28.23)

For the case when unpolarized incident light is used, without the
analyzer, we obtain for the Rayleigh ratio from Eqs. (28.22)

Rθ/KMc = δ+12δ(1+cos2 θ)−1+P1(θ)−2MA2P2(θ)c+· · · . (28.24)

In particular, in the limit θ = 0 or c = 0, we have

lim
θ→0

Kc

Rθ
=

1
Map

+ 2A2,apc + · · · , (28.25)

lim
c→0

Kc

Rθ
=

1
Map

[
1 +

16π2

3(λ′)2
〈S2〉ap sin2(θ/2) + · · ·

]
, (28.26)

where
Map = M(1 + 7δ) , (28.27)

A2,ap = A2(1 + 7δ)−2 , (28.28)

〈S2〉ap =
〈S2〉

1 + 7δ
− 9(λ′)2δ

4π2(1 + 7δ)
. (28.29)
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Thus, apparent molecular weights, virial coefficients, and molecular
dimensions determined from the usual light-scattering measurements
must be corrected by means of Eqs. (28.27) to (28.29).

Now, it is seen from Eqs. (28.22) that IHv
/c and IVh

/c are inde-
pendent of c and θ, and IHh

(θ = 90◦)/c is independent of c; and from
observed values of these quantities (or any one of them), we can deter-
mine values of Mδ. From observed values of Mδ and Map = M(1+7δ),
we can therefore estimate the parameter δ. The parameter δ is, by defi-
nition, inversely proportional to n, and therefore the effect of anisotropy
is negligibly small for ordinary polymers of high molecular weight.
(Note that the correction factor for the molecular weight is different
from that for the case of small molecules.) For example, Utiyama43

found δ = 0.86 × 10−3 for atactic polystyrene of M = 5.1 × 105 in
monochlorobenzene. On the other hand, for isotactic polystyrene of
M = 3.41 × 105, δ was estimated to be 53.3 × 10−3, and the effect of
anisotropy is so large that 〈S2〉ap is negative.43

We note that the effect of anisotropy may be eliminated by using
the observed values of the quantity (IVv− 4

3IHv ), which does not involve
δ. Further, Utiyama44 also proposed a procedure to estimate δ even
when measurements are carried out with unpolarized light, but we do
not reproduce it here.

28b. Copolymers

It was found first by Tremblay et al.45 that the apparent molecular
weight determined from the usual light-scattering measurements on so-
lutions of butadiene-styrene copolymer varied with the refractive index
of the solvent, and it was suggested that this anomaly arises from het-
erogeneities in the composition of the copolymer. Further investigations
on this problem were made by Stockmayer et al.46 and by Bushuk and
Benoit.47

In this section, we consider effects of the heterogeneity in composi-
tion as well as in molecular weight on the apparent molecular weight of
binary copolymers composed of monomeric units A and B, following the
procedure of Bushuk and Benoit. The equations derived are general,
and are applicable to random, block, or graft copolymers. Suppose now
that copolymer species i is characterized by the molecular weight Mi

and the composition wAi that is the weight fraction of A in a molecule
of that species. The total concentration of the copolymer is given by
c =

∑
i ci, and from Eq. (27.23) we obtain

lim
θ→0
c→0

Kc

Rθ
=

1
Map

, (28.30)

where

Map =
(

∂ñ

∂c

)−2

0

∑

i

(
∂ñ

∂ci

)2

0

Miwi (28.31)
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with wi = ci/c. If cA and cB are the concentrations of A and B,
respectively, we have c = cA + cB , and

cA =
∑

i

wAici ,

cB =
∑

i

wBici . (28.32)

Since the over-all weight fractions of A and B in the whole copolymer
are given by cA/c = wA and cB/c = wB , respectively, Eqs.(28.32) may
be rewritten as

wA =
∑

i

wAiwi ,

wB =
∑

i

wBiwi . (28.33)

The refractive index increments may then be written in the forms,

νi ≡
(

∂ñ

∂ci

)

0

=
(

∂ñ

∂cA

)

0

∂cA

∂ci
+

(
∂ñ

∂cB

)

0

∂cB

∂ci
= wAiνA + wBiνB ,

(28.34)

ν ≡
(

∂ñ

∂c

)

0

= wAνA + wBνB , (28.35)

where

νA ≡
(

∂ñ

∂cA

)

0

, νB ≡
(

∂ñ

∂cB

)

0

. (28.36)

Substituting Eq. (28.34) into Eq. (28.31), we obtain for the apparent
molecular weight

Map = ν−2[νAνB〈M〉w +νA(νA−νB)〈M〉AwA+νB(νB +νA)〈M〉BwB ] ,
(28.37)

where 〈M〉w is the weight-average molecular weight of the copolymer,
and 〈M〉A and 〈M〉B are defined by

〈M〉A =
∑

i

Miwiw
2

Ai/wA

=
∑

i

(MiwAi)(wAiwi)/
∑

i

wAiwi ,

〈M〉B =
∑

i

Miwiw
2

Bi/wB

=
∑

i

(MiwBi)(wBiwi)/
∑

i

wBiwi . (28.38)

From Eqs. (28.38), 〈M〉A and 〈M〉B are seen to be the weight-average
molecular weights of the parts of the copolymer formed of monomeric
units A and B, respectively. Equation (28.37) shows that from mea-
surements in three solvents it is possible, in principle, to solve for the
three quantities 〈M〉w, 〈M〉A and 〈M〉B .
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Fig. V.8. Map/〈M〉w plotted against n0 for copolymers of styrene and

methylmethacrylate.47 The points indicate the experimental data. Open cir-

cles: random copolymer. Filled circles: block copolymer. The curves represent

the values calculated from Eq. (28.41) with P = 0 and Q/〈M〉w as indicated.

However, apparent molecular weight may be expressed in a more
convenient form if we introduce the deviation, δwi, in composition of
molecules of species i from the average value. This deviation is defined
by

δwi = wAi − wA = wB − wBi . (28.39)

From Eqs. (28.34), (28.35), and (28.39), we have

νi = ν + (νA − νB)δwi . (28.40)

Substitution of Eq. (28.40) into Eq. (28.31) leads to

Map = 〈M〉w + 2P

(
νA − νB

ν

)
+ Q

(
νA − νB

ν

)2

(28.41)

with
P =

∑

i

Miwiδwi , (28.42)

Q =
∑

i

Miwi(δwi)2 . (28.43)

By the use of Eqs. (28.38), Eqs. (28.42) and (28.43) may be rewritten
as

2P = (〈M〉A − 〈M〉w)wA + (〈M〉w − 〈M〉B)wB , (28.44)
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Fig. V.9. Map/〈M〉w plotted against ñ0 for a mixture of 65% polystyrene and

35% polymethylmethacrylate.47 Open circles: experimental data. The curves

represent the values calculated from Eq. (28.48)

Q = (〈M〉A + 〈M〉B − 〈M〉w)wAwB . (28.45)

It can easily be shown that Eq. (28.41) is equivalent to Eq. (28.37).
According to Eq. (28.41), if Map is plotted against (νA− νB)/ν, which
varies with the refractive index of the solvent, the points must describe
a parabola from which the values of 〈M〉w, P , and Q can be estimated.
The value of 〈M〉w must agree with that determined from Eq. (28.37).
The parameters P and Q are related to the heterogeneity in compo-
sition of the sample, and must be constant for a given copolymer. In
general, P and Q will vary between the following limits:

− 〈M〉wwA ≤ P ≤ 〈M〉wwB ,

0 ≤ Q ≤ 〈M〉w(1− wAwB) . (28.46)

If the copolymer is homogeneous in molecular weight or if the compo-
sition is independent of molecular weight, P is identically equal to zero
and the range of Q becomes

0 ≤ Q ≤ 〈M〉wwAwB . (28.47)

We note that the maximum value of Q may be realized only with a
mixture of two homopolymers A and B. As seen from the definition,
the parameter Q/〈M〉w for a particular copolymer may be defined as
a measure of the heterogeneity in composition. If the composition is
homogeneous, we have, of course, δwi = 0 and Map = 〈M〉w.
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Fig. V.10. Map/〈M〉w plotted against (νA − νB)/ν.47 The points and curves

correspond to those shown in Fig.V.8, respectively.

The values of Map/〈M〉w of copolymers of styrene and methyl-
methacrylate obtained by Bushuk and Benoit are plotted in Fig. V.8
against the refractive index of solvent. The open and filled circles rep-
resent the experimental data for the random and block copolymers,
respectively, and the curves represent the theoretical values calculated
from Eq. (28.41) with P = 0 and Q/〈M〉w as indicated. Map becomes
infinite at the value of ñ0 which corresponds to ν = 0. A mixture of
two homopolymers A and B may be considered to be an extreme case
of a copolymer. For the sake of comparison, in Fig. V.9 are also plot-
ted the values of Map/〈M〉w of a mixture of 65% polystyrene and 35%
polymethylmethacrylate against the refractive index of solvent.46 The
curves represent the values of Map/〈M〉w calculated from the equation,

Map = ν−2(ν 2
A 〈M〉AwA + ν 2

B 〈M〉BwB) . (28.48)

In Fig. V.10 are plotted the data of Fig. V.8 against (νA−νB)/ν. From
this figure, it is possible to estimate the value of Q/〈M〉w that will
best fit the experimental data. The values of Q/〈M〉w thus obtained
for the random and block copolymers are 0.16 and 0.01, respectively.
For both copolymers, the maximum value of Q/〈M〉w calculated from
Eq. (28.47) is about 0.22. Thus, this random copolymer is seen to be
highly heterogeneous in composition.

Finally, we note that mean-square radii of gyration and second virial
coefficients for copolymers, although well-defined physical quantities,
cannot be determined from light-scattering measurements. Although
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the intramolecular interference factor P1(θ) for a copolymer has been
evaluated by Benoit and Wippler,48 the derived equation for P1(θ) in-
volves νA and νB , and is not of a form accessible to determination of
〈S2〉.

28c. Critical Opalescence

In the fluctuation theory described in Section 26a, we have confined
ourselves to “normal ” fluctuations, excluding critical and two-phase
regions. The normal density fluctuation, 〈(∆ρ)2〉/ρ2, is of order N−1.
However, at a critical point or in a two-phase system, 〈(∆ρ)2〉/ρ2, is of
order unity.49 That is, at a critical point, the density or concentration
fluctuation is so large that the scattered intensity becomes extremely
high. This phenomenon is well known as the critical opalescence.

According to the fluctuation theory,the Rayleigh ratio Rθ,0 for a
one-component system may be written, from Eq. (26.36), in the form,

Rθ,0 =
2π2ñ

λ4

(
∂ñ

∂ρ

)2

T

kTρ

/(
∂p

∂ρ

)

T

, (28.49)

where we have used the relation (∂p/∂ρ)T = (ρκ)−1 with κ the isother-
mal compressibility. Equation (26.40) for the (excess) Rayleigh ratio
for a two-component system may be rewritten in a similar form;

Rθ =
2π2ñ2

λ4

(
∂ñ

∂c

)2

T,p

kTc

/(
∂π

∂c

)

T

. (28.50)

At a critical point for a pure liquid, (∂p/∂ρ)T = 0 or κ = ∞, and Rθ,0

becomes infinite. Similarly, at a critical point (critical solution tem-
perature) for a solution, (∂π/∂c)T = −V −1

0 (∂µ0/∂c)T,p = 0, and Rθ

becomes infinite. In fact, however, at the critical point the scattered
intensity is very large, but finite. The inadequacy of Eq. (28.49) or
(28.50) near the critical point is due to the fact that in deriving them
there have been neglected correlations between density or concentra-
tion fluctuations in two volume elements. This problem was solved first
by Ornstein and Zernike,50 using a pair correlation function approach.
Subsequently several authors51−54 attempted different approaches, and
Fixman54 showed the equivalence of these approaches to that of Orn-
stein and Zernike. In this section, we first describe the pair correlation
function approach for one-component simple fluids, and then apply the
result to a binary solution.

We begin by deriving a basic equation for Rθ,0. Let αi be the
instantaneous polarizability in the volume element dRi at Ri, and α
its mean value. The instantaneous change ∆αi(= αi − α) in αi may
then be written, from Eq. (26.1), in the form,

∆αi =
ñ

2π
∆ñidRi

=
ñ

2π

(
∂ñ

∂ρ

)

T

∆ρidRi , (28.51)
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where ∆ñi and ∆ρi are the instantaneous changes in refractive index
and (number) density at Ri. Replacing αi in Eq. (27.6) by ∆αi, we
obtain for the scattered intensity I

I

I0
=

8π4(1 + cos2 θ)
λ4r2

〈G〉 (28.52)

with

〈G〉 =
ñ

4π2

(
∂ñ

∂ρ

)2

T

∑

i

∑

j

〈∆ρi∆ρj〉 exp(s′ ·Rij)dRidRj , (28.53)

where the average of G is assumed to be the grand canonical ensemble
average. Converting the sums to integrals in Eq. (28.53), we obtain for
the Rayleigh ratio Rθ,0

Rθ,0 =
2π2ñ2

λ4

(
∂ñ

∂ρ

)2

T

∫
〈∆ρ1∆ρ2〉 exp(s′ ·R)dR (28.54)

with R ≡ R12(= R2 −R1).
Let us now express the correlation of density fluctuations in terms of

the pair correlation function g(R). For specified configurations, {RN
′},

of all of the molecules, the singlet density ν(1)(R1) of molecules at R1

and the pair density ν(2)(R1,R2) of molecules at R1 and R2 are given
by55

ν(1)(R1) =
N∑

i=1

δ(R1 −Ri
′) ,

ν(2)(R1,R2) =
N∑

i=1

N∑

j=1

i6=j

δ(R1 −Ri
′)δ(R2 −Rj

′) . (28.55)

The averages of ν(1) and ν(2) are equal to the singlet and pair distri-
bution functions ρ(1) and ρ(2) given by Eq. (19.11), respectively;

〈ν(1)(R1)〉 = ρ(1)(R1) = ρ ,

〈ν(2)(R1,R2)〉 = ρ(2)(R1,R2) ≡ ρ2g(R12) . (28.56)

Since ∆ρ1 and ∆ρ2 are given by

∆ρ1 = ν(1)(R1)− ρ , ∆ρ2 = ν(1)(R2)− ρ , (28.57)

we have

∆ρ1∆ρ2 =
∑

i

δ(R1 −Ri
′)δ(R2 −Ri

′) + ν(2)(R1,R2)

−ρ[ν(1)(R1) + ν(1)(R2)] + ρ2 . (28.58)
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It is evident that the first term on the right-hand side of Eq. (28.58)
is equal to δ(R12)ν(1)(R1), and we therefore obtain, from Eqs. (28.56)
and (28.58),56

〈∆ρ1∆ρ2〉 = ρ{δ(R) + ρ[g(R)− 1]} . (28.59)

The great increase in the intensity of scattered light at the critical
point may be ascribed to the great extension of the range of R in which
[g(R) − 1] is sensibly nonvanishing; and the contribution of g(R) for
small R to the integral of (28.54) is of minor importance. We may
therefore use the asymptotic form of g(R) in Eq. (28.54) with (28.59).
Now, the pair correlation function or the function G(R) ≡ g(R)− 1 is
related to the direct correlation function X(R) by the Ornstein–Zernike
equation,57

G(R12) = X(R12) + ρ

∫
X(R13)G(R32)dR3 . (28.60)

When X is explicitly given, Eq. (28.60) is an integral equation for
g. For example, in the Percus–Yevick equation, X is simply given by
X = g(1− eu/kT ),58, 59 where u is the intermolecular potential energy.
In general, X is a short-range function (X → 0 and g → 1, as R →∞).
Therefore, we expand the function G(R32) around R13 = 0 in the
integrand of Eq. (28.60);

G(R32) = G(R12 −R13)
= G(R12)+R13 · ∇1G(R12)+ 1

2R13R13 : ∇1∇1G(R12)+ · · · ,

(28.61)

where we neglect terms higher than R13R13. Recalling that X is spher-
ically symmetric, substitution of Eq. (28.61) into Eq. (28.60) leads to

G(R12) = X(R12) + ρ

∫
X(R13)dR13G(R12)

+
ρ

6

∫
R 2

13 X(R13)dR13∇ 2
1 G(R12) . (28.62)

At large R12, the leading term on the right-hand side of Eq. (28.62)
may be put equal to zero. Then Eq. (28.62) reduces to the differential
equation,

∇2G− σ2G = 0 , (28.63)

where

σ2 =
6
l2

[
1

ρ
∫

X(R)dR
− 1

]
(28.64)

with

l2 ≡
∫

R2X(R)dR∫
X(R)dR

. (28.65)
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Clearly, the parameter l is a measure of the range of intermolecular
forces. The spherically symmetric solution of Eq. (28.63) gives the
desired asymptotic form of G, that is,50, 52, 60

G(R) =
A

R
e−σR . (28.66)

The constants σ and A may be determined from the compressibility
equation of (17.12), that is,

ρ

∫
G(R)dR = ρκkT − 1 . (28.67)

Integrating both sides of Eq. (28.60) over R12 and combining the result
with Eq. (28.67), we obtain

ρ

∫
X(R)dR = 1− 1

ρκkT
. (28.68)

Substitution of Eq. (28.68) into Eq. (28.64) leads to

σ2 =
6

l2(ρκkT − 1)
. (28.69)

Substitution of Eq. (28.66) into Eq. (28.67) with the use of Eq. (28.69)
leads to

A =
3

2πρl2
. (28.70)

By the use of Eq. (28.59) with (28.66), the integral in Eq. (28.54)
may now be evaluated to be

∫
〈∆ρ1∆ρ2〉 exp(s′ ·R)dR = ρ

[
1 +

6
l2(σ2 + v2)

]
(28.71)

with
v =

4π

λ′
sin(θ/2) . (28.72)

Since l/λ′ ¿ 1, and near the critical point lσ ¿ 1(κ ≈ ∞), the first
term on the right-hand side of Eq. (28.71) is negligible compared to the
second term. From Eqs. (28.54) and (28.71), we then have

Rθ,0 =
2π2ñ2

λ4

(
∂ñ

∂ρ

)2

T

kTρ

/[(
∂p

∂ρ

)

T

+
1
6
kT l2v2

]
. (28.73)

This result is equivalent to those obtained by Ornstein and Zernike50

and by Fixman.54 When the v2 term is negligible compared to (∂p/∂ρ)T ,
Eq. (28.73) reduces to Eq. (28.49). We note that at the critical point
[(∂p/∂ρ)T = 0] the Rθ,0 given by Eq. (28.73) is finite except at θ = 0
and is proportional to λ−2 instead of λ−4.

Next we discuss the critical opalescence of a binary solution. Debye53

solved this problem, based on the contribution of the square of the
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concentration gradient to the local free energy. However, the excess
Rayleigh ratio may be obtained indirectly from Eq. (28.73) by replac-
ing the pressure p by the osmotic pressure π and regarding ρ as the
number of solute molecules per unit volume of solution. That is,

NAKc2

Rθ
=

φ

kT

(
∂π

∂φ

)

T

+
φl2v2

6V0x
, (28.74)

where K is given by Eq. (25.26), φ is the volume fraction of the solute,
V0 is the molecular volume of the solvent, and x is the ratio of the
molecular volumes of the solute and solvent (note that ρ = φ/V0x ∝ c).
We adopt the Flory–Huggins expression for the chemical potential µ0

of the solvent,61

µ0/kT = ln(1− φ) + (1− x−1)φ + χφ2 , (28.75)

where the parameter χ is the same as that appearing in Eq. (11.13).
From Eqs. (26.43) and (28.75), we then have

φ

kT

(
∂π

∂φ

)

T

= φ2

[
1

V0(1− φ)
+

1
V0xφ

− 2χ

V0

]
. (28.76)

Since at the critical point (∂µ0/∂φ)T,p = 0, and (∂2µ0/∂φ2)T,p = 0, we
obtain62

φc =
1

1 + x1/2
, (28.77)

χc =
(1 + x1/2)2

2x
, (28.78)

where the subscript c refers to the critical point. Let us now assume
that an experiment is carried out with a homogeneous solution above
the critical temperature Tc at the critical concentration φc, and that
the temperature is gradually lowered until T reaches Tc. Further we
assume that near the critical point χ is given by

χ =
1
2

+
1

2x1/2
+

BV0

2kT
. (28.79)

From Eqs. (28.76) to (28.79), we then obtain

φc

kT

(
∂π

∂φ

)

T,φc

=
2φ 2

c

V0
(χc − χ) =

Bφ 2
c

kT

(
T

Tc
− 1

)
, (28.80)

xV0Bφc = kTc . (28.81)

With these relations, Eq. (28.74) may be rewritten in the form,

C

Rθ
=

Tc

T

[(
Tc

T
− 1

)
+

8π2l2

3(λ′)2
sin2(θ/2)

]
, (28.82)

where we have assumed T ≈ Tc in the second term in the square brack-
ets, and C is a constant characteristic of the system at the critical
point. Equation (28.82) is equivalent to the result derived by Debye.
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TABLE V.1. OBSERVED VALUES OF THE PARAMETER l FOR
POLYSTYRENE IN CYCLOHEXANE63, 64

〈M〉w × 10−4 Tc (◦C) φc (%) l (Å) 〈S2〉1/2 (Å)

8.0 19.24 6.8 23.8 —
12.3 21.82 5.6 26.6 —
15.3 23.19 5.0 28.4 —
23.9 24.95 4.6 30.0 —
25.3 25.09 4.3 33.3 —
56.9 27.79 2.8 42.1 —

119 29.00 2.0 50.1 143 (30◦C)
350 29.18 1.25 66.1 186 (45◦C)

From Eq. (28.82), the intensity of light scattered from a solution
near the critical point is seen to exhibit very large angular dissym-
metry. Thus, for the case of solutions of polymers of relatively low
molecular weights, Debye attempted to determine the parameter l by
means of Eq. (28.82), regarding l2 as equal to the mean-square radius
〈S2〉 of the polymer. In this connection, we note that for polymers of
low molecular weight such that 〈S2〉1/2 < λ/20, the angular dissym-
metry of scattered light is so small that the usual method based on
Eq. (27.36) fails in the accurate determination of 〈S2〉. In practice, the
usual method is confined to the case for which 〈S2〉1/2 > 200 Å. On the
contrary, Eq. (28.82) may be used to determine much smaller l when
T approaches Tc. In Table V.1 are given the data obtained by Debye
et al.63, 64 for polystyrene in cyclohexane. It is seen that l is unexpect-
edly much smaller than 〈S2〉1/2. There is, of course, no explicit relation
between the defining equations for l2 and 〈S2〉, and we do not further
discuss the differences between their observed values.

28d. Some Other Topics

In this chapter, so far, we have not considered the difference between
the frequencies of the incident and scattered light. However, there will
be a frequency distribution of the scattered light about the Rayleigh line
(of the same frequency as that of the incident light), which arises from
the thermal Brownian motion of scattering particles. Such Doppler
shifts are, of course, small; their region is much closer to the Rayleigh
line than the Raman region. However, the recent development of the
optical maser offers hope for future high precision experimental work
in this field, which will yield valuable information concerning thermal
motions in pure liquids and in polymer solutions. Thus, we give a
brief description of the theory of Pecora,65 which will be useful for the
analysis of such experiments. Now, the quantity that we need in this
case is not the total scattered intensity, but the intensity, I(ω)dω, of
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the scattered light whose angular frequency is between ω and ω + dω.
The quantity I(ω), called the spectral density, may be defined by56, 66

I(ω) =
1
2π

∫ +∞

−∞
〈E(0) ·E∗(t)〉 exp(iωt)dt , (28.83)

where E(t) is the radiation field at time t, and asterisk indicates the
complex conjugate. Starting with Eq. (27.3), we obtain for the Rayleigh
ratio Rθ,0(ω) associated with I(ω) for pure liquids

Rθ,0(ω) =
πñ2

λ4

(
∂ñ

∂ρ

)2

T

∫
〈∆ρ1(0)∆ρ2(t)〉 exp(s′ ·R− it∆ω)dR dt ,

(28.84)
where ∆ω is the difference between the angular frequencies of the in-
cident and scattered waves. Integration of Rθ,0(ω) over ω from −∞
to +∞ gives the Rθ,0 given by Eq. (28.54), because the integral of
exp(−it∆ω) is 2πδ(t). It is convenient to introduce a space-time corre-
lation function C(R, t) defined by

〈∆ρ1(0)∆ρ2(t)〉 = ρ[C(R, t)− ρ] . (28.85)

For a more explicit definition of C(R, t), see Appendix V C. The func-
tion C(R, t) is the probability density that if there was a molecule at the
origin at time zero, then there will be one at R at time t. For the case
of polymer solutions, Rθ(ω) may easily be obtained, from Eq. (28.84),
as

Rθ(ω) =
KMc

2πn

∫
C0(R, t)CI(R′, t) exp[s′ · (R+R′)− it∆ω]dRdR′dt ,

(28.86)
where C0(R, t) is the space-time correlation function for the center of
mass of the same molecule, and CI(R′, t) is that for two segments of
the same molecule. Evaluation of C0 and CI requires a knowledge
of polymer dynamics (Chapter VI). Thus we describe only the final
results. For flexible-chain polymers, the spectrum associated with the
center of mass is approximately Lorentzian with a half-width of order
10 sec−1; and the spectrum associated with segmental motions is a sum
of Lorentzians centered about the incident frequency each with a half-
width inversely proportional to the relaxation time of a given normal
mode. The longest mode contributes most to the line intensity, and
the half-width due to it is of order 104 sec−1. The spectrum associated
with the rotation of a rod molecule about its center of mass is also
Lorentzian with a half-width of order 102 − 106 sec−1.

Our final remarks are concerned with the effects of short-range in-
terferences in a polymer chain on the scattered intensity. As mentioned
in Section 9a, even for unperturbed chains, the Markoff nature dose not
hold for short chains, and 〈R 2

ij 〉0 is not proportional to |j − i| when
|j−i| is small. Strictly, therefore, Eqs. (27.33) and (27.34) are not exact.
Recently Flory and Jernigan67 investigated this problem on the basis
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of the rotational isomeric state model, and concluded that Eq. (27.34)
is remarkably accurate even for short chains in the case of polymethy-
lene. In a similar sense, the second line of Eq. (28.18) is not exact,
since it has been derived on the assumption that there is no correlation
between bonds in a polymer chain. Without this assumption, it is, of
course, quite difficult to develop a theory of light scattering from poly-
mers composed of optically anisotropic segments. However, we note
that Jernigan and Flory68 have estimated the degree of depolarization
for n-alkanes, still using the rotational isomeric approximation.

Appendix V A. The Electromagnetic Field Due to
an Oscillating Electric Dipole

We show a calculation of the radiation field due to an oscillating electric
dipole in a homogeneous dielectric medium of dielectric constant ε = ñ2

with ñ its optical refractive index. This is an elementary application of
electromagnetic theory (Maxwell’s equations).69 For simplicity, suppose
that the oscillating dipole is induced along a wire of length L which
is placed on the x axis with its center at the origin, as depicted in
Fig. V.II.70 The oscillating dipole moment p may then be written in
the form,

p = p0 exp(iωt)
= qL = qLex , (V A.1)

where ω is the angular frequency, and q is the electric charge on the
upper end of the wire, the charge on the lower end being −q. Therefore,
q is given by

q = q0 exp(iωt) (V A.2)

with p0 = q0L. Thus, an electric current flows in the wire, and its
magnitude J is given by

J =
dq

dt
= iωq0 exp(iωt) , (V A.3)

the positive direction of J being that of ex.
Now, the retarded magnetic vector potential A(r, t) at the point

P (r) of observation, which is produced by the time-varying current J ,
may be expressed in the form,

A(r, t) =
ex

c̃

∫ L/2

−L/2

1
R

J(x′, y′, z′, t−R/c̃′)dx′ , (V A.4)

where c̃ and c̃′ are the velocities of light in a vacuum and the medium,
respectively, and R is the distance between the point P ′(x′, y′, z′) (with
y′ = z′ = 0) on the wire and the point P . We now assume that L ¿ r
and that L ¿ λ′ with λ′ the wavelength of light in the medium. From
the first assumption, we may have R−1 ≈ r−1 in the integrand of Eq.
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Fig. V.11. Model of an oscillating electric dipole.

(V A.4). From the second assumption, the quantity ω(t−R/c̃′) may be
replaced by ω(t− r/c̃′), because the error is at most ωL/c̃′ = 2πL/λ′.
Then, the integrand of Eq. (V A.4) becomes independent of x′, and we
therefore have

A(r, t) = ex
iωq0L

c̃r
exp[iω(t− r/c̃′)]

= {ṗ}/c̃r , (V A.5)

where the curly brackets indicate that t is to be replaced by the retarded
time (t − r/c̃′), and {ṗ} = d{p}/dt. The magnetic field H due to the
current J is

H = ∇×A . (V A.6)

Using the Maxwell equation for a nonconducting dielectric medium,

∇×H =
ε

c̃

∂E
∂t

, (V A.7)

We obtain for the electric field E at r

E =
c̃

ε

∫
(∇×H)dt =

c̃

ε
∇×∇×

∫
A dt . (V A.8)

Substitution of Eq. (V A.5) into Eqs. (V A.8) and (V A.6) leads to

E =
1
ε
∇×∇× {p}

r
, (V A.9)

H =
1
c̃
∇× {ṗ}

r
. (V A.10)
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Equations (V A.9) and (V A.10) may be rewritten as

E =
r× (r× {p̈})

ε(c̃′)2r3
+

r× (r× {ṗ}) + 2r(r · {ṗ})
εc̃′r4

+
3r(r · {p})− r2{p}

εr5
,

(V A.11)

H = −r× {p̈}
c̃c̃′r2

− r× {ṗ}
c̃r3

. (V A.12)

If r À λ′, E and H may be approximated by the leading terms in
Eqs (V A.11) and (V A.12), respectively;

E = −
(

ω

c̃

)2 r× (r× {p})
r3

, (V A.13)

H = ñ

(
ω

c̃

)2 r× {p}
r2

, (V A.14)

where we have used the relations, {ṗ} = iω{p}, {p̈} = −ω2{p}, c̃′ =
c̃/ñ, and ε = ñ2. Equations (V A.13) and (V A.14) give the desired
radiation field.

Appendix V B. Angular Distributions for Rigid Sphere
and Rod Molecules

In this appendix, we discuss the intramolecular interference factor P1(θ)
for rigid macromolecules. A rigid macromolecule may be treated as
a continuum of scattering units, and P1(θ) may be evaluated from
Eq. (27.30). Then, the Rayleigh ratio is given by Rθ = KMcP1(θ) at
infinite dilution. However, we note that this is true when the difference
between the refractive indices of the particle and medium is small as in
the case of polymer solutions; otherwise, a very complicated scattering
pattern is observed, arising from the Mie effect,22, 71 i.e., interactions
of the field and the scattering units.

We first consider a rigid sphere molecule of radius S̄. In this case,
the scattering units of the sphere may be regarded as localized, and it
is unnecessary to take the configurational average in Eq. (27.30). P1(θ)
may then be calculated from

P1(θ) =
∣∣∣∣n−1

∑

i

exp(s′ · Si)
∣∣∣∣
2

, (V B.1)

where Si is the distance between the ith unit (volume element) and the
center of the sphere. The sum in Eq. (V B.1) may be converted to an
integral. Using polar coordinates with the z axis in the direction of s′,
Eq. (V B.1) may be rewritten in the form,

P1(θ) =
[

2π

vm

∫ S

0

∫ π

0

exp(s′ · r)r2 sin θ′ dr dθ′
]2

, (V B.2)
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Fig. V.12. P1(θ) plotted against u1/2 (for unperturbed flexible chains) or u

(for spheres and rods).25 Curve 1: unperturbed flexible chains. Curve 2: spheres

Curve 3: rods.

with vm the volume of the sphere. The result is4, 72

P1(θ) = [3u−3(sinu− u cosu)]2 (for spheres) (V B.3)

with
u = (4πS̄/λ′) sin(θ/2) . (V B.4)

In general, for rigid molecules other than spheres, the configu-
rational average is concerned with the orientation of the molecule.
This orientation may be assumed to be uniform in all directions, and
Eq. (27.30) may be rewritten in the form,

P1(θ) = n−2
∑

i

∑

j

1
2

∫ π

0

exp(s′ ·Rij) sin θ′ dθ′

= n−2
∑

i

∑

j

sin(2πsRij/λ′)
(2πsRij/λ′)

. (V B.5)

For example, P1(θ) for a rod molecule of length l may be conveniently
calculated from Eq. (V B.5). Replacing the summations by integra-
tions, we obtain

P1(θ) =
2
l2

∫ l

0

(l − r)
sin(2πsr/λ′)
(2πsr/λ′)

dr ,
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Fig. V.13. D/λ′ as a function of the dissymmetry ratio q.25 Curve 1: unperturbed

flexible chains. Curve 2: spheres. Curve 3: rods.

that is,4, 73, 74

P1(θ) =
1
u

∫ 2u

0

sin x

x
dx−

(
sin u

u

)2

(for rods) (V B.6)

with
u = (2πl/λ′) sin(θ/2) . (V B.7)

Although similar calculations for rigid macromolecules of other shapes
have also been made,75, 76 the results can be expressed only in series
forms, and we do not reproduce them here.

For illustrative purposes, in Fig. V.12 are plotted the values of P1(θ)
calculated from Eq. (27.34) for unperturbed flexible chains, Eq. (V B.3)
for spheres, and Eq. (V B.6) for rods against u1/2 (for chains) or u
(for spheres and rods). Let us now define a dissymmetry ratio q by
q = P1(45◦)/P1(135◦). The ratio D/λ′ with D = 2S̄, l, or 〈R2〉 1/2

0 is
plotted in Fig. V.13 against q. This indicates that measurements of q
enable us to determine molecular dimensions when the molecular shape
is known.

Finally, we note that Jennings and Jerrard77 have recently reported
light-scattering studies on solutions of polar or electrically anisotropic
rod molecules (tobacco mosaic virus) in the presence of an applied
electric field, which results in changes of the angular distribution of
the scattered intensity, and leads to a determination of the permanent
dipole moment of the molecule.
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Appendix V C. The Space-Time Correlation Function

For specified configurations, {RN
′(t)}, of all of the molecules at time

t, the density fluctuation ∆ρj(t) at Rj is given by

∆ρj(t) =
N∑

i=1

δ[Rj −Ri
′(t)]− ρ . (V C.1)

We therefore have

〈∆ρ1(0)∆ρ2(t)〉 =
〈∑

i

∑

j

δ[R1 −Ri
′(0)]δ[R2 −Rj

′(t)]
〉
− ρ2 .

(V C.2)
Comparing Eq. (28.85) with Eq. (V C.2), we find an alternative explicit
expression for the space-time correlation function C(R, t) with R ≡
R12,

C(R, t) =
1
ρ

〈∑

i

∑

j

δ[R1 −Ri
′(0)]δ[R2 −Rj

′(t)]
〉

. (V C.3)

Now, taking the Fourier transform of both sides of Eq. (V C.3), we
obtain∫

C(R, t) exp(s′ ·R)dR =
1
V

∫
C(R, t) exp[−s′ · (R1 −R2)]dR1 dR2

=
1
N

〈∑

i

∑

j

exp{−s′ · [Ri
′(0)−Rj

′(t)]}
〉

.

(V C.4)

Then inverse Fourier transformation leads to

C(R, t) =
1

8π3N

∫ 〈∑

i

∑

j

exp{−s′ · [Ri
′(0)−Rj

′(t)]}
〉

× exp{−s′ ·R)d(s′/i) . (V C.5)

This is the original definition of C(R, t) by Van Hove.78

When t = 0, Eq. (V C.4) reduces to
〈∑

i

∑

j

exp(s′ ·Rij)
〉

= N

∫
C(R, 0) exp(s′ ·R)dR (V C.6)

with Rij = Rj
′(0) −Ri

′(0). The ensemble average on the left-hand
side of Eq. (V C.6) may easily be written as
〈∑

i

∑

j

exp(s′ ·Rij)
〉

= N

∫
[δ(R) + ρg(R)] exp(s′ ·R)dR . (V C.7)

From Eqs. (V C.6) and (V C.7), we have

C(R, 0) = δ(R) + ρg(R) . (V C.8)

This is consistent with the result obtained from Eqs. (28.59) and (28.85).
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Chapter Six

Frictional and
Dynamical Properties
of Dilute Solutions

29. Introduction

In this chapter we turn to the study of the nonequilibrium properties
of dilute polymer solutions, for example, the viscosity, the sedimen-
tation coefficient, and the diffusion coefficient. When the solution is
infinitely dilute, all these properties are intimately related to the molec-
ular dimensions discussed in Chapters II and III, and their measure-
ment provides a useful method of molecular characterization. Theoret-
ical investigation of the solution viscosities of flexible-chain polymers
was pioneered by a number of workers1−5 in the late 1930s through
the mid-1940s. Most of the investigations were intended to deduce
the so-called Staudinger rule which states that the quantity [η], now
called the intrinsic viscosity, is proportional to the polymer molecu-
lar weight. However, it was the Kirkwood–Riseman theory,6 published
in 1948, which provided the foundation for later significant advances
in this field. Besides the frictional properties such as the viscosity in
steady flow, the sedimentation velocity, and the diffusion coefficient, the
nonequilibrium properties of polymer solutions include those dynami-
cal phenomena which involve fluid flow and mechanical and electrical
responses to an external applied force, mechanical or electrical, varying
with time. Some of these problems are also discussed in this chapter.

There are three basic ideas in the development of the theory of the
frictional properties of polymer solutions. First, the solvent is regarded
as a continuous viscous fluid. For rigid solute molecules, hydrody-
namics may then be used to calculate the viscosity and friction coef-
ficients. Typical examples are provided by Stokes’ law and Einstein’s
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calculation7 of the intrinsic viscosity of rigid sphere molecules. The sec-
ond point is concerned with chain polymers. For these molecules, the
elements or segments constituting the polymer chain may be considered
to be the centers of resistance to the flow. Then the fluid velocity at the
point of location of each segment will be perturbed by the presence of
the other segments. The effects of these perturbations are cooperative
and lead to specific hydrodynamic interactions. When the solution is
not dilute, there exist not only intramolecular but also intermolecular
hydrodynamic interactions. A discussion of hydrodynamic interactions
was given first by Burgers,8 and subsequently by Hermans,3 Peterlin,9

and Kirkwood and Riseman,6 using the Oseen formula10 which arises
as a solution of the Navier–Stokes equation of hydrodynamics. In all
the later developments, the formulation of the hydrodynamic interac-
tion is based on the Kirkwood–Riseman method. The third basic point
is that it is necessary to take into account the Brownian motion of the
solute molecule. A nonspherical molecule under the influence of an ex-
ternal force field, or fluid flow, will undergo irregular motion such as
is characteristic of Brownian motion, in addition to a regular motion
determined by the force field. For example, the disorienting effect of
Brownian motion on a rod molecule in shear flow is well known. Of
course, this particular effect disappears for rigid sphere molecules. In
the case of flexible-chain polymers, the influence of internal (segmen-
tal) Brownian motion becomes important. In general, the analysis of
the motion of the molecule under these circumstances may be conve-
niently carried through using the generalized diffusion equation which
is satisfied by the molecular distribution function.

One of the important objectives of this chapter is to study the ef-
fects of the excluded volume on the frictional properties in order to
complete the two-parameter theory of the equilibrium and nonequilib-
rium properties of dilute polymer solutions. However, very few such
investigations have been published, and many of the sections of this
chapter are necessarily restricted to the study of unperturbed chains.
Indeed, there have been a number of significant advances in the theory
of the frictional properties of unperturbed chains, especially in relation
to the problems of the chain structure. This newly developing field is
reviewed in Section 36.

30. Some Fundamentals

This section presents the fundamental physical analysis of the frictional
properties of polymer solutions. We give a brief description of the phe-
nomenological theory of viscosity, sedimentation, and diffusion along
with the terminology and the definitions of the physical quantities to
be evaluated in this chapter. Basic expressions for some of these quan-
tities are derived. We also describe briefly the theory of Brownian
motion in order to make clear the relationship between the friction and
diffusion coefficients, and to underpin our discussion of the generalized
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diffusion problem.

30a. The Viscosity Coefficient

30a(i). Stress and Strain Tensors

Consider three planes passing through a point in a continuous viscous
fluid, and perpendicular to the x, y, and z axes of a Cartesian coordi-
nate system. The force, per unit area, exerted across the first plane by
the fluid on the positive side of that plane on the fluid on the negative
side of that plane may be decomposed into x, y, and z components,
which we denote by σxx, σxy, σxz, respectively. Similarly, the force
across the second plane may be decomposed into σyx, σyy, σyz, and the
force across the third plane into σzx, σzy, σzz. The force σν per unit
area, i.e., the stress, exerted across any surface with unit normal vector
eν by the fluid on the positive side∗ on the fluid on the negative side
may be expressed in terms of these nine components of the force; that
is,

σν = σeν , (30.1)

where σ is the stress tensor (whose components are σxx, σxy, and so
on). When the fluid on one side of the surface moves with respect to
the other, the tangential component of σν does not vanish. This is
the fundamental characteristic of a viscous fluid. It can be shown that
the stress tensor is symmetric. It is sometimes convenient to use the
subscript i, j, . . ., instead of x, y, and z; i, j, . . ., take the values 1, 2,
and 3, corresponding to the components of vectors and tensors along
the x, y, and z axes, respectively. We may then write

σij = σji . (30.2)

Let v be the velocity of the fluid at the point r = (x, y, z) =
(x1, x2, x3). We then have

dv = gdr , (30.3)

where g is a tensor whose components are given by

gij =
∂vi

∂xj
. (30.4)

Now g may be split into symmetric and antisymmetric parts:

g = f + Ω , (30.5)

the components of f and Ω being

fij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
= fji , (30.6)

∗The positive side of a surface is taken as the side on which the unit normal
vector of the surface is positive.
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Ωij =
1
2

(
∂vi

∂xj
− ∂vj

∂xi

)
= −Ωji . (30.7)

The contribution of Ω to dv may be written as

Ωdr = ω × dr , (30.8)

where ω is a vector whose components are Ω32, Ω13, and Ω21. In other
words, the antisymmetric tensor Ω is associated with the rotation of
the fluid about the point r, the angular velocity being ω. Thus, the
symmetric tensor f represents the deformation of the fluid, and is called
the strain tensor. For an incompressible fluid, the volume is constant,
and we therefore have

∇ · v = trace f = 0 . (30.9)

In the classical hydrodynamics of viscous incompressible fluids, the
relationship between the stress and strain is given by11

σij = −pδij + 2ηfij , (30.10)

where p is the pressure, and the quantity η is called the shear viscosity
coefficient. That is,

σij = η

(
∂vi

∂xj
+

∂vj

∂xi

)
for i 6= j

= −p + 2η
∂vi

∂xi
for i = j . (30.11)

The off-diagonal components σij are called the shear stresses, while the
diagonal components σii represent the normal stresses.

We now consider the simple case for which the velocity field of the
fluid is given by

vx = gy , vy = 0 , vz = 0 . (30.12)

This two-dimensional flow can be generated by the motion of one of
two parallel plates. If the plates are both perpendicular to the y axis,
and one is moved with a constant velocity in the direction of the x axis,
as depicted in Fig. VI.1, then Eq. (30.12) describes the flow field. The
rate of shear or velocity gradient is g. In this case, the shear stress σxy

becomes

σxy = η
∂vx

∂y
= ηg . (30.13)

Further, we may write v = gr, and the symmetric and antisymmetric
parts of g are then given by

f =




0 1
2g 0

1
2g 0 0
0 0 0


 , (30.14)



SEC. 30. Some Fundamentals 261

Fig. VI.1. The velocity field given by Eq. (30.12).

Ω =




0 1
2g 0

− 1
2g 0 0
0 0 0


 . (30.15)

The angular velocity associated with the Ω given by Eq. (30.15) is
ω = (0, 0,− 1

2g), corresponding to rotation of the fluid about the z
axis. On the other hand, the velocity associated with the deformation
is fr = ( 1

2gy, 1
2gx, 0). The stram lines for this part of the flow can be

determined from the differential equation, dx/(fr)x = dy/(fr)y; that is,
they are hyperbolas with the equation, x2−y2 =const. The deformation
and rotation components of the flow (30.12) are shown in Fig. VI.2.

A fluid whose shear viscosity is independent of g is called a New-
tonian fluid, while a fluid whose shear viscosity depends on g is called
a non-Newtonian fluid. In general, polymer solutions exhibit non-
Newtonian viscosities at large g. In this book, however, most of the
calculations are limited to consideration of the zero-shear viscosity.

30a(ii). Intrinsic Viscosity

Let η and η0 be the viscosity coefficients of the solution and solvent,
respectively. For dilute solutions η may be expanded in powers of the
solute concentration c(g/cc);

η = η0(1 + a1c + a2c
2 + · · ·) . (30.16)

Clearly, the coefficient a1 represents the relative increase in viscosity
per solute molecule, and is a quantity concerned with a single solute
molecule. This coefficient is called the intrinsic viscosity and denoted
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Fig. VI.2. Stream lines for the deformation and rotation components of the flow

given by Eq. (30.12).

by [η]. We then have

a1 ≡ [η] = lim
c→0

η − η0

η0c
. (30.17)

We now derive a basic expression for the intrinsic viscosity of flexible-
chain polymers. Suppose that before and after the introduction of the
solute molecules, the fluids (solvent and solution) have the same veloc-
ity field given by Eq. (30.12), i.e., v = (gy, 0, 0). Let σν and σ 0

ν be the
stresses exerted across a unit area S with unit normal vector eν in the
solution and solvent, respectively. We evaluate the increase (σν −σ 0

ν )
in stress (at constant rate of shear) due to the introduction of the poly-
mer molecules, following the procedure of Kramers.4 The stress will be
increased only when the bonds of the polymer chains intersect the plane
S, and the tensions in the bonds are transformed into the stress. That
is, the tension Tj in the jth (effective) bond of a chain is just its contri-
bution to (σν−σ 0

ν ) if the sign of Tj is chosen as shown in Fig. VI.3. If
rj is the jth bond vector and ρ is the number of polymer molecules in
a unit volume, the number of the jth bonds which intersect the plane
S is ρ(rj · eν)P ({rn})d{rn} for a given configuration {rn}. Since all
bonds of a chain (of n bonds) and all configurations contribute to the
excess stress, we obtain

σν = σ 0
ν + ρ

n∑

j=1

∫
Tj(rj · eν)P ({rn})d{rn}
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Fig. VI.3. Contribution of the tension in the jth bond of a chain to the excess

stress across a plane S.

= σ 0
ν + ρ

∑

j

〈Tj(rj · eν)〉 . (30.18)

Now, the equation of motion for the jth segment, or “bead,”of mass m
is

mR̈j = Tj+1 −Tj − Fj (30.19)

where Rj is the position vector of the jth segment, and −Fj is the
frictional force exerted by the fluid on the jth segment.∗ Since the
inertia term may be neglected, Eq. (30.19) reduces to

Fj = Tj+1 −Tj (j = 0, 1, 2, . . . , n) (30.20)

with T0 = Tn+1 = 0. Substitution of Eq. (30.20) into Eq. (30.18) leads
to

σν = σ 0
ν − ρ

∑

j

〈Fj(Rj · eν)〉 , (30.21)

where we have used the relation, rj = Rj −Rj−1 In particular, if we
take eν = ey, the x component of σν becomes

σxy = σ 0
xy − ρ

∑

j

〈(Fj · ex)(Rj · ey)〉 . (30.22)

Recalling that σxy = ηg for the flow under consideration, we obtain

η = η0 − ρ

g

∑

j

〈(Fj · ex)(Rj · ey)〉 . (30.23)

∗The jth segment exerts the force Fj on the fluid. In Eq. (30.19), we have
omitted a fluctuating force, which makes no contribution to the final result. For a
discussion of the role of the fluctuating force, see the next section.
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From Eqs. (30.17) and (30.23), we find

[η] = − NA

Mη0g

∑

j

〈(Fj · ex)(Rj · ey)〉

= − NA

Mη0g

∑

j

〈Fjxyj〉 , (30.24)

where NA is the Avogadro number, M is the molecular weight of the
polymer, and in the second line we have put Fj ·ex = Fjx and Rj ·ey =
yj , for simplicity. The configurational average in Eq. (30.24) is to be
evaluated at infinite dilution.

Alternatively the basic equation (30.24) for the intrinsic viscosity
may be obtained from a consideration of energy dissipation. If v 0

j

is the original velocity of the solvent fluid at the point of location of
the jth segment, the work done in unit time by the fluid for the jth
segment is −Fj · v 0

j , which is equal to −gFjxyj since v 0
j = (gyj , 0, 0).

The increase in energy loss in unit time and in unit volume due to the
presence of polymer molecules is therefore, on the average, equal to

w = −ρg
∑

j

〈Fjxyj〉 . (30.25)

Suppose now that one of the two parallel plates of area A at a distance
h is moving with the velocity v = gh with respect to the other (which is
at rest). Then the frictional force on the moving plate of F = ηgA, and
the displacement of this plate per unit time is v = gh. Furthermore,
the total amount of work dissipated in the volume Ah per unit time is
Fv = ηg2Ah, and we have

w = (η − η0)g2 . (30.26)

From Eqs. (30.25) and (30.26), we recover Eq. (30.23), and therefore
Eq. (30.24).

Finally, we consider the case for which the rate of shear is harmonic
function of time,

g = g0 exp(iωt) . (30.27)

Then, the viscosity coefficient of a polymer solution is complex, and
we denote it by η̄ = η′ − iη′′. The complex viscosity coefficient η̄
is phenomenologically related to the complex rigidity modulus Ḡ =
G′ + iG′′ by the equation,

Ḡ = iωη̄ . (30.28)

The complex intrinsic viscosity [η̄] and complex intrinsic rigidity [Ḡ]
are defined by

[η̄] ≡ lim
c→0

η̄ − η0

η0c
= [η′]− i[η′′] , (30.29)

[Ḡ] ≡ lim
c→0

Ḡ− iωη0

c
= [G′] + i[G′′] . (30.30)
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From Eqs. (30.28) to (30.30), we obtain

[Ḡ] = iωη0[η̄] ,
[G′] = ωη0[η′′] ,
[G′′] = ωη0[η′] . (30.31)

Clearly [η̄] is given by Eq. (30.24) with Eq. (30.27). At high frequency,
the imaginary part of [η̄] does not vanish as seen in later sections,
and the polymer solution exhibits rigidity. Sometimes [η′] is called the
intrinsic dynamic viscosity, and [G′] and [G′′] are called the intrinsic
storage modulus and the intrinsic loss modulus, respectively.

30b. The Friction Coefficient

If F is the force applied in the center of mass of a molecule immersed in a
solvent to produce its velocity u, the (translational) friction coefficient
f of the molecule is defined by

F = fu . (30.32)

For flexible-chain polymers, F is equal to the sum of the average forces
exerted on the fluid by the individual segments of the molecule,

F =
n∑

j=0

〈Fj〉 . (30.33)

The friction coefficient is one of the important quantities to be evalu-
ated in this chapter, and is related to the sedimentation and diffusion
coefficients which can be determined experimentally.

30b(i). Sedimentation Coefficient

A force field as great as several hundred thousand times the acceleration
of gravity can be obtained by the use of an ultracentrifuge. In such
a field there results a flow of polymer, recognizable as a velocity u
of the polymer molecule in solution. The centrifugal force acting on
the molecule located at a distance r from the axis of rotation is F =
(M/NA)×(1−v̄ρ̄)ω2r, with ω the angular velocity, v̄ the partial specific
volume of the polymer, and ρ̄ the density of the solution, (1− v̄ρ̄) being
the correction factor for buoyancy. This force is equal to the frictional
force fu. The sedimentation coefficient s is then defined by

s ≡ u

ω2r
=

M(1− v̄ρ̄)
NAf

. (30.34)

In general, f and s depend on concentration, and may be expanded as
follows,

f = f0(1 + ksc + · · ·) , (30.35)
1
s

=
1
s0

(1 + ksc + · · ·) (30.36)
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with f0 and s0 the friction and sedimentation coefficients at infinite
dilution, respectively.

We note that Eq. (30.34) for the sedimentation velocity is valid
only when the ultracentrifuge is operated with high speed. In the case
of low-speed operation, the effect of diffusion, of Brownian motion,
must be taken into account. The concentration as a function of the
position and time is then given by a solution of a partial differential
equation for the diffusion process under the influence of an external
force [see Section 30c], namely the Lamm equation.12 The approach to
sedimentation equilibrium will not be discussed here.

30b(ii). Diffusion Coefficient

When there is a concentration gradient in solution, it gives rise to a flow
of matter which tends to make the concentration uniform throughout
the solution. This is the diffusion process. Suppose that a concentration
gradient exists in the direction of the x axis. The current density
J (i.e., the flow of solute molecules per unit time across a unit area
perpendicular to the x axis) is given by Fick’s equation,

J = −D
∂c

∂x
. (30.37)

The coefficient D is known as the (translational) diffusion coefficient.
Combining Eq. (30.37) with the equation of continuity.

∂c

∂t
= −∂J

∂x
, (30.38)

we obtain the (one-dimensional) diffusion equation,

∂c

∂t
= D

∂2c

∂x2
. (30.39)

In general, D is also dependent on concentration, and we may expand
it in the form,

D = D0(1 + kDc + · · ·) (30.40)

with D0 the diffusion coefficient at infinite dilution.
Now, according to thermodynamics of irreversible processes,13 the

flux J is proportional to the force X (per molecule) which causes the
flow. In the present case, X is equal to the negative gradient of the
solute chemical potential µ1 (per molecule); that is,

J = LX = −L
∂µ1

∂x
. (30.41)

Since the velocity of the flow is J/c = X/f , we find L = c/f . Further,
we have

∂µ1

∂x
=

∂µ1

∂c

∂c

∂x
=

M

NAc
(1− v̄c)

∂π

∂c

∂c

∂x
, (30.42)
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where π is the osmotic pressure, and we have used the Gibbs–Duhem
equation in obtaining the second equality. From Eqs. (30.37), (30.41),
and (30.42), we then obtain

D =
M

NAf
(1− v̄c)

∂π

∂c

=
kT

f
(1− v̄c)(1 + 2A2Mc + · · ·) , (30.43)

and therefore
D0 =

kT

f0
, (30.44)

ks + kD = 2A2M − v̄ . (30.45)

Equation (30.44), is Einstein’s relation between the diffusion and fric-
tion coefficients.

30c. Brownian Motion

The dynamical behavior of a Brownian particle may be described by
the Langevin equation,14, 15

m
du
dt

= −ζu + F + A(t) , (30.46)

where u is the velocity of the particle with mass m and friction coef-
ficient ζ, and the right-hand side of the equation represents the forces
acting on the particle. These consist of an external force field F and
forces exerted by the surrounding medium. The influence of the sur-
rounding medium on the motion of the particle can be split into two
parts; one is a systematic part −ζu representing a frictional force ex-
erted on the particle, and the other is a fluctuating part A(t) which is
characteristic of the Brownian motion. Equation (30.46) is not an or-
dinary differential equation in that u is not determinable as a function
of the quantities on the right-hand side of the equation. Rather, since
the right-hand side contains a fluctuating term, u is to be regarded as
a stochastic variable characterized by a distribution function. Thus,
to solve the stochastic differential equation (30.46) is to find the dis-
tribution function describing the Brownian motion of the particle, i.e.,
the probability that the particle at a particular time will be located at
some specified position with a specified velocity. In our problems, the
velocity distribution is not of interest, and we need only consider the
configurational distribution function.

As already described in Appendix III A, when the changes in the
variable are frequent and small, the distribution function can also be
obtained from the Fokker–Planck equation. For a free Brownian par-
ticle, the configurational distribution function P (R, t) satisfies Eq. (III
A.8), and the transition probability that R suffers an increment r in
time ∆t is given by

ψ(R, t; r) = (4πD∆t)−3/2 exp(−r2/4D∆t) (30.47)
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with
D = kT/ζ . (30.48)

We then have 〈r〉 = 0 and 〈rr〉 = 2D∆tI in Eq. (III A.8), from which
we obtain

∂P

∂t
= D∇2P . (30.49)

This is the diffusion equation. Since the solute concentration c is pro-
portional to P , for the one-dimensional diffusion Eq. (30.49) reduces to
Eq. (30.39). When there exists an external force field F, by a gener-
alization of the Fokker–Planck equation we can obtain the differential
equation14, 16

∂P

∂t
= ∇ ·

(
D∇P − F

ζ
P

)
, (30.50)

which is often referred to as Smoluchowski’s equation. Equation (30.50)
from which the configurational distribution function can be obtained
may be written in the form of the continuity equation,

∂P

∂t
= −∇ · J (30.51)

with
J = PF/ζ −D∇P . (30.52)

The current density J is made up of a convective part and a diffusive
part. If the solvent in which the particle is immersed has a velocity field
v, this contribution to the convective part must be added; that is,

J = Pv + PF/ζ −D∇P . (30.53)

If F can be derived from a potential U so that F = −∇U , then at
equilibrium we have P = const. exp(−U/kT ) with J = v = 0 and we
recover Eq. (30.48).

The above discussion has been concerned with a simple particle
with scalar translational friction and diffusion coefficients. It is well
known, however, that a rigid molecule such as an ellipsoid shows a re-
sistance to motion through a fluid which varies with the orientation of
the molecule to the flow. For this case three different friction coeffi-
cients corresponding to translations parallel to the symmetry axes are
needed. Correspondingly, we have three diffusion coefficients. The fric-
tion coefficient, and also the diffusion coefficient, then become tensors
and will normally consist of nine components, which reduce to three
when the principal axes are used as the reference system. Similar con-
siderations apply to rotatory motions and correspondingly to rotatory
friction and diffusion coefficients. A flexible polymer chain will add
new degrees of freedom corresponding to bonds which can also undergo
Brownian motion. That is, segments of the chain can move subject to
the constraints that characterize the molecule. This type of Brownian
motion is referred to as the internal or micro-Brownian motion. There
will again be not one but a multitude of diffusion coefficients describing
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the motions of different sections of the chain, and these will constitute
the components of the internal or microdiffusion tensor. The number
of such components depend on the number of degrees of internal free-
dom. The generalized diffusion equation and the diffusion tensor for a
flexible chain will be given in Section 32.

31. The Hydrodynamic Interaction:
The Kirkwood–Riseman Theory

When a polymer chain is placed in a fluid in which there is a velocity
field, the flow is perturbed by the resistance offered by each polymer
segment. The change in flow at any point in the fluid is therefore the
sum of the perturbations to the fluid flow of each of the segments.
In addition, the general effects of the perturbations are cooperative in
that effects at one segment are felt at another. In general, when there
are two or more centers of resistance to a flow of fluid, there always
occurs hydrodynamic interaction between the resistance centers. The
flow perturbations and the hydrodynamic interaction between segments
may be obtained by the use of the method of Oseen.8, 10 This method
is based on a solution of the Navier–Stokes equation of hydrodynamics
(Appendix VI A) possessing a singularity arising from the point force
exerted on the fluid. It describes the velocity perturbation v′ in the
fluid at a distance r from a point at which a force F is exerted on the
fluid;

v′ = TF (31.1)

with

T =
1

8πη0r

(
I +

rr
r2

)
, (31.2)

where I is the unit tensor. The tensor T is referred to as the Oseen
tensor, and the derivation is given in Appendix VI B. We note that the
velocity perturbation given by the Oseen formula is independent of the
original flow because of the Stokes approximation employed in deriving
it.

If ui is the velocity of the ith segment of a polymer chain and vi is
the velocity the fluid would possess at the point of location of the ith
segment if that segment were absent, the force Fi exerted on the fluid
by the ith segment is given by

Fi = ζ(ui − vi) (31.3)

with ζ the (translational) friction coefficient of the segment. ζ depends
both on the fluid and the structure of segment. The fluid velocity vi is
the sum of the original velocity v 0

i existing in the fluid in the absence
of the polymer molecule and the summed Oseen perturbations from all
other segments of the same molecule (at infinite dilution); that is,

vi = v 0
i + vi

′ (31.4)
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with

vi
′ =

n∑

j=0

6=i

TijFj , (31.5)

Tij =
1

8πη0Rij

(
I +

RijRij

R 2
ij

)
, (31.6)

where Rij is the distance between the ith and jth segments. Substi-
tution of Eqs. (31.4) and (31.5) into Eq. (31.3) leads to a set of linear
equations for Fi,

Fi = ζ(ui − v 0
i )− ζ

n∑

j=0

6=i

TijFj . (31.7)

Equation (31.7) is the basis of the Kirkwood–Riseman theory6 of the in-
trinsic viscosity and the friction coefficient of polymer molecules. Their
evaluation of (31.7) is carried out for the unperturbed linear flexible
chain without explicit consideration of micro-Brownian motion.

31a. Intrinsic Viscosities

Suppose that the solvent has the unperturbed velocity field given by
Eq. (30.12) in the absence of the polymer molecule. When a poly-
mer molecule is introduced into the system, the molecular center of
mass acquires a mean velocity equal to the local velocity of the solvent.
Therefore, the molecular center of mass may be considered to be fixed
at the origin of the coordinate system, and we have

v 0
i = g(Si · ey)ex , (31.8)

where Si is the distance between the ith segment and the center of
mass. The molecule will then rotate as a whole around the z axis with
the rotational part of the solvent flow, the angular velocity of rotation
being ω = − 1

2gez, provided that the velocity gradient is constant and
small. This conclusion can also be obtained from the condition that
the average torque (moment of the frictional force) around the center
of mass is zero in steady flow. Thus we have

ui = 1
2g(Si × ez) , (31.9)

and Eq. (31.7) becomes

Fi = − 1
2ζg(yiex + xiey)− ζ

n∑

j=0

6=i

TijFj , (31.10)

where we have put Si · ex = xi and Si · ey = yi since Ri = Si. Multi-
plying the x components of both sides of Eq. (31.10) by yk and taking
the configurational average, we obtain

〈Fixyk〉 = − 1
2ζg〈yiyk〉 − ζ

∑

j

〈(TijFj) · exyk〉 . (31.11)
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We now approximate Tij by its average 〈Tij〉; that is, we set

〈(TijFj) · exyk〉 = 〈(〈Tij〉Fj) · exyk〉 , (31.12)

where

〈Tij〉 =
1

6πη0

〈
1

Rij

〉
I , (31.13)

because the distribution of Rij is spherically symmetric. Equation (31.11)
then reduces to

〈Fixyk〉 = − 1
2ζg〈yiyk〉 − ζ

6πη0

∑

j

〈
1

Rij

〉
〈Fjxyk〉 . (31.14)

If we define the quantity ϕik by the equation,

ϕik = − 18
na2ζg

〈Fixyk〉 (31.15)

with a the effective bond length of the chain, the intrinsic viscosity may
then be written, from Eqs. (30.24) and (31.15), in the form,

[η] =
NAζn2a2

36η0M
F (31.16)

with

F =
2
n

n∑

i=0

ϕii , (31.17)

and Eq. (31.14) becomes

ϕik =
9

na2
〈yiyk〉 − ζ

6πη0

∑

j

〈
1

Rij

〉
ϕjk . (31.18)

Since at small g (strictly g → 0) the equilibrium distribution function
subject to no applied field may be used, for the unperturbed linear
chain we obtain, from Eqs. (5.39) and (7.8),

〈yiyj〉0 = 1
3 〈Si · Sj〉0 = 1

6 (〈S 2
i 〉0 + 〈S 2

j 〉0 − 〈R 2
ij 〉0)

= 1
9na2

[
1− 3

2n
(i + j + |i− j|) +

3
2n2

(i2 + j2)
]

.

(31.19)

Further, we find by the use of the Gaussian distribution
〈

1
Rij

〉

0

=
61/2

π1/2|i− j|1/2a
. (31.20)

Substitution of Eqs. (31.19) and (31.20) into Eq. (31.18) and conversion
of the sum to an integral leads to an integral equation for the function
ϕ(x, y) ≡ ϕik with x = 2i/n− 1 and y = 2k/n− 1,

ϕ(x, y) = f(x, y)− h

∫ 1

−1

ϕ(t, y)
|x− t|1/2

dt , (31.21)
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where
f(x, y) = 1

8 [3(x2 + y2)− 6|x− y|+ 2] , (31.22)

h = ζn1/2/(12π3)1/2η0a . (31.23)

The quantity F defined by Eq. (31.17) may then be calculated from

F =
∫ 1

−1

ϕ(x, x)dx . (31.24)

The problem is now to solve the integral equation (31.21). It is,
however, to be anticipated that we cannot obtain an analytical solu-
tion for ϕ which is valid for any positive value of h. We first find
the approximate analytical solution of Kirkwood and Riseman. Let us
expand ϕ(x, y) and f(x, y) in Fourier series of the form,

ϕ(x, y) =
+∞∑

k=−∞
ϕk(y)eiπkx ,

f(x, y) =
+∞∑

k=−∞
fk(y)eiπkx . (31.25)

The integral equation of (31.21) then leads to the set of linear equations
for the Fourier coefficients ϕk(y),

ϕk(y) + h

+∞∑

l=−∞
aklϕl(y) = fk(y) (k = 0,±1,±2, . . .) , (31.26)

where the coefficients fk(y) and the matrix elements akl can easily be
determined. The Kirkwood–Riseman approximation consists in replac-
ing akl by the values asymptotically valid for large |k| and |l|; that
is,

akl = 8
√

2/3 for k = l = 0
= (2/|k|)1/2δkl for k 6= 0 . (31.27)

With this approximation we can readily solve Eqs. (31.26) and obtain

ϕ(x, y) =
+∞∑

k=−∞
6=0

fk(y)eiπkx

1 + h(2/|k|)1/2
(31.28)

with
fk(y) = (3/4π2k2)e−iπky + (−1)k(3iy/4πk) . (31.29)

From Eqs. (31.24), (31.28), and (31.29), we find the Kirkwood–Riseman
function,

F (X) =
6
π2

∞∑

k=1

1
k2(1 + X/k1/2)

, (31.30)
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TABLE VI.1. NUMERICAL VALUES OF XF (X) AS A FUNCTION
OF X6, 17

X KR KZP REVISED

0 0 0 0
0.1 0.092 0.09 0.073
0.2 0.172 0.17 0.136
0.3 0.242 0.24 0.192
0.4 0.304 0.30 0.241
0.5 0.358 0.35 0.284
1.0 0.564 0.54 0.447
2.0 0.800 0.75 0.634
3.0 0.936 0.88 0.742
4.0 1.024 0.96 0.812
5.0 1.090 1.02 0.864

10.0 1.260 1.17 0.999
20.0 1.400 1.31 1.110
50.0 1.486 — 1.178

100.0 1.528 — 1.212
∞ 1.588 1.48 1.259a

aThis value is due to Auer and Gardner.18

where
X = 21/2h . (31.31)

The values of XF (X) as a function of X calculated from Eq. (31.30)
are given in the second column of Table VI.1. Kirkwood, Zwanzig, and
Plock17 improved the solution by solving Eqs. (31.26) numerically by
inversion of the matrix δkl +hakl by a method of successive approxima-
tion which involves the neglect of all off-diagonal elements for which |k|
and |l| are greater than an assigned integer m. Their values are given
in the third column of same table.

In the two limiting cases X = 0 and X = ∞, we can find the exact
solutions of the integral equation of (31.21). In the case X = 0, we
readily obtain ϕ(x, y) = f(x, y) and F (X) = 1, and therefore

[η] =
NAζn2a2

36η0M
=

NAζn

6η0M
〈S2〉0 (for X = 0) . (31.32)

In the case X = ∞, Eq. (31.21) reduces to the integral equation of the
first kind,

f(x, y) =
∫ 1

−1

ϕ̄(t, y)
|x− t|1/2

dt (31.33)

with ϕ̄ ≡ hϕ. Auer and Gardner18 solved this integral equation using a
Gegenbauer polynomial expansion, and obtained the result XF (X) =
1.259 for X = ∞. It is now observed that the ratio of the KR function
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to the KZP function is approximately independent of X. For practical
purposes, we may therefore use the revised values of XF (X) given
in the fourth column of Table VI.1, which values were obtained by
multiplying the KR values by the factor 0.793 (= 1.259/1.588).

In the case X = 0, there are no Oseen perturbations. In other
words, there is no hydrodynamic interaction between segments, and
the velocity field is given by Eq. (31.8) even in the presence of the
polymer segments. Thus this limiting case is referred to as free-draining
case. From Eq. (31.32), the intrinsic viscosity is seen to be directly pro-
portional to the molecular weight for the (unperturbed) free-draining
molecule. This conclusion has been obtained independently by sev-
eral authors1,3−5 all of whom neglected the hydrodynamic interaction
from the outset. Equation (31.32) is a theoretical interpretation of
Staudinger’s rule. In order to discuss the other limiting case, it is con-
venient to rewrite Eq. (31.16) in the form

[η] = Φ0
〈R2〉 3/2

0

M

= 63/2Φ0
〈S2〉 3/2

0

M
, (31.34)

where
Φ0 = (π/6)3/2NA[XF (X)] . (31.35)

If X becomes infinite, Φ0 approaches the constant 2.87 × 1023 corre-
sponding to the value 1.259 for XF (X), and [η] becomes proportional
to 〈S2〉 3/2

0 /M . This form of [η] is equivalent to that for rigid sphere
molecules with a radius proportional to 〈S2〉 1/2

0 (see Appendix VI.C).
Therefore , flexible polymer chains in this limit behave hydrodynam-
ically as rigid sphere molecules. This limit corresponds, of course, to
very large hydrodynamic interaction between segments, and is referred
to as the non-free-draining case. The present theory predicts that [η]
is proportional to M1/2 for the (unperturbed) non-free-draining chain.
This result was also derived by Kuhn and Kuhn2 and Peterlin.9 In gen-
eral, Φ0 increases from zero to its asymptotic value as X is increased
from zero to infinity. Therefore, the variable X or h represents the de-
gree of drainage of the solvent through the polymer molecular domain,
and is called the draining parameter. The ratio Φ0(X)/Φ0(∞) may
be regarded as the correction factor by which the hydrodynamically
effective volume of the molecule is decreased by the draining effect. A
theory physically equivalent to the KR theory was developed indepen-
dently by Debye and Bueche,19 who solved the Navier–Stokes equation
with appropriate boundary conditions for the uniform-density sphere
model.

It is important to note that Staudinger’s formula is not always
valid. The presently accepted empirical relationship between [η] and
M (which is valid over a given range of M) is of the form,20−22

[η] ∝ Mν , (31.36)
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where ν is a constant independent of M and ordinarily lies between 0.5
and 1.0 for flexible-chain polymers. It was the intent of Kirkwood and
Riseman, and also of Debye and Bueche, to interpret the intermediate
values of ν (between 0.5 and 1.0) as arising from the draining effect. At
the present time, however, this interpretation is not always accepted.
We discuss this matter further in later sections. It is also important
to examine the relationship between the friction coefficient ζ of the
segment and the molecular model discussed above. According to the
present theory, for random-flight chains, the intrinsic viscosity may be
expressed in terms of three parameters: n, a, and ζ. However, these
parameters never appear separately but only in two combinations na2

and nζ, since h or X is proportional to (nζ)/η0(na2)1/2. Therefore the
value to be assigned to ζ is arbitrary to the extent that a division of the
chain into n effective bonds is arbitrary. The same argument applies
to the friction coefficient of the entire molecule.

31b. Translational and Rotatory Friction Coefficients

The translational friction coefficient f0 of the entire molecule at infinite
dilution may be evaluated from Eqs. (30.32) and (30.33) with (31.7).
We suppose that there is no original velocity field, and that the average
velocities of the segments may be equated to the drift velocity; that is,
v 0

i = 0 and 〈ui〉 = u for all i. From Eq. (31.7), we then have

〈Fi〉 = ζu− ζ
∑

j

〈TijFj〉 . (31.37)

If we replace Tij by 〈Tij〉 as before, that is, set

〈TijFj〉 = 〈Tij〉〈Fj〉 , (31.38)

Eq. (31.37) becomes

〈Fi〉 = ζu− ζ

6πη0

∑

j

〈
1

Rij

〉
〈Fj〉 . (31.39)

We now define the quantity ψi by the equation,

〈Fi〉 = ζψiu , (31.40)

and convert the sums to integrals. Then, Eq. (31.39) becomes an inte-
gral equation for the function ψ(x) ≡ ψi with x = 2i/n− 1,

ψ(x) = 1− h

∫ 1

−1

ψ(t)
|x− t|1/2

dt , (31.41)

and the friction coefficient may be expressed, from Eqs. (30.32) and
(30.33), in the form

f = 1
2nζ

∫ 1

−1

ψ(x)dx , (31.42)
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where we have suppressed the subscript 0 on f for simplicity.
If we expand the function ψ(x) in a Fourier series of the form,

ψ(x) =
+∞∑

k=−∞
ψkeiπkx , (31.43)

f may be simply expressed as

f = nζψ0 . (31.44)

The coefficients ψk satisfy a set of linear equations analogous to Eqs.
(31.26). Therefore, if we use the approximation of (31.27), we can
easily find the solution for ψ0 and obtain for the translational friction
coefficient

f =
nζ

1 + 8
3X

. (31.45)

The sedimentation coefficient and translational diffusion coefficient (at
infinite dilution) can now be readily written down. For example, the
latter reads

D =
kT

nζ
(1 + 8

3X) . (31.46)

Equations (31.45) and (31.46) are equivalent to the results derived by
Hermans3 and by Debye and Bueche.19

In the two limiting cases already cited we have from Eqs. (31.45)
and (31.46)

f = nζ
D = kT/nζ

}
(for X = 0) , (31.47)

f = (9π3/2/4)η0〈S2〉 1/2
0

D = 0.196kT/η0〈R2〉 1/2
0

}
(for X = ∞) . (31.48)

In the free-draining case, the translational friction coefficient of the
entire molecule is simply the sum of the friction coefficient of the in-
dividual segments, as expected. In the non-free-draining case, Stokes’
law is seen to be apparently satisfied, indicating that the molecule be-
haves as a hard sphere. We note that Eqs. (31.47) are exact, but the
numerical constants in Eqs. (31.48) are incorrect, since the f given by
Eq. (31.45) is an approximate solution. The exact asymptotic solu-
tion of the integral equation of (31.41) was obtained by Kurata and
Yamakawa,23 and it gives the numerical factor 0.192 instead of 0.196
in D of Eqs. (31.48). The difference between the two values is rather
small, and therefore Eqs. (31.45) and (31.46) are fairly satisfactory.

Next, we evaluate the rotatory friction coefficient of the molecule
as a whole. This can easily be done24 when the equations derived in
the previous section are used. If T is the torque required to produce
the angular velocity ω of the molecule around the center of mass, the
rotatory friction coefficient fr is defined by

T = frω . (31.49)
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In the present case, T is the sum of the average torques of the individual
segments of the molecule,

T =
∑

i

〈Si × Fi〉 . (31.50)

Recalling that v 0
i = 0 and ui = ω × Si, we obtain from Eq. (31.7)

〈Sk × Fi〉 = ζ〈Sk × (ω × Si)〉 − ζ
∑

j

〈Sk ×TijFj〉

= 2
3ζ〈Si · Sk〉ω − ζ

6πη0

∑

j

〈
1

Rij

〉
〈Sk × Fj〉 , (31.51)

where in the second line we have replaced Tij by 〈Tij〉, as before. If
we define the quantity ϕik by

9
2na2ζ

〈Sk × Fi〉 = ϕikω , (31.52)

Eq. (31.51) becomes a set of linear equations for ϕik which is identical
to Eq. (31.18). Therefore, we readily find from Eqs. (31.49), (31.50),
and (31.52)

fr = 1
9ζn2a2F (X) , (31.53)

where F (X) is the same function as that appearing in the intrinsic
viscosity. Since the Einstein relation holds also in the present case, we
have for the rotatory diffusion coefficient Dr(= kT/fr)

Dr = 9kT/ζn2a2F (X) . (31.54)

In particular, for the non-free-draining molecule, we have fr = const.
×η0〈S2〉 3/2

0 . This is to be compared with the Stokes formula, fr =
8πη0S̄

3, for a hard sphere of radius S̄.
Combining Eq. (31.16) with Eqs. (31.53) and (31.54), we obtain

a simple relationship between the intrinsic viscosity and the rotatory
friction or diffusion coefficient,

fr = 4N −1
A η0M [η] , (31.55)

Dr = NAkT/4η0M [η] . (31.56)

It is important to note that Eqs. (31.55) and (31.56) hold irrespective
of the presence of the draining effect and of the excluded-volume effect,
as seen from the derivation. The rotatory diffusion coefficient may be
determined from flow birefringence experiments, and Eq. (31.56) has
been confirmed by extensive data.25 Although a similar calculation of
the internal rotatory diffusion tensor has also been carried out,24 we do
not reproduce it here.
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32. The Diffusion-Equation Approach (A):
The Kirkwood General Theory

In the viscosity theory described in the previous section, the equilib-
rium molecular distribution function could be employed to take the
configurational averages on the assumption that the rate of shear was
very small. However, when the applied forces are not small or vary
with time, the distribution function deviates from its equilibrium form.
As already mentioned, the nonequilibrium distribution function may
be conveniently obtained from a diffusion equation which describes the
Brownian motion of the molecule under the influence of an external
force field. In this section, we formulate in its most general form, a
theory of irreversible processes in dilute polymer solutions, following
Kirkwood.26, 27

Consider a single polymer molecule composed of (n + 1) segments,
and let P ({Rn+1}, t) be the instantaneous distribution for the entire
molecule at time t, Rj being the coordinates of the jth segment in a
Cartesian coordinate system. Equation (30.51) with (30.53) may then
be easily generalized to the diffusion equation for P ({Rn+1}, t),

∂P

∂t
= −

n∑

i=0

∇i · Ji , (32.1)

where
Ji = Pvi +

P

ζ
(−∇iU + Xi)− kT

ζ
∇iP (32.2)

with vi the velocity of the solvent at Ri and ζ the friction coefficient of
the segment, as before. The external force acting on the ith segment has
been split into two parts; one arises from the intramolecular potential
of mean force U given by Eq. (3.2), and the other is the pure external
force Xi, centrifugal, electric, or magnetic. Since the current density
Ji is equal to Pui with ui the velocity of the ith segment, Eq. (32.2)
may be rewritten as

−Fi −∇iU + Xi − kT∇i ln P = 0 . (32.3)

Equation (32.3) may be obtained formally from the Langevin equation
for the ith segment if the inertia term is neglected and the fluctuating
force is replaced by the diffusion force −kT∇i ln P , a sort of statistical
average value. Thus, under these circumstances, the sum of the forces
acting on each segment is equal to zero. Equations (32.2) or (32.3)
serve to determine the velocity of the segment under the influence of
Brownian motion. In the Kirkwood–Riseman theory of viscosity, ui

was determined from the condition that the average external frictional
torque on the molecule is equal to zero in steady shear flow.

Kirkwood’s approach26, 27 consists of writing the diffusion equa-
tion in terms of generalized curvilinear coordinates in Riemann space
to obtain useful results. We note that the original theory of Kirk-
wood was not completely correct; it has been corrected by Ikeda28
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and subsequently by Erpenbeck and Kirkwood.29 The general theory
is developed so as to be applicable to any type of molecule, flexible or
stiff, and linear, branched, or ring shaped. That is, we do not use the
random-flight model, but impose structural constraints, constant bond
length, bond angle, and so on, upon the model molecule composed of
(n + 1) identical segments. Because of these constraints, the molecule
will then possess a number of degrees of freedom, m, which is less than
3(n + 1). The m-dimensional molecular configuration space is referred
to as the m-space, and the complete 3(n+1)-dimensional configuration
space of the (n + 1) segments as the e-space; m-space is a subspace of
the e-space subject to the structural constraints characteristic of the
molecule. The coordinates associated with the m-space are denoted by
q1, q2, . . ., qm. In the case of a linear flexible chain, for instance, these
include the (n− 1) angles of internal rotation, the three coordinates of
the center of mass relative to an external coordinate system, and the
two orientation angles of the molecule in the external system; that is,
m = n + 4. We denote the (3n + 3 −m) coordinates of e-space com-
plementary to those of the m-space by qm+1, qm+2, . . ., q3n+3. These
could be chosen in a large number of ways. The coordinates q1, . . .,
q3n+3 may be regarded as generalized curvilinear coordinates.

If R is the 3(n + 1)-dimensional vector specifying the position of
the (n + 1) segments in the e-space, we may span the e-space by the
covariant basis vectors,

aα =
∂R
∂qα

=
n∑

i=0

∂Ri

∂qα
(α = 1, . . . , 3n + 3) (32.4)

with

R =
n∑

i=0

Ri , (32.5)

where Ri is the position vector of the ith segment in the three-dimensional
space of the segment. A set of basis vectors, a1, a2, . . ., a3n+3 defines
a localized coordinate system in the e-space. The metric tensor of the
e-space is given by

gαβ = aα · aβ =
n∑

i=0

∂Ri

∂qα
· ∂Ri

∂qβ
. (32.6)

The contravariant basis vectors aα are given by

aα =
∑

β

gαβaβ , (32.7)

where gαβ are the elements of the reciprocal of the matrix gαβ , i.e.,
gαβ = |g|αβ/g with |g|αβ the cofactor of gαβ in the determinant g =
|gαβ |. The components of gαβ involving the complementary space de-
pend on the choice of qm+1, qm+2, . . ., q3n+3. We assume that these
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have been chosen orthogonal to m-space coordinates, so that the com-
ponents of the metric tensor are zero between the m-space and its com-
plementary space, i.e., gαβ = 0 for 1 ≤ α ≤ m and m+1 ≤ β ≤ 3n+3.
Then, the gαβ also disappear between the m-space and its complemen-
tary space. Further, note that g is equal to the product of two determi-
nants, one for the m-space and one for the orthogonal complementary
space.

The covariant components of any 3(n + 1)-dimensional vector or
tensor are given by

Fα = F · aα ,

Tαβ = aαTaβ . (32.8)

The contravariant components are obtained as

Fα = F · aα =
∑

β

gαβFβ ,

Tαβ = aαTaβ =
∑

µ

∑
ν

gαµgβνTµν . (32.9)

We can obtain the mixed components T β
α in a similar fashion.

We now introduce the following conventions in the notation. Greek
subscripts and superscripts are used for components along the ba-
sis vectors aα and aα, respectively. Latin superscripts are used for
the projections of 3(n + 1)-dimensional vectors and tensors onto the
three-dimensional Cartesian coordinate system of the indicated seg-
ment. Latin subscripts are used for these same projections when re-
ferred to the Cartesian system common to all segments. The previ-
ous meanings of Fi, v 0

i , vi, ui, Ji, etc. are retained. These three-
dimensional vectors may be generalized to the 3(n + 1)-dimensional
e-space vectors F, v0, v, u, J, etc. as in the case of R. In general,
these generalized vectors have components in m-space and complemen-
tary space. However, u and J have only m-space components because
of the structural constraints. We then have for the generalized frictional
force

F =
n∑

i=0

Fi = ζ(u− v) . (32.10)

The generalized velocity of the solvent may be written , from Eqs. (31.4)
and (31.5), in the form,

v = v0 + TF (32.11)

with

T =
∑
i,j

i 6=j

Tij =
∑
i,j

i 6=j

1
8πη0Rij

(
Iij +

R i
ij R j

ij

R 2
ij

)
, (32.12)

where T may be considered to be the (n + 1) × (n + 1) matrix whose
elements are Tij with Tij = 0. If we define a friction tensor ζ in the
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e-space by the equation,

F = ζ(u− v0) , (32.13)

we obtain, from Eqs. (32.10) and (32.11), the relation (I + ζT)F =
ζ(u− v0). From this equation and Eq. (32.13), we find

ζ = ζ(I + ζT)−1

= ζ(I− ζT + ζ2T2 − · · ·) . (32.14)

Now let P ({qm}, t) be the distribution function for the molecule in
m-space where {qm} denotes the m-space coordinates q1, q2, . . ., qm.
By the use of the divergence operator in Riemann space, the continuity
equation of (32.1) may then be generalized to

∂P

∂t
= − 1

g1/2

m∑
α=1

∂(g1/2Jα)
∂qα

. (32.15)

Equation (32.3) may also be generalized to the equation for the current
density J

ζJ = ζv0P + (−∇V + X + X′)P − kT∇P , (32.16)

where we have used Eq. (32.13) and the relation J = uP . The force
−∇U has been split into two parts; one is the force X′ associated with
the structural constraints, and the other is the remaining part, −∇V ,
which arises from the potential of mean force, V , associated with the
internal rotation and the excluded-volume effect. v0 and X have both
m-space and complementary space components, while J, ∇V , and ∇P
have only m-space components, and X′ has only complementary space
components. Therefore, taking covariant components of both sides of
Eq. (32.16), we obtain

m∑

β=1

ζαβJβ = (ζv0)αP +
(
− ∂V

∂qα
+ Xα

)
P − kT

∂P

∂qα
(α = 1, . . . , m) .

(32.17)
Solving Eqs. (32.17) for Jα(α = 1, . . . ,m), we find

Jα =
m∑

β=1

Dαβ

kT

[
(ζv0)βP +

(
− ∂V

∂qβ
+ Xβ

)
P − kT

∂P

∂qβ

]
, (32.18)

where Dαβ/kT are the elements of the reciprocal of the m×m matrix
ζαβ ; that is,

m∑

β=1

(Dαβ/kT )ζβγ = δ α
γ (32.19)

with δ α
α = 1 and δ α

γ = 0 for α 6= γ. Dαβ are the components of the
diffusion tensor. Recalling that
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m∑

β=1

Dαβ

kT
(ζv0)β =

m∑

β=1

Dαβ

kT

3n+3∑
γ=1

ζβγv0γ

=
m∑

β=1

gαβv 0
β +

m∑

β=1

Dαβ

kT

3n+3∑
γ=m+1

ζβγv0γ , (32.20)

Eq. (32.18) may be rewritten as

Jα =
m∑

β=1

[
gαβv 0

β P +
Dαβ

kT

(
− ∂V

∂qβ
+ Xβ

)
P

−Dαβ ∂P

∂qβ
+

Dαβ

kT

3n+3∑
γ=m+1

ζβγv0γP

]
. (32.21)

The terms involving ζβγ with γ ≥ m + 1 were omitted in the original
theory of Kirkwood. Equation (32.15) with (32.21) gives the general-
ized diffusion equation. The average value of a function ϕ({qm}) of the
coordinates {qm} is given by

〈ϕ(t)〉 =
∫

g1/2ϕ({qm})P ({qm}, t)d{qm} . (32.22)

The problem we face is to solve the diffusion equation for P ({qm}, t).
This can be formally done by the use of perturbation theory. We define
the function ρ({qm}, t) by

P ({qm}, t) = P
1/2

0 ({qm})ρ({qm}, t) , (32.23)

where P0({qm}) is the equilibrium distribution function,

P0({qm}) = exp(−V/kT ) . (32.24)

Then Eq. (32.15) with (32.21) becomes

Lρ− ∂ρ

∂t
= −Qρ (32.25)

with

L =
m∑

α,β=1

1
g1/2

∂

∂qα
g1/2Dαβ ∂

∂qβ
+ W , (32.26)

W =
1

2kT

m∑

α,β=1

1
g1/2

∂

∂qα
g1/2Dαβ ∂V

∂qβ
− 1

(2kT )2

m∑

α,β=1

Dαβ ∂V

∂qα

∂V

∂qβ
,

(32.27)

Q = −P
−1/2

0

m∑

α,β=1

1
g1/2

∂

∂qα
g1/2 Dαβ

kT

(
Xβ +

3n+3∑
γ=1

ζβγv0γ

)
P

1/2
0 .

(32.28)
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The differential operator L is self-adjoint, and therefore possesses a
complete orthonormal set of eigenfunctions ψj :

Lψj + λjψj = 0 (32.29)

with negative eigenvalues −λj . Suppose now that the operator Q and
the function ρ may be expanded in powers of a perturbation parameter
γ (e.g., the magnitude of the rate of shear),

Q =
∞∑

s=1

γsQ(s) ,

ρ = P
1/2

0 +
∞∑

s=1

ρ(s)γs . (32.30)

Equations. (32.25) and (32.30) then give a system of inhomogeneous
differential equations for ρ(s)({qm}, t). The first-order perturbation
calculation leads to

ρ(1) =
∫ +∞

−∞
G(1)({qm}, ω)eiωtdω , (32.31)

where

G(1)({qm}, ω) =
∑

j

B
(1)

j (ω)
λj + iω

ψj({qm}) ,

B
(1)

j (ω) =
1
2π

∫ +∞

−∞
(Q(1)P

1/2
0 )je

−iωtdt ,

(Q(1)P
1/2

0 )j =
∫

g1/2ψ ∗
j Q(1)P

1/2
0 d{qm} . (32.32)

The average 〈ϕ(t)〉 may be expanded in the form,

〈ϕ(t)〉 =
∞∑

s=0

〈ϕ(s)(t)〉γs (32.33)

with
〈ϕ(s)(t)〉 =

∫
g1/2ϕP

1/2
0 ρ(s)d{qm} . (32.34)

The techniques useful in determining the eigenfunctions and eigen-
values of the operator L are identical with those employed in the solu-
tion of the Schrödinger equation in quantum mechanics.

We now consider the diffusion tensor. From Eqs. (32.14) and (32.19),
Dαβ may be expanded in the form,28

Dαβ

kT
=

1
ζ

[
gαβ + ζTαβ + ζ2

(∑
µ,ν

gµνTαµT νβ − aαT2aβ

)
+ · · ·

]
.

(32.35)
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In the original theory of Kirkwood, the third and higher terms on the
right-hand side of Eq. (32.35) were dropped. In other words, Kirkwood
obtained the diffusion tensor from the incorrect equation Dαβ/kT =
aαζ−1aβ ;

Dαβ

kT
=

gαβ

ζ
+ Tαβ . (Kirkwood) (32.36)

The neglected terms vanish when the components of the generalized
Oseen tensor T disappear between the m-space and its complementary
space, but this is not generally the case. The contravariant components
of T may be obtained, from Eqs. (32.9) and (32.12), as

Tαβ =
∑
i,j
i 6=j

T αβ
ij (32.37)

with

T αβ
ij =

1
8πη0Rij

m∑
µ,ν=1

gαµgβν

[
∂Ri

∂qµ
· ∂Rj

∂qν

+
1

R 2
ij

(
Rij · ∂Ri

∂qµ

)(
Rij · ∂Rj

∂qν

)]
. (32.38)

If the Kirkwood approximation of (32.36) is adopted, we can derive
a simple expression for the translational diffusion coefficient. Let q1, q2,
and q3 be the coordinates specifying the position of the center of mass in
an external Cartesian coordinate system. Then, ∂Ri/∂qα(α = 1, 2, 3)
are the unit vectors ex, ey, ez, and the coordinates q1, q2, and q3 are
separable from, or orthogonal to, the remaining (m − 3) coordinates.
We therefore have (for n À 1)

gαβ = nδαβ ,

gαβ = n−1δαβ (α = 1, 2, 3; β = 1, 2 . . . ,m) . (32.39)

From Eqs. (32.36) to (32.39), we obtain for the translational compo-
nents of the diffusion tensor

Dαβ

kT
=

δαβ

nζ
+

1
8πη0n2

n∑

i=0

n∑

j=0

i 6=j

[
δαβ

Rij
+

(Rij · eα)(Rij · eβ)
R 3

ij

]

(α, β = 1, 2, 3) . (32.40)

The (mean) translational diffusion coefficient D is equal to one-third
of the trace of Dαβ , averaged over the internal coordinates;

D =
kT

nζ

(
1 +

ζ

6πη0n

∑

i

∑

j

i 6=j

〈
1

Rij

〉)
. (32.41)
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The sedimentation coefficient is then given by

s =
M(1− v̄ρ̄)

NAnζ

(
1 +

ζ

6πη0n

∑

i

∑

j

i 6=j

〈
1

Rij

〉)
. (32.42)

These are the famous equations of Kirkwood; they are not exact, but
rather involve the approximations cited.

For an unperturbed linear flexible chain it is interesting to note
that Eq. (32.41) yields the same result as that obtained previously in
an approximate manner, Eq. (31.46). For a rigid rod, recalling that
〈R −1

ij 〉 = 1/|i− j|a, we obtain from Eq. (32.41)

D(rod) =
kT

nζ

[
1 +

ζ

3πη0a
(lnn− 1 + γ)

]

=
kT ln(L/a)

3πη0L
(for large n) , (32.43)

where L is the length of the rod and γ is the Euler constant (0.5772).
(If the summations in Eq. (32.41) are replaced by integrations, γ does
not appear.) Equations. (32.43) without γ can also be obtained by the
method of Kirkwood and Riseman described in the previous section.30

The translational diffusion coefficient of a rigid ring, when calculated
from Eq. (32.41), is also given by Eq. (32.43) in the limit of large L, if
L is the contour length of the ring and a is the arc length of a bond. On
the other hand, the correct diffusion coefficient of a rigid ring calculated
by Zwanzig31 by a different method is

D(rigid ring) =
11kT ln(L/a)

36πη0L
. (correct) (32.44)

Thus, the correct result is smaller than the incorrect one by a factor
11/12. Examination of the results for linear flexible chains and rigid
rods suggests that Kirkwood’s formula for D has some practical value,
even if it is not generally correct.

33. The Diffusion-Equation Approach (B):
The Spring and Bead Model

Solutions of the Kirkwood diffusion equation, as shown in the previous
section, are not in general derived without the use of mathematical
approximations. For flexible chains it is convenient to use the random-
flight model with the Gaussian bond probability to obtain numerical
results. This model is dynamically equivalent to a chain composed of
(n + 1) segments, or beads, with friction coefficient ζ, joined together
with a Hooke’s law spring, and is referred to as the spring and bead
model. The development of the dynamical theory based on this model
was initiated by Rouse,32 Bueche,33 Zimm,34 and others.35, 36 The gen-
eral mathematical problem is similar to that in the Debye theory of
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lattice vibrations, or in the theory of Brownian motion of a system of
coupled harmonic oscillators. The model will, therefore, be a valid de-
scription of low-frequency dynamical processes. As hinted the present
theory may be developed conveniently by the use of a transformation
into normal coordinates, but use of this model limits the range of appli-
cation. In this section we adopt the procedure of Zimm, and evaluate
the intrinsic viscosity and the translational diffusion coefficient for un-
perturbed linear chains.

We begin by deriving the diffusion equation for the spring and bead
model. If the fluid velocity vi is split into the unperturbed velocity
v 0

i and the Oseen perturbations according to Eq. (31.4) with (31.5),
Eq. (32.2) for the current density may be rewritten as

Ji = Pv 0
i +

n∑

j=0

Dij [P (−∇jU + Xj)− kT∇jP ] , (33.1)

where we have used Eq. (32.3) for the frictional force, and the tensor
Dij is given by

Dij = ζ−1δijI + Tij (33.2)

with
Tii = 0 .

For present purposes, it is convenient to write

U = U0 + W ,

Xi = −∇iUe , (33.3)

where U0 is the potential representing the connection of segments, W
is the intramolecular excluded-volume potential, and Ue is the external
potential. If τ(ri) is the bond probability given by Eq. (5.35), the
elastic force exerted on the ith segment by the ith bond (spring) is

kT
ri

ri

∂ ln τ(ri)
∂ri

= −κri = −κ(Ri −Ri−1) , (33.4)

where κ is the force constant of the spring and is given by κ = 3kT/a2.
The elastic force exerted on the ith segment by the (i + 1)th bond is
equal to κ(Ri+1 −Ri). For a linear chain we therefore have

∇iU0 = κ(R0 −R1) for i = 0
= κ(−Ri−1 + 2Ri −Ri+1) for 1 ≤ i ≤ n− 1
= κ(−Rn−1 + Rn) for i = n . (33.5)

We approximate the Oseen tensor Tij by its average value [〈Tij〉 of
(31.13)] in Eq. (33.2), and define the (n + 1)× (n + 1) matrix H whose
elements are

Hij = 1 for i = j

=
ζ

6πη0

〈
1

Rij

〉
for i 6= j . (33.6)
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It is then convenient to write the diffusion equation (32.1) with
(33.1) in matrix notation. Let F be any column vector whose compo-
nents are three-dimensional vector Fi(0 ≤ i ≤ n). The row vector FT

is
FT = (F0 F1 · · ·Fn) , (33.7)

where the superscript T indicates the transpose. The differential oper-
ator with respect to R may therefore be written as

∇T = (∇0∇1 · · · ∇n) . (33.8)

We now introduce the (n + 1) × (n + 1) matrix A = aT a with aij =
δij − δi,j−1; that is,

A =




1 −1 0 0 · · · 0 0 0
−1 2 −1 0 · · · 0 0 0
0 −1 2 −1 · · · 0 0 0
0 0 −1 2 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · −1 2 −1
0 0 0 0 · · · 0 −1 1




. (33.9)

The operator κA transforms a position vector into a force vector, while
ζ−1H is the hydrodynamic mobility operator which transforms a force
vector into a velocity vector. The diffusion equation and the frictional
force may then be written as

∂P

∂t
= −∇T Pv0 +ζ−1∇T H[κPAR+P∇(W +Ue)+kT∇P ] , (33.10)

F = −κAR−∇(W + Ue)− kT∇ ln P . (33.11)

Further developments are facilitated by a coordinate transformation
into normal coordinates. The matrix HA can be transformed into a
diagonal matrix Λ with elements λj by a similarity transformation with
an appropriate matrix Q,

Q−1HAQ = Λ . (33.12)

If αj is the eigenvector of HA corresponding to the eigenvalue λj , we
have the eigenvalue equation,

HAαj = λjαj (0 ≤ j ≤ n) , (33.13)

and Q is composed of (n+1) column vectors αj . Note that HA is not
in general symmetric and Q is not orthogonal. The same matrix Q can
also be used to diagonalize the matrices H and A separately, although
not by similarity transformations. We first establish that

α T
j AH = (HT AT αj)T = (HAαj)T = λjα

T
j , (33.14)
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since H and A are symmetric. We therefore have

α T
j AHAαk = (α T

j AH)Aαk = λjα
T

j Aαk , (33.15)

and also

α T
j AHAαk = α T

j A(HAαk) = λkα T
j Aαk . (33.16)

Equations (33.15) and (33.16) can both be true only if

α T
j Aαk = 0 for j 6= k , (33.17)

unless λj = λk. Therefore, if all the eigenvalues are distinct (as turns
out to be the case), A is diagonalized by the congruent transformation,

QT AQ = M , (33.18)

where M is the diagonal matrix with elements µj . Next, define a set
of (n + 1) vectors βj as the column vectors of Q−1T . Since we find
QT AHQ−1T = Λ from Eq. (33.12), the βj are the eigenvectors of
AH with eigenvalues λj . With these we can also diagonalize H by
a congruent transformation. If we obtain AQ from Eq. (33.18) and
substitute it into Eq. (33.12), we find

Q−1HQ−1T = ΛM−1 = N , (33.19)

where N is diagonal with elements νj .

νj = β T
j Hβj

= λj/µj . (33.20)

The element ν0 is indeterminate in the second line of Eqs. (33.20),
since both λ0 and µ0 turn out to be zero. On the other hand, while
the first line of Eqs. (33.20) is valid by definition for all j, it requires
the inversion of Q to determine the βj . Multiplying Eq. (33.19) from
the left with N−1, we can show that

αj =
1
νj

Hβj , (33.21)

from which we obtain, by the use of the relation α T
i βj = δij ,

ν −1
j = α T

j H −1αj . (33.22)

This relation is valid for all j including zero, but requires the inversion
of H.

An important property of A is its possession of a zero eigenvalue,
since the determinant of A vanishes. This may be demonstrated by
adding all the rows of the determinant, except the first, to the first
row, whereupon the first row is reduced to zero. As a consequence HA
also has a zero eigenvalue. The eigenvector in each case can be shown
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to be a constant vector. This corresponds to a simple translation of
the molecule in space, as will be discussed later. We designate λ0 as
the vanishing eigenvalue of HA.

The matrix Q is used to transform the coordinates R into normal
coordinates ξ;

R = Qξ ,

ξ = Q−1R (33.23)

with ξT = (ξ0 ξ1 · · · ξn). By the usual rules for transforming partial
derivatives, we also find

∇ = Q−1T∇ξ ,

∇T = ∇ T
ξ Q−1 , (33.24)

where ∇ξ is the differential operator with respect to ξ. In the new
coordinates the diffusion equation (33.10) becomes

∂P

∂t
= −∇ T

ξ v 0
ξ P + ζ−1∇ T

ξ [κΛξP + NP∇ξ(W + Ue) + kTN∇ξP ]

(33.25)
with v 0

ξ = Q−1v0.
In what follows we consider the unperturbed linear chain subject

to no external field; that is, W + Ue = const. In order to reduce the
unperturbed velocity term in the diffusion equation, it is convenient to
use the explicit Cartesian components xi, yi, and zi of the vector Ri

and Xi, Yi, and Zi of the normal coordinate vector ξi. Suppose that the
unperturbed velocity field is given by Eq. (30.12), i.e., v 0

i = (gyi, 0, 0),
and the rate of shear g is given by the harmonic function of time,
Eq. (30.27). Then Eq. (33.25) reduces to

∂P

∂t
=

n∑

j=0

[
−gYj

∂P

∂Xj
+

κλj

ζ
∇j · (ξjP ) +

kTνj

ζ
∇ 2

j P

]
, (33.26)

where ∇j is the differential operator with respect to ξj (not to Rj).
Both closed-form and perturbation solutions of Eq. (33.26) can be
found. For many purposes, however, this is not necessary, since the
average values of certain functions of the coordinates can be obtained
exactly without finding the distribution function P itself.

We now evaluate the complex intrinsic viscosity [η̄]. If we introduce
the vectors xT = (x0x1 · · ·xn) and F T

x = (F0xF1x · · ·Fnx) and the
operator ∇ T

x = (∂/∂x0 ∂/∂x1 · · · ∂/∂xn), we have from Eq. (33.11)

Fx = −κAx− kT∇x ln P . (33.27)

The sum of the average values 〈Fjxyj〉 appearing in [η̄] then becomes
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−
n∑

j=0

〈Fjxyi〉 = −〈yT Fx〉

=
∫

(κyT Ax + kTyT∇x ln P )P dR

= κ〈yT Ax〉 = κ〈YT MX〉 =
n∑

j=1

κµj〈XjYj〉 ,

(33.28)

where the second term in the second line drops out on integration since
P vanishes at infinity, and in the third line we have excluded the term
with j = 0 since µ0 = 0. Now, again making use of the fact that
P vanishes at infinity, we multiply Eq. (33.26) by XjYj or Y 2

j and
integrate over the space coordinates. After an integration by parts we
obtain the differential equations,

∂〈XjYj〉
∂t

= −2κλj

ζ
〈XjYj〉+ g〈Y 2

j 〉 , (33.29)

∂〈Y 2
j 〉

∂t
= −2κλj

ζ
〈Y 2

j 〉+
2kTνj

ζ
. (33.30)

The solution of Eq. (33.30) is

〈Y 2
j 〉 = kT/κµj + C exp(−2κλjt/ζ) , (33.31)

where C is the constant of integration, and in the stationary state we
may suppress the second term on the right-hand side (the transient
term). Then substitution of Eq. (33.31) into Eq. (33.29) and solution
(with omission of the transient term) leads to

〈XjYj〉 =
kTg

κµj(2κλj/ζ + iω)
. (33.32)

Thus we obtain from Eqs. (30.24), (33.28), and (33.32)

[η̄] =
RT

Mη0

n∑

j=1

τj

1 + iωτj
, (33.33)

where R is the gas constant, and τj are the relaxation times given by

τj =
ζ

2κλj
=

Mη0[η]

RTλj




n∑

j=1

λ −1
j




(33.34)

with [η] the zero-frequency intrinsic viscosity. The qualitative aspects
of the present theory are as follows: the resultant of all the motions of
the segments of the chain can be decomposed into a series of indepen-
dent normal modes of motion, with each mode represented by a normal
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coordinate and having a relaxation time during which the transition to
the equilibrium distribution occurs. Further, we note that the intrinsic
viscosity is independent of the rate of shear. This result is not in agree-
ment with experiment. A discussion of the non-Newtonian viscosity is
deferred to Section 36b.

We can readily obtain the real and imaginary parts of the complex
intrinsic viscosity, or the complex intrinsic rigidity [Ḡ]. According to
Eqs. (30.29) and (30.31),

[G′] =
RT

M

n∑

j=1

ω2τ 2
j

1 + ω2τ 2
j

,

[G′′] =
RT

M

n∑

j=1

ωτj

1 + ω2τ 2
j

. (33.35)

The nonvanishing of [η′′] = [G′]/ωη0 except at ω = 0 indicates that
for an alternating shear strain, the distribution function and also the
shear stress exhibit a lag in phase relative to the rate of shear, and the
solution possesses rigidity. The rigidity of polymer solutions was first
observed experimentally by Mason, Baker, and their co-workers.37

The problem is now to solve the eigenvalue equation,

HAα = λα . (33.36)

When n is large the components αi of α vary slowly with the index i
so that they may be represented by a continuous function α(r) with
the relations between indices i and j and the variables r and s given
by r = 2i/n − 1 and s = 2j/n − 1. For the unperturbed linear chain
Eq. (33.36) then becomes the integrodifferential equation,

α′′(r) + h

∫ 1

−1

α′′(s)
|r − s|1/2

ds = −n2λ

4
α(r) (33.37)

with the free-end boundary conditions,

α′(±1) = 0 , (33.38)

where we have used Eq. (33.6) with (31.20) for the elements Hij , the
primes indicate differentiation, and h is the draining parameter defined
by Eq. (31.23). If we use the variables x = i/n and y = j/n instead of
r and s, Eq. (33.37) with (33.38) must be replaced by

α′′(x) + 21/2h

∫ 1

0

α′′(y)
|x− y|1/2

dy = −n2λα(x) (33.39)

with
α′(0) = α′(1) = 0 . (33.40)

Necessarily Eqs. (33.37) and (33.39) yield the same eigenvalues but
different forms of eigenfunctions. Also, the eigenvalues depend on the
parameter h.
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In the free-draining case (h = 0), the eigenvalues are obtained as

λj = π2j2/n2 (j = 0, 1, . . . , n) . (33.41)

These are called the Rouse eigenvalues. We obtain for the correspond-
ing normalized Rouse eigenfunctions from Eq. (33.37)

αj(r) = (2/n)1/2 cos(πjr/2) for even j

= (2/n)1/2 sin(πjr/2) for odd j , (33.42)

and from Eq. (33.39)

αj(x) = (2/n)1/2 cos(πjx) . (33.43)

The Rouse eigenfunctions are quite good approximations to the exact
solutions of Eq. (33.37) or (33.39) for any value of h, since the integral
in each equation is well approximated by α(r) of α(x) multiplied by a
slowly varying function of r or x. Calculations with the Rouse eigen-
functions are especially easy, because then the matrix Q is symmetric,
i.e., QT = Q, and moreover QT = Q−1, and hence αj = βj . From
Eqs. (33.33) and (33.41) with the value of the Riemann zeta function,
we find the previously derived result, Eq. (31.32), for the zero-frequency
intrinsic viscosity. Further, we obtain for the relaxation times

τj =
6Mη0[η]
π2RTj2

(for h = 0) . (33.44)

In the non-free-draining case (h = ∞), the integral equation [with-
out α′′(r)] that results from Eq. (33.37) has been solved numerically by
Zimm, Roe, and Epstein38 by transforming it into a set of homogeneous
linear equations for the coefficients jαk in the Fourier series expansion
of αj(r),

Gja = λ
′j

j a (33.45)

with
λj = (4h/n2)λj

′ . (33.46)

The matrix G is almost diagonal, so that the off-diagonal elements may
be treated by a perturbation method to find

λ
′

j = Gjj −
∞∑

k=0
6=j

GjkGkj

Gkk −Gjj
. (33.47)

In particular, the diagonal elements are given by

Gjj = πj1/2[πjC(πj)− 1
2S(πj)] , (33.48)

where C(x) and S(x) are the Fresnel integrals defined by

C(x) = (2π)−1/2

∫ x

0

t−1/2 cos t dt ,

S(x) = (2π)−1/2

∫ x

0

t−1/2 sin t dt . (33.49)
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TABLE VI.2. THE REDUCED EIGENVALUES λ
′

j IN THE NON-

FREE-DRAINING LIMIT34

λ
′

j

j ZIMM HEARST

0 0 0
1 4.04 4.10
2 12.79 12.87
3 24.2 24.3
4 37.9 37.9
5 53.5 53.4
6 70.7 70.6
7 89.4 89.3

The λ
′

j for j = 0 to 7 are tabulated in the second column of Table VI.2.
For large j they are well approximated by λj

′ = 1
2π2j3/2(1 − 1/2πj).

With these eigenvalues we obtain Eq. (31.34) for the zero-frequency
intrinsic viscosity with Φ0 = 2.84 × 1023. This value of Φ0 is to be
compared with the value 2.87 × 1023 obtained in Section 31a. The
relaxation times are given by

τj =
Mη0[η]

0.586RTλj
′ (for h = ∞) . (33.50)

The eigenvalues for intermediate values of h were calculated by
Hearst39 and by Tschoegl.40 Hearst’s calculations are particularly sim-
ple, because the Rouse eigenfunctions were used. The use of the Rouse
eigenfunctions in the non-free-draining limit is equivalent to neglect-
ing the off-diagonal elements in Eq. (33.47), i.e., λj

′ = Gjj . These
λj

′ are tabulated in the third column of Table VI.2. The eigenvalues
λj (for any value of h) within this approximation are the sum of the
free-draining and non-free-draining contributions,

λj =
π2

n2

(
j2 +

4hλj
′

π2

)
. (33.51)

Hearst’s calculations give Φ0(∞) = 2.82 × 1023, which is very close to
Zimm’s value. The values of the ratio Φ0(h)/Φ0(∞) as a function of log
h calculated with the use of Hearst’s eigenvalues are shown by curve H
in Fig. VI.4. For comparison, the corresponding values from the Kirk-
wood-Riseman theory are shown by curve KR. Note the good agreement
between the calculations. Thus, for the zero-frequency intrinsic viscos-
ity of flexible chains, almost the same predictions are obtained whether
Brownian motion is explicitly considered or not.

We now turn to the study of the translational diffusion coefficient D.
The elements of the vector α0 are all the same constant, whose value
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Fig. VI.4. The ratio Φ0(h)/Φ0(∞) plotted against log h. Curve KR: the

Kirkwood–Riseman theory. Curve H: Hearst’s version of the Zimm theory. Curve

FP: the Fixman–Pyun theory.

may be chosen to be n−1/2 to normalize α0 ; that is, α0 = n−1/2I with
I the unit vector. Then, from Eqs. (33.23), the normal coordinate X0

is seen to represent a translation of the whole molecule by the amount
X0/n1/2 in the direction of the x axis. The meaning of β0 is exposed by
Eq. (33.21) and the physical interpretation of ζ−1H as the operator that
converts force into velocity; β0 is the force vector which is produced
by a uniform translational velocity of the molecule relative to the fluid
with a magnitude ν0/n1/2ζ. We can then define a center of resistance,
whose x-coordinate is xr, as that point about which the net torque
vanishes when the force vector β0 arising from uniform translation is
applied to the molecule and equivalent total force is applied to the
point. In symbols,

β T
0 (x− xrI) = 0 , (33.52)

where x is an arbitrary vector, and the left-hand side is the net torque.
The solution of Eq. (33.52) is

X0 = n1/2xr . (33.53)

Therefore, the zeroth normal coordinates ξ0 measure the position of the
center of resistance. For the case of steady flow, it can be shown that the
molecule rotates with the angular velocity 1

2g around its center of resis-
tance instead of around its center of mass as in the Kirkwood-Riseman
theory. The translational diffusion coefficient is related to the number
ν0. In Eq. (33.26) the diffusion coefficient associated with ∂2P/∂X 2

0

is kTν0/ζ, but X0 is n1/2 times the magnitude of a translation of the
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Fig. VI.5. The dimensionless intrinsic storage and loss moduli as functions of

the reduced angular frequency. Full curves: the Rouse theory (the free-draining

case). Broken curves: the Zimm theory (the non-free-draining case). Heavy

curves: [G′]. Light curves: [G′′]. Filled circles ([G′]) and open circles ([G′′]):
data on a polyisobutylene fraction (with M = 1.76×106) in benzene at the Θ

temperature (24.0 ◦C).41

center of resistance, so that

D = kTν0/nζ . (33.54)

In the free-draining case, we find ν0 = 1 from Eq. (33.22) and recover
Eq. (31.47). For the non-free-draining case, Zimm gave the numerical
constant 0.192 instead of 0.196 in D of Eq. (31.48). This result is
the same as that obtained from the exact asymptotic solution of the
Kirkwood–Riseman integral equation of (31.41). It is interesting to note
that if we use the Rouse eigenfunctions, we have β0 = n−1/2I, and from
this and Eqs. (33.20) and (33.54) obtain the Kirkwood expression for
D, Eq. (32.41).

Finally, we make a comparison of theory with experiment with re-
spect to the frequency dependence of the complex intrinsic rigidity or
viscosity, since this can be done without fundamental difficulty. The
dimensionless quantity ωτj in Eqs. (33.35) may be written in the form,

ωτj =
ω̄

λj

(∑

j

λ −1
j

) , (33.55)
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where ω̄ is the reduced angular frequency defined by

ω̄ = ωMη0[η]/RT . (33.56)

Then the quantities [G′]M/RT and [G′′]M/RT are dimensionless func-
tions only of ω̄ and h for unperturbed flexible chains. This is also the
case for the dimensionless functions [η′]/[η] and [η′′]/[η]. Experimental
data satisfying the conditions (of infinite dilution and theta state) re-
quired by the present theory are the ones obtained by Sakanishi41 for
a polyisobutylene fraction (of M = 1.76× 106) in benzene at the theta
temperature (24.0◦C) by the torsional crystal method. In Fig. VI.5
are shown plots of log [G′]M/RT or log [G′′]M/RT against log ω̄. The
filled and open circles represent the data for [G′] and [G′′], respectively.
The full and broken curves represent the theoretical values for the free-
draining case (Rouse theory) and the non-free-draining case (Zimm
theory), respectively, [G′] and [G′′] being indicated by the heavy and
light curves. Clearly, this polymer system is well described by the Zimm
theory, indicating that there is no draining effect.

34. The Nonaveraged Oseen Tensor
and the Viscosity Constant Φ0

Apart from the model adopted the only mathematical approximation
made in the Zimm theory is the use of the preaveraged Oseen tensor. In
this section we avoid preaveraging the Oseen tensor in order to further
investigate the behavior of the viscosity function Φ0(h) for unperturbed
linear chains in steady flow. We again use the spring and bead model,
employing a procedure due to Fixman and Pyun.42, 43 Their idea con-
sists of using, in zeroth approximation, only the diagonal part of the
time evolution operator of the distribution function in the free-draining
basis representation, and treating the off-diagonal part by perturbation
theory. The (zeroth-order) diagonal approximation corresponds to the
adoption of the Rouse free-draining normal modes, which we have noted
are good approximations to the exact modes.

We start from the diffusion equation (32.1) with (33.1), where for
the present case W and Ue are constant. In the matrix notation intro-
duced in the previous section, it may be written in the form

∂P

∂t
= −∇T v0P +∇T D(P∇U0 + kT∇P ) (34.1)

with
D = ζ−1I + T , (34.2)

the elements of D being the Dij given Eq. (33.2). In order to obtain a
perturbation solution of the diffusion equation in the Kirkwood general
theory, the function PP

−1/2
0 was introduced to make the operator on

it self-adjoint. Here P0 is the equilibrium distribution function,

P0 = C0 exp(−U0/kT ) (34.3)



SEC. 34. The Nonaveraged Oseen Tensor and the Viscosity Constant Φ0 297

with
C −1

0 =
∫

exp(−U0/kT )d{Rn+1} . (34.4)

However, there are many disadvantages in such a procedure if we wish
actually to carry through calculations. In the present theory we put

P = P0ρ . (34.5)

Then Eq. (34.1) becomes

∂ρ

∂t
+ Lρ = 0 , (34.6)

where
L = A+ B , (34.7)

A = −kT∇T D∇+ (∇T U0)D∇ , (34.8)

B = ∇T v0 − (1/kT )(∇T U0)v0 . (34.9)

The operator A is not self-adjoint in itself, but becomes self-adjoint,
i.e., 〈g,Af〉 = 〈Ag, f〉, if the scalar product 〈g, h〉 of any two functions
g and h is defined with weighting function P0,

〈g, h〉 =
∫

P0gh d{Rn+1} = 〈gh〉0 . (34.10)

Then the operator A possesses a complete orthonormal set of eigen-
functions. It is particularly convenient to choose as our basis set the
free-draining eigenfunctions ψk which are determined by

A0ψk = λ̄ 0
k ψk (34.11)

with
A0 = −(kT/ζ)∇T∇+ ζ−1(∇T U0)∇ . (34.12)

The free-draining operatorA0 is obtained fromA of (34.8), with the ele-
ments of D given by only the first term of Eq. (34.2) thereby completely
neglecting the hydrodynamic interaction between segments (Tij = 0 for
all i and j).

We now expand the function ρ in terms of ψk,

ρ =
∑

k

fkψk , (34.13)

where fk are the components of ρ in the basis {ψk}, and are given by

fk = 〈ψk, ρ〉 =
∫

Pψkd{Rn+1} . (34.14)

Then Eq. (34.6) has the matrix representation,

∂f

∂t
+ Lf = 0 , (34.15)
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where f is the column vector whose components are fk, and L is the
matrix with elements Lkl = 〈ψk,Lψl〉 = 〈ψkLψl〉0, namely the matrix
representation of L. Put

f = f0 + f ′ , (34.16)
ρ = ρ0 + ρ′ , (34.17)

where f0 and ρ0 are the equilibrium (or ground) states of f and ρ,
respectively. Clearly we have ρ0 = 1 from Eq. (34.5). Furthermore,
since ψ0 = 1, as seen later, from Eq. (34.14) we have f0 = 1, and hence
f 0

k = δk0. Therefore, Eq. (34.13) becomes

ρ = 1 +
∑

k 6=0

fk
′ψk . (34.18)

The matrix L may be separated into

L = La + Lb , (34.19)

where La and Lb are the matrix representations of the operators A and
B, respectively. Obviously we have

Laf0 = 0 , (34.20)

and for steady flow Eq. (34.15) becomes

(La + Lb)f ′ = −Lbf0 . (34.21)

By inversion of Eq. (34.21), we find

fk
′ = −L b

k0

λ̄k
+

1
λ̄k

∑
l

6=k

(
L a

kl L b
l0

λ̄l
+

L b
kl L b

l0

λ̄l

)

− 1
λ̄k

∑

l

∑
m

l 6=k,m

(
L a

kl L a
lm L b

m0

λ̄lλ̄m
+

L a
kl L b

lmL b
m0

λ̄lλ̄m

+
L b

kl L a
lm L b

m0

λ̄lλ̄m
+

L b
kl L b

lmL b
m0

λ̄lλ̄m

)
+ · · · (34.22)

with λ̄k = L a
kk . We separate La into

La = A0 + A′ , (34.23)

where A0 is the matrix representation of A0, and A′ is the representa-
tion of A′ = A−A0,

A′ = −kT∇T T∇+ (∇T U0)T∇ . (34.24)

A0 is diagonal with elements A 0
kk = λ̄ 0

k , since 〈ψk, ψl〉 = δkl. We
therefore have

L a
kl = λ̄k = λ̄ 0

k + Akk
′ for k = l

= Akl
′ for k 6= l . (34.25)
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Equation (34.18) with (34.22) establishes a perturbation solution for ρ.
In order to proceed further, we must solve the eigenvalue equation

(34.11). The spring potential U0 may be written as

U0 = 1
2κRT AR , (34.26)

where κ is the force constant and A is the matrix given by Eq. (33.9).
The matrix A can be transformed into a diagonal matrix Λ with a
matrix Q; that is, Q−1AQ = Λ. This is a special case of the transfor-
mation of (33.12), i.e., the free-draining case with H the unit matrix.
Therefore, the diagonal elements λj of Λ are given by Eq. (33.41),

λj = π2j2/n2 , (34.27)

and Q is orthogonal and symmetric, Q−1 = QT = Q, its elements
being, from Eq. (33.43),

Qij = (2/n)1/2 cos(πij/n) . (34.28)

Then, the coordinates ξ given by Eq. (33.23) are the Rouse free-draining
normal coordinates, and the operator A0 is transformed into

A0 = −(kT/ζ)∇ T
ξ ∇ξ + (κ/2ζ)∇ T

ξ (ξT Λξ)∇ξ

= −(kT/ζ)
n∑

j=0

∇ 2
ξj

+ (κ/ζ)
n∑

j=0

λjξj · ∇ξj
. (34.29)

The separation of variables in Eq. (34.29) allows the eigenfunctions ψk

to be written as

ψk =
n∏

j=1

φk(j)(ξj) (34.30)

with
φk(j)(ξj) = φk(jX)(Xj)φk(jY )(Yj)φk(jZ)(Zj) , (34.31)

where we have omitted the contribution of a simple translation of the
molecule. From Eq. (34.11), the equations for φk(j) are

−(kT/ζ)∇ 2
ξj

φk(j) + (κ/ζ)λjξj · ∇ξj
φk(j) = λ̄ 0

k(j) φk(j) (j = 1, . . . , n)
(34.32)

with

λ̄ 0
k =

∑

j

λ̄ 0
k(j) ,

λ̄ 0
k(j) = λ̄ 0

k(jX) + λ̄ 0
k(jY ) + λ̄ 0

k(jZ) . (34.33)

The single subscript k denotes a set of n k(j)′s, and each k(j) denotes
the set k(jX), k(jY ), k(jZ). Equation (34.32) may be reduced to the
standard Hermite differential equation, and then solved to give

φk(jX)(Xj) = Ak(jX)Hk(jX)(σjXj) , (34.34)
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and similar equations for the Y and Z components. Here σj and λ̄ 0
k(jX)

are defined by

σ 2
j = 3λj/2a2 , (34.35)

λ̄ 0
k(jX) = π2(κ/ζ)j2k(jX)/n2 . (34.36)

Hk(jX) is the Hermite polynomial degree k(jX) which is an integer.
Ak(jX), etc., given by Ak(j) = Ak(jX)Ak(jY )Ak(jZ), are the normalizing
constants to be determined by 〈ψk, ψl〉 = δkl and

ψk = AkHk({ξn}) =
∏

j

Ak(j)Hk(j)(σjξj) , (34.37)

where Hk(j)(σjξj) again denotes Hk(jX)(σjXj)Hk(jY )(σjYj)
×Hk(jZ)(σjZj).

In the normal coordinates, the potential U0 becomes

U0 = kT
∑

j

σ 2
j ξ 2

j , (34.38)

and the normalizing constant C0 in Eq. (34.3) is found to be

C0 = π−3n/2
n∏

j=1

σ 3
j . (34.39)

We then obtain

Ak =
n∏

j=1

[2k(jX)+k(jY )+k(jZ)k(jX)!k(jY )!k(jZ)!]−1/2 . (34.40)

Clearly we have

ψ0 = A0H0 = 1 ,

λ̄ 0
0 = 0 . (34.41)

Now, by the use of Eq. (33.28) with µj = λj , the intrinsic viscosity
may be written as

[η] =
NAκ

Mη0g

n∑

j=1

λj〈XjYj〉 , (34.42)

where g is independent of time. 〈XjYj〉 may be evaluated as follows,

〈XjYj〉 =
∫

XjYjP d{ξn}

=
∑

k 6=0

fk
′
∫

XjYjP0ψk d{ξn}

= f(j)
′
∫

XjYjP0ψ(j)d{ξn} = f(j)
′(2σ 2

j )−1 , (34.43)

where we have used Eq. (34.5) with (34.18) in the second line, and
the properties of the Hermite polynomials in the third line. The states
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indicated by the subscript (j) (j = 1, . . ., n) are those in which X and
Y components of one normal mode are excited from the zeroth order to
the first-order Hermite polynomial, the other component and all other
modes being in their ground states; that is,

ψ(j) = A(j)H(j) = 1
2H1(σjXj)H1(σjYj) , (34.44)

λ̄ 0
(j) = 2π2(κ/ζ)j2/n2 . (34.45)

Substitution of Eq. (34.43) with (34.35) into Eq. (34.42) leads to

[η] =
NAkT

Mη0g

n∑

j=1

f(j)
′ . (34.46)

Thus the only ψk which can contribute to the intrinsic viscosity are of
the type ψ(j).

For the flow under consideration the operator B is transformed into

B = g
∑

j

Yj
∂

∂Xj
− 3g

a2

∑

j

λjXjYj . (34.47)

The matrix representation of B is found to be

L b
kl = −g

n∑

j=1

( n∏
i=1
6=j

δk(i),l(i)

)
δk(jZ),l(jZ)[k(jX)]1/2δk(jX)−1,l(jX)

× {[k(jY )]1/2δk(jY )−1,l(jY ) + [k(jY ) + 1]1/2δk(jY )+1,l(jY )} ,

(34.48)

where δk(i),l(i) is the abbreviation for the product δk(iX),l(iX)δk(iY ),l(iY )

×δk(iZ),l(iZ). It is evident that

L b
kk = 0 , (34.49)

and that the only ψk which give nonvanishing L b
k0 are of the type ψ(j)

and then
L b

(j)0 = −g . (34.50)

It is now seen that any term in fk
′ of (34.22) which contains only

products of elements from Lb, and no elements from La, makes no
contribution to [η]. For, each L b

kl raises by one the excitation level of
the X component of a normal mode according to Eq. (34.48), and only
f(j)

′ contribute to [η].
If we consider the limiting case g → 0, Eq. (34.22) with k = (j)

becomes

f(j)
′

g
=

1
λ̄(j)

[
1−

∑
l
6=j

A(j)(l)
′

λ̄(l)

+
∑

l

∑
m

l 6=(j),(m)

A(j)l
′Al(m)

′

λ̄lλ̄(m)

+ · · ·
]

(34.51)

with
λ̄(j) = λ̄ 0

(j) + A(j)(j)
′ . (34.52)
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Equation (34.46) with (34.51) gives the desired perturbation theory
of the intrinsic viscosity. The zeroth-order theory includes only the
first term on the right-hand side of Eq. (34.51). This is equivalent to
neglecting the off-diagonal elements of La, and is called the diagonal La

approximation. In order to obtain numerical results we must evaluate
Akl

′. It is given by

Akl
′ =

∫
P0ψkA′ψld{Rn}

= kT

∫
P0(∇T ψk)T(∇ψl)d{Rn} . (34.53)

In particular, we have from Eq. (34.44).

A(i)(j)
′ = 1

4kT
∑

l

∑
m

l 6=m

〈(∇lH(i))Tlm(∇mH(j))〉0 , (34.54)

where

H(j) = 4σ 2
j

(∑

k

Qjkxk

)(∑

k

Qjkyk

)
. (34.55)

The equilibrium average in Eq. (34.54) may be evaluated straight-
forwardly by means of the Wang-Uhlenbeck theorem, and the sums
may be converted to integrals. For example, A(j)(j)

′ is found to be

A(j)(j)
′ =

8κh

n2ζ
[I1(j) + I2(j)] , (34.56)

where h is the draining parameter defined by Eq. (31.23), I1(j) is equal
to Hearst’s λ′j , i.e., Gjj given by Eq. (33.48), and I2(j) is given by

I2(j) =
3
√

2
40

[
−20 + (−1)j12 + 12π(2j)1/2S(πj)− 8πj1/2S(2πj)

+ 17
(

2
j

)1/2

C(πj)− 22
j1/2

C(2πj) + 3
(

6
j

)1/2

C(3πj)
]

(34.57)

with C and S Fresnel integrals defined by Eqs. (33.49).
Now, in the diagonal La approximation, the intrinsic viscosity or

the viscosity function Φ0(h) can readily be written down,

Φ0(h) =
2NAh

(12π)1/2

n∑

j=1

1
j2 + (4h/π2)[I1(j) + I2(j)]

. (34.58)

Equation (34.58) gives Φ0(∞) = 2.68× 1023, and the values of Φ0(h)/
Φ0(∞) are shown by curve FP in Fig. VI.4. If Tlm is replaced by its
average value in Eq. (34.54), the Φ0(h) given by Eq. (34.58) includes
no contribution from I2(j), and becomes identical with Hearst’s Φ0(h)
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TABLE VI.3. THE VISCOSITY CONSTANT Φ0 FROM VARIOUS
THEORIES FOR LINEAR FLEXIBLE CHAINS

Φ0 × 10−23

KRAG 2.87
Z 2.84
H 2.82
FP (0th order) 2.68

(1st order) 1.81
(2nd order) 2.66

HTa 2.19
aSee Section 36d(ii).

with Φ0(∞) = 2.82 × 1023 as obtained in the previous section. The
difference between these two values of Φ0(∞) is obviously due to the
present avoidance of preaveraging the Oseen tensor. Consider now
the non-free-draining limit. As seen from Eq. (34.51), the first-order
perturbation theory result is obtained when the off-diagonal elements
A(i)(j)

′ are evaluated from Eq. (34.54); one finds Φ0(∞) = 1.81 ×
1023. In the second-order perturbation theory we need evaluate not
only the terms A(j)(l)

′A(l)(m)
′ but also A(j)l

′Al(m)
′ with l 6= (l). The

contribution of the terms of the former type to Φ0(∞) is 2.19 × 1023,
while the contribution of the latter is found to be 0.47×1023. Thus the
second-order perturbation theory result is Φ0(∞) = 2.66 × 1023. The
convergence of the perturbation series is clearly not as good as could
be hoped for. The values of Φ0(∞) obtained from the various theories
are summarized in Table VI.3. For convenience, Φ0(∞) will be referred
to as the viscosity constant.

All the theories of the intrinsic viscosity described so far predict that
the viscosity function Φ0(h) for flexible chains increases with increasing
h, and hence with molecular weight M , since h is proportional to M1/2.
Then it follows from Eq. (31.34) that [η]/M1/2 must be an increas-
ing function of M at the theta temperature. However, experimental
data are not in agreement with this conclusion, indicating rather that
[η]/M1/2 is independent of M at the theta temperature for molecular
weights of ordinary interest, and therefore that there is no draining ef-
fect. As an illustration, in Fig. VI.6 are shown plots of [η]/M1/2 against
M1/2 using the data obtained by Krigbaum and Flory44 for polystyrene
in cyclohexane at the theta temperature, 34◦C (open circles) and poly-
isobutylene in benzene at the theta temperature, 24◦C (filled circles).
It is seen that [η]/M1/2 remains constant until the molecular weight
goes down to about ten thousand. If we assume Stokes’ law to de-
termine the friction coefficient of the segment, ζ = 3πη0b with b the
diameter of the segment, and further assume that n = M/52, a = 5 Å,
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Fig. VI.6. [η]/M1/2 plotted against M1/2 ([η] in dl/g). Open circles: polystyrene

in cyclohexane at Θ = 34.0 ◦C.44 Filled circles: polyisobutylene in benzene at Θ

= 24 ◦C.44

and b = 5 Å for polystyrene, we obtain h ' 6 × 10−2M1/2. When
M = 104, we have h = 6, and Φ0(h)/Φ0(∞) ' 0.8 from Fig. VI.4.
In order words, the theory predicts a 20% decrease in [η]/M1/2 when
the molecular weight is decreased from very large values to about ten
thousand. There are at least two reasons for this disagreement be-
tween theory and experiment. One source of discrepancy arises from
the use of the random-flight model, and the other from the inadequacy
of the Oseen tensor as a description of the hydrodynamic interaction.
A complete theory of the viscosity has not yet been given, and further
investigations are needed.

Thus, at least for flexible-chain polymers, the theory may be con-
sidered to have a significance only in the non-free-draining limit, and
we may assume that the viscosity function is constant and equal to
Φ0(∞) over a wide range of molecular weight. The viscosity constant
Φ0 has practical importance, because exploitation of the relationship
between intrinsic viscosity and molecular weight enables us to deter-
mine the unperturbed molecular dimensions from Eq. (31.34) when Φ0

is given. As seen from Table VI.3, however, the theoretical values of
Φ0 scatter, although not appreciably. Further discussion of this subject
will be found in the next chapter.

35. Excluded-Volume Effects

In this section we study the effects of excluded volume on the zero-
frequency intrinsic viscosity and the translational friction coefficient
of linear flexible chains. In particular, the intrinsic viscosity of per-
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turbed chains is the more important property, since it is very often
used, along with the molecular dimensions and the second virial coeffi-
cient, to characterize the polymer. The theory is developed on the basis
of the previous theory of intrinsic viscosities or friction coefficients of
unperturbed chains.

35a. Intrinsic Viscosities

If the draining effect is assumed to be negligibly small for ordinary
flexible chains, as discussed in the last section, then the theory thus
far developed predicts that the intrinsic viscosity is proportional to the
square root of the molecular weight, and that a value of ν greater than
0.5 in the [η]−M relationship of (31.36) must be interpreted as arising
from the excluded-volume effect. Indeed it was from this point of view
that Flory45, 46 introduced the discussion of the excluded-volume effect
in a polymer chain. Replacing 〈S2〉0 by 〈S2〉 in Eq. (31.34), Flory and
Fox46, 47 proposed the empirical equation,

[η] = 63/2Φ
〈S2〉3/2

M
, (35.1)

where they originally regarded Φ as equal to the (universal) viscosity
constant Φ0. In general, however, Φ depends on the excluded volume,
although not on the draining parameter. Let [η]θ be the intrinsic vis-
cosity of unperturbed chains. The radius expansion factor αη for the
viscosity is then defined by

[η] = [η]θα 3
η

= 63/2Φ0
〈S2〉 3/2

0

M
α 3

η . (35.2)

From Eqs. (35.1) and (35.2), Φ may be expressed as

Φ = Φ0

(
αη

αS

)3

. (35.3)

In the original theory of Flory there is no distinction made between the
various possible expansion factors. Our problem is to evaluate αη or
Φ.

35a(i). The Kirkwood–Riseman Scheme

Kurata and Yamakawa23, 48 developed an approximate first-order per-
turbation theory of the intrinsic viscosity on the basis of the Kirkwood–
Riseman theory, and were the first to emphasize the difference between
αη and αS . In Eq. (31.18) we use the perturbed statistical averages
evaluated in the single-contact approximation. From Eqs. (14.28) and
(14.31) the exact first-order perturbation theory value of 〈Si · Sj〉 is
obtained as

〈Si · Sj〉 = 〈Si · Sj〉0 + 1
3na2Iijz − · · · , (35.4)
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where z is the excluded-volume parameter defined by Eq. (13.32), and
the coefficient Iij (for j > i) is given by

Iij =
121
21

− 32
3n3/2

×{j3/2 + (n− i)3/2 + 1
2 (j − i)3/2 − 3

4 (j − i)[j1/2 + (n− i)1/2]}
− 2

n2
(j − i)2 +

12
5n5/2

[j5/2 + i5/2 + (n− j)5/2 + (n− i)5/2]

+
2

3n3
[j3 + i3 + (n− j)3 + (n− i)3] . (35.5)

We can also derive the exact first-order perturbation theory value of
〈R −1

ij 〉, but it is so complicated that further developments become
intractable. Therefore, we introduce the approximation,

〈R −1
ij 〉 = α̃ −1〈R −1

ij 〉0 (35.6)

with

α̃ −1 =

∑

i<j

α −1
ij 〈R −1

ij 〉0
∑

i<j

〈R −1
ij 〉0

, (35.7)

α 2
ij = 〈R 2

ij 〉/〈R 2
ij 〉0 . (35.8)

The expansion factor α̃ is then evaluated to be

α̃−1 = 1− 0.416z + · · · . (35.9)

The approximation of (35.6) with (35.9) seems more plausible than
does the uniform-expansion approximation 〈R −1

ij 〉 = α −1
S 〈R −1

ij 〉0
with α −1

S = 1− 0.638z + · · ·.
Now, substitution of Eqs. (35.4) and (35.6) into Eq. (31.18) leads

to an integral equation of the same type as the Kirkwood–Riseman
equation (31.21). Therefore, if we use the Kirkwood–Riseman approxi-
mation of (31.27) as before, we obtain for the function F (X) appearing
in Eq. (31.16) for [η]

F (X)
F0(X)

= 1 +
[
F

(1)
1 (X) + F

(2)
1 (X)

F0(X)

]
z + · · · , (35.10)

where F0(X) is identical with the F (X) (at z = 0) given by Eq. (31.30),
and F

(1)
1 (X) and F

(2)
1 (X) are given by

F
(1)

1 (X) =
4
π2

∞∑

k=1

1
k2(1 + X/k1/2)

×
[
1 + 2π1/2 C(2πk)

(πk)1/2
+ 3

2π1/2 S(2πk)
(πk)3/2

]
, (35.11)
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F
(2)

1 (X) = 0.416× 6
π2

∞∑

k=1

X

k5/2(1 + X/k1/2)2
(35.12)

with C and S the Fresnel integrals. Ullman49 has solved our integral
equation for several values of X and z using a computer, but we do not
reproduce the results here.

Since α 3
η = F (∞)/F0(∞), we find (in the non-free-draining limit)

α 3
η = 1 + 1.55z − · · · , (35.13)

Φ/Φ0 = 1− 0.36z + · · · . (35.14)

We note that the contributions of F
(1)

1 and F
(2)

1 to the coefficient 1.55
of z in α 3

η are 1.135 and 0.416, respectively. If we use the uniform-
expansion approximations 〈Si · Sj〉 = 〈Si · Sj〉0α 2

S and 〈R −1
ij 〉 =

〈R −1
ij 〉0α −1

S in Eq. (31.18), the corresponding contributions become
1.276 and 0.638, respectively, and necessarily we have α 3

η = α 3
S = 1 +

1.914z− · · ·. Subsequently, however, Ptitsyn and Eizner50 solved, with
the use of the Gegenbauer polynomial expansion, the integral equation
that results from the assumptions of (35.4) and 〈R −1

ij 〉 = 〈R −1
ij 〉0,

and showed that the uniform-expansion approximation to 〈Si · Sj〉 is
very good.

Equation (35.1) with (35.14) gives the two-parameter theory of the
intrinsic viscosity; this theory is similar to the theory of the excluded-
volume effect described in Chapter III. The present analysis predicts
that α 3

η is smaller than α 3
S for positive z, and that Φ is a decreasing

function of z. Kurata and Yamakawa have proposed a semiempirical
closed expression for α 3

η ,

α 3
η = α 2.43

S (35.15)

to give Eq. (35.13) at small z.

35a(ii). The Zimm-Peterlin Scheme

The intrinsic viscosity for large excluded volume has been investigated
by Ptitsyn and Eizner,51 Tschoegl,52 and Bloomfield and Zimm,53 us-
ing the Zimm theory of the spring and bead model and the Peter-
lin method54 of treating the excluded-volume effect. We first describe
briefly the procedure proposed by Peterlin. In order to take into ac-
count the non-Markoff nature of the polymer chain we assume the form
of 〈R 2

ij 〉 to be

〈R 2
ij 〉 = a2|j − i|1+ε , (35.16)

so that 〈R2〉 = a2n1+ε. We note that ε is a monotonically increasing
function of z since it is determined from ε = 1

2∂ ln α 2
R /∂ ln z. Further,

the distribution of Rij is assumed to be Gaussian with second moment
just equal to that given by Eq. (35.16). We then have
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〈R −1
ij 〉 = (6/π)1/2〈R 2

ij 〉−1/2

= (6/π)1/2/|j − i|(1+ε)/2a , (35.17)

and from Eqs. (7.22) and (35.16)

〈S2〉 = a2n1+ε(6 + 5ε + ε2)−1 . (35.18)

Thus, the ratio 〈R2〉/〈S2〉 becomes dependent on the parameter ε,
thereby displaying the non-Gaussian nature of the perturbed chain.

We must now solve the diffusion equation (33.10) with a nonva-
nishing excluded-volume force term ∇W . However, this equation is
so complicated that we use the spring potential U0 with aαS in place
of a to suppress the term ∇W in Eq. (33.10). In this approximation
the spring force constant κ may simply be replaced by κ/α 2

S , and
Eq. (33.33) with (33.34) becomes

[η] =
NA〈S2〉ζ
nMη0

∑

j

λ −1
j . (35.19)

This approximation is equivalent to making the uniform-expansion ap-
proximation in 〈Si · Sj〉 but not in 〈R −1

ij 〉 in the Kirkwood-Riseman
scheme, which is very good, as mentioned in the last subsection.

The eigenvalues λj are determined by

α′′(r) + h(ε)
∫ 1

−1

α′′(s)
|r − s|(1+ε)/2

ds = −n2λ

4
α(r) (35.20)

with the boundary conditions of (33.38). In Eq. (35.20) we have used
Eq. (35.17), and h(ε) is defined by

h(ε) = 2ε/2ζn(1−ε)/2/(12π3)1/2η0a , (35.21)

which reduces to Eq. (31.23) when ε = 0. We then have for the function
Φ in Eq. (35.1) (in the non-free-draining limit)

Φ =
(2π3)1/2NA

24
2−ε/2(6 + 5ε + ε2)1/2

∑

j

λj
′−1 , (35.22)

where λj
′ is defined by Eq. (33.46) with h(ε) in place of h. In the

Hearst diagonal approximation, we obtain from Eq. (35.20)

λj
′ = (2π)1/22−δ(πj)δ[πjCδ(πj)− δSδ(πj)] (35.23)

with
δ = 1

2 (1 + ε) ,

where Cδ and Sδ are the modified Fresnel integrals which are obtained
by replacing t−1/2 by t−δ in Eqs. (33.49).
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Fig. VI.7. The viscosity function Φ plotted against Peterlin’s excluded-volume

parameter ε.

The values of Φ calculated from Eq. (35.22) are plotted against ε
in Fig. VI.7. Ptitsyn and Eizner51 carried out the calculation with
ε = 0 to 0.2; the case ε = 0.2 corresponds to an expansion of the
fifth-power type. The case ε = 1

3 corresponding to third-power type
expansion was considered by Tschoegl,52 and the case ε = 0.5 was given
by Bloomfield and Zimm53 to apply to stiff chains. Φ is seen to decrease
with increasing ε, and hence z.

35a(iii). The Boson Representation

In this subsection we describe a method of operator representation sat-
isfying boson commutation rules which was introduced by Fixman.55, 56

The introduction of this technique makes not only an explicit consid-
eration of the excluded-volume potential possible, but also renders the
matrix formalism introduced in Section 34 more tractable.

We first put P = Pαρ, where Pα is equal to the P0 given by
Eq. (34.3) with ā = aα in place of a, i.e., the scaled Gaussian dis-
tribution,

Pα = Cα exp(−Uα/kT ) (35.24)

with
Uα = U0/α2 , (35.25)

where Cα is the normalizing constant and U0 is the spring potential
given by Eq. (34.26). The parameter α cannot be equal to the expansion
factor of any particular measure of molecular dimensions (αR or αS),
but is chosen to make the new ρ defined above come as close as possible
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to the basis set unity, which forms the zeroth approximation to the
equilibrium ρ. The new ρ satisfies Eq. (34.6) if L is defined by

L = La + Lb (35.26)

with
La = −kT [∇T − (∇T Uα/kT )]D(∇+∇V ) , (35.27)

Lb = [∇T − (∇T Uα/kT )]v0 , (35.28)

V = (U − Uα)/kT = (U0 − Uα + W )/kT . (35.29)

When α = 1 and W = 0, V vanishes, and La and Lb become A and
B given by Eqs. (34.8) and (34.9), respectively. If we use the Rouse
free-draining normal coordinates as before, Uα may be written as

Uα = kT

n∑

l=1

σ̄ 2
l ξ 2

l , (35.30)

where σ̄l = σl/α with σl given by Eq. (34.35). We can also write down
La and Lb in the normal coordinates. The scalar product is defined
with weight function Pα instead of P0, and a matrix representation of
La, Lb, and ρ is formed from the same Hermite polynomial basis set as
before except that σl is replaced by σ̄l.

The operators La and Lb are composed of differential operators
and functions of the normal coordinates. The latter must be treated
as operators since they do not commute with the differential operators.
Consider therefore the matrix representation of ∂/∂ξls and ξls, where
ξls with s = 1, 2, and 3 represent Xl, Yl, and Zl, respectively. The op-
erator ∂/∂ξls or ξls can connect only different excitations of φp(ls)(ξls),
other components of the basis function ψp being unchanged. The ma-
trix elements between different excitations p and q the sth component
of the lth mode are obtained as

(∂/∂ξls)pq = (2q)1/2σ̄lδp,q−1 , (35.31)

(ξls)pq = (1/21/2σ̄l)[q1/2δp,q−1 + (q + 1)1/2δp,q+1] . (35.32)

These elements can be expressed as the matrix elements of creation
and annihilation operators as follows. We denote the occupation num-
ber representation of ψq by

|q〉 = |q(1X)q(1Y )q(1Z) · · · q(nX)q(nY )q(nZ)〉 , (35.33)

〈ψp, ψq〉 = 〈p|q〉 = δpq . (35.34)

That is, |q〉 is the matrix representative of the function ψq formed on
the basis set ψp. Let b †ls be an operator acting on a basis vector |q〉
which raises q(ls) to q + 1(ls), and leaves other occupation numbers
unchanged. With the normal mode to which q refers left implicit, the
defining equation is

b †ls |q〉 = (q + 1)1/2|q + 1〉 . (35.35)
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We therefore have

〈p|b †ls |q〉 = (q + 1)1/2δp,q+1 . (35.36)

Similarly, the annihilation operator is defined to have the property,

bls|q〉 = q1/2|q − 1〉 . (35.37)

〈p| bls |q〉 = q1/2δp,q−1 . (35.38)

Comparison of Eqs. (35.36) and (35.38) with Eqs. (35.31) and (35.32)
gives

∇ξl
= 21/2σ̄lbl , (35.39)

ξl = (1/21/2σ̄l)(bl + b †
l ) , (35.40)

where

bl =
3∑

s=1

blses , b †
l =

3∑
s=1

b †
ls es . (35.41)

If the commutator is defined by (a, b) = ab − ba, from Eqs. (35.35)
and (35.37) there result the usual commutation properties of boson
operator,

(bks, blt) = 0 , (b †ks, b
†

lt ) = 0 , (bks, b
†

lt ) = δklδst . (35.42)

With the understanding that all functions of coordinates are given
a boson representation through Eqs. (35.39) and (35.40), La and Lb

may be brought into boson form. It is necessary first to put

∇ξl
V = (∇ξl

, V ) , (35.43)

where the derivative in the commutator acts on any function to its
right. We then have

La =
n∑

k=1

n∑

l=1

b †
k ·Λkl[bl + (bl, V )] , (35.44)

Lb = −g

n∑

l=1

b †
l · (exey)(bl + b †

l ) (35.45)

with

Λkl = 2kT σ̄kσ̄l

∑

i

∑

j

QkiQlj [ζ−1δijI + T(Rij)] , (35.46)

where g is the time-independent velocity gradient, Qij is given by
Eq. (34.28), and T(Rij) = Tij is the Oseen tensor in the boson rep-
resentation. The boson representation of functions of Rij may be ob-
tained through the equation,

f(Rij) =
∫

f(R)δ(R−Rij)dR (35.47)
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with the use of the boson representation of the delta function. Although
we omit the derivation of the representation of the delta function, we
note that

Ri =
n∑

l=1

(Qil/21/2σ̄l)(bl + b †
l ) , (35.48)

Rij = Rj −Ri =
n∑

l=1

fl(bl + b †
l ) (35.49)

with
fl = (Qlj −Qli)/21/2σ̄l . (35.50)

We now derive the representation of V in Eq. (35.44). We first
obtain from Eqs. (35.30) and (35.40)

Uα = 1
2kT

∑

l

(bl + b †
l ) · (bl + b †

l ) , (35.51)

and U0 = α2Uα. The excluded-volume potential W may be given by
Eq. (15.14),

W = kTβ
∑

i<j

δ(Rij) , (35.52)

and its representation is obtained by the use of the representation of
the delta function. However, we neglect terms higher than quadratic in
the boson operators. Then, substitution of the result with Eq. (35.51)
into Eq. (35.29) leads to

V =
1
2

∑

l

Gl(bl + b †
l ) · (bl + b †

l ) , (35.53)

where
Gl = (α2 − 1)− (z/α3)gl , (35.54)

gl = 1
2 l−3/2(8

√
2/3π){[4/π(2l)1/2][1− (−1)l]

+(4/
√

2)S(2πl)− 5S(πl) + 2πlC(πl)} (35.55)

with C and S the Fresnel integrals. From Eqs. (35.42) and (35.53) we
fine for the commutator in Eq. (35.44)

(bl, V ) = Gl(bl + b †
l ) . (35.56)

The average of any function ϕ of coordinates is given by

〈ϕ〉 =
∫

Pαρϕ d{ξn} = 〈0|ϕ |ρ〉 , (35.57)

where ϕ and ρ are expressed in the boson representation, and 〈0| or
|0〉 denotes the ground states of the basis set. The equation applies to
both equilibrium and nonequilibrium ρ. For steady flow ρ satisfies

Lρ = 0 . (35.58)
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In order to solve Eq. (35.58) we introduce the approximation

Λkl = Λlδkl , (35.59)

with Λl = Λll. Further, we replace Λl by its steady-state average. It
may then be written in the form,

Λl = Λ 0
l (I + Λl

′) , (35.60)

where Λ 0
l I is the ground-state average, 〈0|Λll|0〉, of Λll, and Λl

′ is the
remainder. In the non-free-draining limit Λ 0

l is evaluated to be

Λ 0
l = α−3[12kT/(12π3)1/2η0〈R2〉 3/2

0 ]λl
′ (35.61)

with λl
′ the Hearst eigenvalues given by Eq. (33.48). Now the solution

for ρ can be found to be

|ρ〉 = exp
(∑

l

b †
l ·Mlb

†
l

)
|0〉 (35.62)

with
Ml = − 1

2Gl(1 + Gl)−1I + Nl + Nl
′ , (35.63)

where the Nl and Nl
′ are symmetric dyadics and are related to Λ 0

l

and Λl
′, respectively. For example, the xy component of Nl, which we

need, is given by

(Nl)xy = (Nl)yx = 1
4g[Λ 0

l (1 + Gl)2] −1 . (35.64)

We note that in equilibrium Nl = Nl
′ = 0, and that at small g, Nl

′

may be neglected compared to Nl.
For the present purpose it is convenient to write the intrinsic vis-

cosity, from Eqs. (30.24) and (33.11), as

[η] =
NA

Mη0g

∑

j

〈
yj

∂U

∂xj

〉
(35.65)

with U = kTV +Uα. After transformation into the normal coordinates
we can obtain the boson representation of yj∂U/∂xj , and by the use of
Eqs. (35.57) and (35.62) write

[η] =
2NAkT

Mη0g

∑

l

(1 + Gl)(Nl + Nl
′)xy . (35.66)

In the limit g → 0 (with omission of Nl
′), substitution of Eqs. (35.61)

and (35.64) into Eq. (35.66) leads to

Φ = 4.84× 1023

(
α

αS

)3 ∑

l

1
λl
′(1 + Gl)

. (35.67)
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The problems remaining are to determine α and Gl, and to evaluate
αR, αS , and Φ as functions of z.

From Eqs. (35.62) and (35.63) the equilibrium ρ is given by

|ρ〉 = exp
[
−1

2

∑

l

Gl(1 + Gl)−1b †
l · b †

l

]
|0〉 . (35.68)

As mentioned already, α is chosen to make this ρ as close to unity as
possible. In other words, the Gl should be made as small as possible
by the choice of α. It is obvious that all Gl cannot be made to vanish
by the same value of α. The best choice of α is obtained by making G1

vanish. We then have

α5 − α3 = g1z = 1.516z , (35.69)
Gl = (z/α3)(g1 − gl) . (35.70)

By the use of Eq. (35.49), the squared end-to-end distance may be
expressed in the form

R2 = R 2
0n =

∑

k

∑

l

fkfl(bk + b †
k ) · (bl + b †

l ) . (35.71)

〈R2〉may be evaluated from Eq. (35.57) with (35.68) and (35.71). Using
Eqs. (35.34) to (35.38) and the commutation rules after expansion of
the exponential in Eq. (35.68), we find

〈R2〉 = 3
∑

l

f 2
l (1 + Gl)−1 , (35.72)

and therefore

α 2
R = 2π−2α2

∞∑

l=1

l−2[(−1)l − 1]2(1 + Gl)−1 . (35.73)

Similarly, we can obtain 〈S2〉 by the use of Eqs. (7.22) and (35.49).57

The result is

α 2
S = 6π−2α2

∞∑

l=1

l−2(1 + Gl)−1 . (35.74)

At small z Eqs. (35.73) and (35.74) give

α 2
R = 1 + 1.377z − 3.229z2 + · · · , (35.75)

α 2
S = 1 + 1.276z − 3.089z2 + · · · , (35.76)

where we have used Eqs. (35.69) and (35.70). The coefficient of z in
α 2

R is in fairly good agreement with the exact value 1.333, while the
corresponding coefficient in α 2

S is exact, both the coefficients of z2

being too large [see Eqs. (14.33) and (14.34)]. The values of α 3
R and

α 3
S calculated from Eqs. (35.73) and (35.74) were already shown in

curves F2 and FS in Figs. III.5 and III.6, respectively, and values of



SEC. 35. Excluded-Volume Effects 315

Fig. VI.8. Theoretical values of the ratio Φ/Φ0 plotted against α 3
S . Curve KY:

the Kurata–Yamakawa theory, Eq (35.3) with (35.15). Curve F: the Fixman

theory, Eq (35.67) with (35.74).

αS predicted by Eq. (35.74) are smaller than those predicted by the
modified Flory equation (14.41).

Now the values of Φ as a function of z or αS can be calculated
from Eq. (35.67). The results are shown in curve F in Fig. VI.8. Φ is
again seen to decrease with increasing z or αS . For comparison, the
corresponding values predicted by Eqs. (35.3) and (35.15) are shown in
curve KY in the same figure. Finally, we note that similar results to
those described have been derived by Chikahisa58 and Koyama59 using
an ellipsoid model. For example, Koyama finds α 3

η = α 2.45
S .

35b. Friction Coefficients

By analogy with the empirical equation for the intrinsic viscosity with
neglect of the draining effect, Mandelkern and Flory60 deduced, from
Eq. (31.48), an empirical equation for the translational friction coeffi-
cient,

f

η0
= 61/2P 〈S2〉1/2 , (35.77)

where they considered P to be a universal constant. We now introduce
the expansion factor αf , corresponding to αη, by the equation

f

η0
=

fΘ

η0
αf = 61/2P0〈S2〉 1/2

0 αf (35.78)
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with fΘ the friction coefficient of unperturbed chains. Then P may be
written as

P = P0

(
αf

αS

)
. (35.79)

The original Kirkwood–Riseman theory, Eq. (31.48), gives P0 = 5.11.
Now, αf or P may be evaluated from the Kirkwood equation (32.41)

for the diffusion coefficient (neglecting the small error inherent in it).
Then we need merely evaluate the double sum of the equilibrium sta-
tistical average 〈R −1

ij 〉 over i and j. The Kurata–Yamakawa approxi-
mation of (35.6) with (35.9) gives

αf = ã = 1 + 0.416z − · · · , (KY) (35.80)
P = P0(1− 0.222z + · · ·) . (KY) (35.81)

By the use of the boson operator technique, Horta and Fixman61 have
obtained the value 0.415 for the coefficient of z in αf , which is very close
to the KY value. However, Stockmayer and Albrecht62 have derived
the exact first-order perturbation theory value

αf = 1 + 0.609z − · · · , (35.82)
P = P0(1− 0.029z + · · ·) . (SA ; exact) (35.83)

Both the exact and approximate theories predict that αf is smaller than
αS for positive z, and that P decreases with increasing z, although the
decrease in P predicted by the approximate theories seems too large.
If we use Eq. (35.17), we obtain53

P = (π3/2/8)(1− ε)(3− ε)(6 + 5ε + ε2)1/2 . (35.84)

This P also decreases from 5.11 as ε is increased from zero.

36. Remarks and Some Other Topics

36a. Concentration Dependence

In order to study the behavior of the viscosity coefficient η and the
friction coefficient f up to moderate concentrations, we must evaluate
the coefficient a2 of c2 in Eq. (30.16) for η and the coefficient ks of c in
Eq. (30.35) for f , considering a system of many solute particles instead
of a single particle. We first consider the viscosity. It is convenient to
rewrite Eq. (30.16) in the form,

η = η0(1 + [η]c + k′[η]2c2 + · · ·) , (36.1)

where the k′ is called the Huggins coefficient,63 and is to be studied
here. Unfortunately, many different numerical estimates of k′ have
been published even for rigid sphere molecules.64 One of the reasons for
this is that the hydrodynamic problem we face involves a fundamental
difficulty. We manifest the problem following the procedure of Burgers8
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and Saito.65 Suppose that the velocity field given by Eq. (30.12) is
produced by the motion of one of two parallel plates perpendicular to
the y axis,moving in the direction of the x axis. At constant shear
stress,

ηg = η0g0 , (36.2)

where g and g0 are the velocity gradients of the solution and solvent,
respectively. That is, the velocity gradient is decreased from g0 to g by
the introduction of the solute molecules. In the case of a solution of
hard spheres of radius S̄, whose number density is ρ, g is given by

g = g0 − 20π

3
〈f12〉ρS̄3 , (36.3)

where f12 is defined by Eq. (30.6). The average of 〈f12〉 is defined by11

〈f12〉 = V −1

〈∫
f12dr

〉
, (36.4)

where V is the volume of the system, and the average 〈 〉 on the
right-hand side is taken over all configurations. If v′ is the velocity
perturbation at r due to a sphere present at the origin, 〈f12〉 is obtained
to the first order in ρ as66

〈f12〉 = 1
2 (1− ϕ)g0 +

ρ

2

∫

r>2S

(
∂v1

′

∂x2
+

∂v2
′

∂x1

)
dr , (36.5)

where ϕ is the volume fraction of the spheres, and we have used the
fact that the symmetric velocity gradient vanishes inside the spheres.
At infinite dilution 〈f12〉 = 1

2g0, and Eq. (36.2) with (36.3) gives the
Einstein equation for the intrinsic viscosity. As shown in Appendix VI
C, v′ is asymptotically proportional to r−2 in the Stokes approximation.
Then the integrand in Eq. (36.5) is asymptotically proportional to r−3,
and the integral, which is related to the Huggins coefficient, becomes
indeterminate, depending on the size and shape of the system. In the
calculation of k′ for linear flexible chains, Riseman and Ullman67 also
encountered an integral similar to that in Eq. (36.5), and their value
0.6 for k′ is inconclusive.

As an alternative intended to resolve this unpleasant situation Saito65

has proposed a nonlinear theory of k′ which utilizes Oseen rather than
Stokes perturbation theory, but a numerical result for k′ has not yet
been obtained. On the other hand, Brinkman68 has derived a differ-
ence equation for η, considering the increase in η as a result of adding
one more solute molecule to the solution. The solution of the differ-
ence equation gives the value 0.7 for k′. Experiments show that k′ lies
between 0.5 and 0.7 at the theta temperature, and decreases monoton-
ically to about 0.3 as z is increased.69 Yamakawa70 has attempted to
derive the decrease in k′ with z from the Brinkman equation by tak-
ing into account only the effect of the concentration dependence of the
molecular dimensions.
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The hydrodynamic problem described has been recently reconsid-
ered by Peterson and Fixman.66 They have pointed out that the phys-
ical and mathematical problems connected with k′ are quite like those
connected with the theory of light scattering for a simple liquid, which
were already discussed by Fixman.71 In the light scattering theory the
problem is that the electric field of a dipole vanishes as r−3, and it is
not immediately clear that the dielectric properties of one part of an
inhomogeneous medium are independent of the surface polarization.
In the light scattering problem Fixman used the following considera-
tions:(1) the constitutive coefficients of macroscopic electrodynamics
ought to permit a local definition in inhomogeneous media, (2) local
electric fields and polarizations are well known to depend on sample size
and shape, and (3) therefore a calculation of a constitutive coefficient
ought to be based on a calculation of both the field and the polariza-
tion, so that the ratio, which is the desired coefficient, can be shown
independent of surface effects. Peterson and Fixman have carried out
a hydrodynamic calculation from the same point of view, i.e., carried
out a calculation of both the average stress and the average velocity
gradient. Their starting equation is

〈σij〉 = 2η0〈fij〉 − 〈p〉δij + V −1

〈∫
(σij − 2η0fij + pδij)dr

〉
, (36.6)

which is obtained from Eq. (30.10). We note that since Eq. (30.10)
holds in the solvent, the integrand in Eq. (36.6) is nonvanishing only
inside the spheres, and that the pressure terms may be suppressed, since
the average of p either inside or outside the spheres must vanish. The
average 〈fij〉 may be expressed as Eq. (36.5). Then, the viscosity coeffi-
cient is given by the ratio 〈σij〉/2〈fij〉, and has been shown independent
of surface effects in the Stokes approximation. In this way the value
0.691 has been obtained for the Huggins coefficient kϕ

′ for hard spheres,
in volume-fraction concentration units. To obtain k′ for flexible chains
Peterson and Fixman used the uniform-density sphere model, and also
used the intermolecular potential appearing in Eq. (20.37). The cal-
culation involves several approximations. The parameter A introduced
by them may be set equal to 8.85z̄ with z̄ = z/α 3

S . Then k′ becomes a
function of z̄, and is plotted in Fig. VI.9, k′ being equal to 0.883 at the
theta temperature. Unfortunately, the theory never agrees with the ex-
perimental results mentioned above. Although Sakai72 has attempted
to make some improvements on the approximations of Peterson and
Fixman, a satisfactory theory of k′ has not yet been published.

Next we consider the friction coefficient. The basic problem in the
theory of ks is similar to that of the Huggins coefficient. The veloc-
ity perturbation around a sphere moving in a fluid is asymptotically
proportional to r−1 in the Stokes approximation. Thus a direct sum-
mation of this long-ranged perturbation for a finite system results in
a coefficient ks which depends on the size and shape of the system.
However, the friction coefficient ought to be independent of surface ef-
fects. The difficulty is removed by the use of the drift velocity u′ in
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Fig. VI.9. Values of the Huggins coefficient k′ predicted by the Peterson–Fixman

theory as a function of z = z/α 3
S .

place of the simple average velocity u of polymer molecules, as shown
by Yamakawa73 and by Pyun and Fixman.74 That is, the friction coef-
ficient ξ defined as the ratio of the external force on a polymer molecule
to the average translational velocity u’ of the polymer molecule relative
to the solvent is a property independent of the surface effect. Switch-
ing from this frame of reference to that of the experimental observation
may be achieved by considering the conservation of the solution volume
in any volume element in the system. Thus we obtain

f = ξ(1 + ϕ) , (36.7)

which is correct to the first order in ϕ. ξ may be expanded as

ξ = ξ0(1 + ks
′c + · · ·) , (36.8)

and we therefore have

ks = ks
′ + NAvm/M , (36.9)

where vm is the hydrodynamic volume of the solute molecule. Note
that at infinite dilution u′ = u and f0 = ξ0.

For the random-flight model Yamakawa73 has derived the expression
ks
′ = 1.2A2M by an extension of the Kirkwood–Riseman theory of f0.

This ks
′ vanishes at the theta temperature. For hard spheres, Pyun

and Fixman74 have obtained ks,ϕ
′ = 6.16, and hence ks,ϕ = 7.16 (in

volume-fraction concentration units) by a calculation similar to that of
k′ by Peterson and Fixman. This value of ks,ϕ is close to the earlier
Burgers value 55/8=6.88.75 For the uniform-density sphere model Pyun
and Fixman have shown that ks,ϕ

′ = 1.23 and ks,ϕ = 2.23 at the theta
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temperature, and that ks,ϕ increases monotonically to the hard sphere
value 7.16 as z̄ is increased. Note that ks,ϕ is related to ks by the
relation ks = ks,ϕ(NAvm/M). Now, if we assume f0 = 6πη0S̄ with
vm = 4

3πS̄3, we have from Eqs. (35.1) and (35.77)76

NAvm

M
=

NA(P 3/Φ)[η]
162π2

. (36.10)

Further, we assume P = 5.1 and Φ = 2.5 × 1023, neglecting the de-
pendences of P and Φ on z. Then we find NAvm/M = 0.2[η], and
the results obtained by Yamakawa and by Pyun and Fixman may be
written as

ks/[η] = 1.2A2M/[η] + 0.2 , (Y) (36.11)
ks/[η] = 0.2ks,ϕ . (PF) (36.12)

An experimental value for ks/[η] in good solvents is about 1.6 for flexible
chains.76 Equation (36.11) and (35.12) are in fairly good agreement
with experiment. Note that A2M/[η] = 1.0− 1.2 for flexible chains in
good solvents.

36b. Non-Newtonian Viscosities

Rigid nonspherical particles in solution will tend to be oriented at high
rates of shear, so that the energy dissipation is diminished below that
at zero rate of shear. As a result, the intrinsic viscosity is decreased as
the rate of shear g is increased. Such behavior, called non-Newtonian
viscosity, is observed also in solutions of flexible-chain polymers. The
effect is nonvanishing even at the theta temperature, and is exagger-
ated for high-molecular-weight polymers in good solvents. As pointed
out in Section 33, however, the Rouse-Zimm theory for the spring and
bead model fails in interpreting the non-Newtonian viscosity. Theoret-
ical attempts made so far to predict the shear dependence of [η] for
flexible chains may be classified into three groups: (1) improvement of
the model, (2) refinement of the calculation of hydrodynamic interac-
tion, and (3) explicit consideration of the excluded-volume effect. We
summarize these investigations in the following discussion.

The model has been improved so as to take into account the fact
that the real chain possesses some rigidity because of restrictions on
the bond angles and steric hindrances to internal rotation. As early as
1945, Kuhn and Kuhn77 approximated this effect by the introduction of
the concept of the internal viscosity. They simply replaced the random-
flight chain by an elastic dumbbell, and defined the internal viscosity
coefficient as the ratio of the force required to separate the chain ends to
the velocity of separation. Subsequently, Cerf78 redefined the internal
viscosity coefficient ηin associated with a bond of the chain in terms of
the force Fin required to produce a difference in the radial components
of the velocities of two adjacent segments;

Fin = ηin(u r
j+1 − u r

j ) (36.13)
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with
u r

j = uj − ω × Sj , (36.14)

where uj is the velocity of the jth segment and ω is the angular veloc-
ity of the molecule around the center of mass. From a different point
of view Reinhold and Peterlin79 have taken into account the finite de-
formability of the chain because of the constancy of the bond length.
Chain rigidity of this sort seems to be of minor importance in steady
shear flow.

Peterlin and Čopič80 and Ikeda81 have considered the possible ef-
fects of the anisotropy of the effective friction coefficient of a segment
(or the difference between the radial and transverse components of
the effective diffusion tensor of a segment) which arises from the non-
spherical distribution of segments around the specified segment when
there exists hydrodynamic interaction. However, we must always re-
member that the more serious approximation than neglect of anisotropy
has been made in the hydrodynamic interaction in the Zimm theory;
that is, the Oseen tensor has been replaced by its equilibrium average.
It would be more consistent, in the present case, to use the steady-
state average.56, 82, 83 Peterlin82 has evaluated 〈R −1

ij 〉 by the use of
the steady-state distribution function, and in the boson formulation
of Fixman described in Section 35a(iii) the appropriate steady state is
used. It is found that the shear dependence of [η] may be derived from
Eq. (35.66) by evaluating Gl, and hence Nl and Nl

′, in the steady
state.

Clearly, the Fixman theory includes the excluded-volume effect.
The influence of excluded volume has also been considered by Chika-
hisa,84 using the smoothed-density ellipsoid model. Both theories pre-
dict there to be shear dependence of [η] even at the theta temperature.
Although Subirana85 and Okano et al.86 have investigated the excluded-
volume effect, their treatments are inadequate, since the shear depen-
dence is attributed to this effect alone and is not predicted to remain
finite at the theta temperature. Further, we note that several incorrect
attempts87, 88 have been made to predict the shear dependence for the
spring and bead model only by reconsideration of the molecular motion.

The theories cited above predict that the ratio of the intrinsic vis-
cosity [η] at finite rate of shear to its value [η]0 at zero shear is a function
of only the excluded-volume parameter z and the reduced rate of shear
β0 defined by

β0 = (Mη0[η]0/RT )g . (36.15)

Since the shear dependence does not change when the sign of g is re-
versed, at small β0 the ratio [η]/[η]0 may be expanded in even powers
of β0,

[η]/[η]0 = 1−Aβ 2
0 + · · · , (36.16)

where A is positive. The expansion coefficients depend on the excluded-
volume parameter z, but do not vanish at the theta temperature.

In Fig. VI.10 is shown a comparison of theory with experiment,
using the data obtained by Kotaka et al.89 on polystyrene with M =
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Fig. VI.10. Dependence of the reduced intrinsic viscosity [η]/[η]0 on the reduced

rate of shear β0. Points: data on a polystyrene fraction (with M = 6.2×106)

in various solvents.89 Filled circles: cyclohexane (34.8 ◦C). Open circles: Aroclor

(40 ◦C). Filled squares: benzene (30 ◦C). Open squares: benzene (40 ◦C). Curve

P: the Peterlin theory. Curves F: the Fixman theory.

6.2 × 106. The circles represent the data at and near the theta tem-
perature, and the squares the data in benzene (good solvent). The
curves represent the values predicted by the theories of Peterlin82 and
Fixman.56 At the theta temperature the Peterlin theory overestimates
the shear dependence, while the Fixman theory underestimates it. Fur-
ther, the latter overestimates the effect of excluded volume on the shear
dependence. Thus there seems to be no satisfactory theory of the non-
Newtonian intrinsic viscosity now available.

36c. Branched and Ring Polymers

The unperturbed and perturbed dimensions and the second virial coeffi-
cients of branched and flexible-ring molecules have already been studied
in the preceding chapters. In this section we evaluate the zero-frequency
intrinsic viscosity and the translational friction coefficient of these non-
linear molecules. Indeed, measurements of the frictional properties are
the most useful method of distinguishing between non-linear and linear
molecules. Natural or synthetic branched polymers have been known
for some time, and certain types of branching have recently been regu-
lated by anionic polymerization. Recent growth in interest in the prop-
erties of ring molecules dates from 1962 when Fiers and Sinsheimer90
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suggested that single-stranded DNA from bacteriophage may exist in
the native form as a ring-shaped molecule.

36c(i). Branched Polymers

We first study the intrinsic viscosity of unperturbed branched chains,
using the spring and bead model. The free-draining case was treated
by Ham,91 and the non-free-draining case by Zimm and Kilb92 by an
extension of the Zimm theory described in Section 33. For simplicity,
we consider uniform star molecules of functionality f . Then the mean
reciprocal distance between the ith segment of the λth subchain and
the jth segment of the µth subchain is given by

〈R −1
iλjµ

〉0 = (6/π)1/2/a|iλ − jµ|1/2 for λ = µ

= (6/π)1/2/a|iλ + jµ|1/2 for λ 6= µ , (36.17)

and the matrix H in the Zimm formulation has a form different from
that for a linear chain. The matrix A must also be modified. In this
case, the matrix HA has degenerate eigenvalues. However, it can be
demonstrated that Eq. (33.18) still holds. If αµ(r) is the eigenfunction
associated with the µth subchain, where r = fi/n(0 ≤ r ≤ 1) and
r = 0 at the branch unit, the eigenvalue equation becomes

αµ
′′(r) + h

(
2
f

)1/2 ∫ 1

0

αµ
′′(s)

|r − s|1/2
ds + h

(
2
f

)1/2

×
f∑

µ′=1
6=µ

∫ 1

0

αµ′
′′(s)

|r + s|1/2
ds = −n2λ

f2
αµ(r) (36.18)

with the boundary conditions,

αµ
′(1) = 0 ,

f∑
µ=1

αµ
′(0) = 0 . (36.19)

For the non-free-draining case, we define the reduced eigenvalues
λj

′ by

λj
′ =

n2

4h

(
2
f

)3/2

λj , (36.20)

which reduces to Eq. (33.46) for a linear chain when f = 2. We then
find

∑

j

1
λj
' n2

4h

(
2
f

)3/2[
(f − 1)

∑

odd j

1
λj,l

′ +
∑

even j

1
λj,l

′

]

=
n2

4h

(
2
f

)3/2

[0.390(f − 1) + 0.196] , (36.21)



324 FRICTIONAL AND DYNAMICAL PROPERTIES OF DILUTE SOLUTIONS

Fig. VI.11. Effect of branching on the intrinsic viscosity. Open and filled circles:

data on linear and branched polystyrene fractions in methyl ethyl ketone-16.5%

propanol mixtures.94 Full curve: theoretical values calculated from Eq. (36.23).

Broken curve: theoretical values calculated from Eq. (36.24).

where the subscript l refers to a linear chain, and the λj are (f − 1)-
fold degenerate when j is odd. We therefore obtain for the ratio of the
intrinsic viscosities of branched (uniform star) and linear chains of the
same number of segments

[η]b/[η]l = (2/f)3/2[0.390(f − 1) + 0.196]/0.586 . (36.22)

Comparing numerical values of this ratio and the factor g = 〈S2〉b/〈S2〉l
of (9.69), we find

[η]b/[η]l ' g1/2 . (36.23)

Note that [η]b/[η]l = 1.88f−1/2 and g1/2 = 1.73f−1/2 for large f . Zimm
and Kilb assumed that Eq. (36.23) is valid for all kinds of branched
molecules. However, if [η] is assumed to be proportional to 〈S2〉3/2/M
as in the Flory–Fox theory, we readily find, instead of Eq. (36.23)

[η]b/[η]l = g3/2 . (36.24)

There are several experimental results supporting Eq. (36.23) rather
than Eq. (36.24). The first example comes from the work of Schaefgen
and Flory93 on the intrinsic viscosity-molecular weight relationships for
polyamide star molecules of f = 4 or 8 with a random distribution of
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subchain lengths. As a second example, we take the intrinsic viscosity
data of Thurmond and Zimm94 on a series of fractions of branched
polystyrene in methyl ethyl ketone-16.5% propanol mixtures. In this
series the number of branch units per molecule varies with the molecular
weight. The results are shown in Fig. VI.11. The open and filled circles
represent the data on linear and branched chains, respectively. The
full curve represents the theoretical values calculated from Eq. (36.23)
taking account of the variation of the number of branch units, while
the broken curve represents Eq. (36.24). Now, for good-solvent systems,
Eq. (36.23) must be replaced by

[η]b/[η]l = g1/2(αη,b/αη,l)3 , (36.25)

where αη denotes the expansion factor of the viscosity radius. Accord-
ing to the work of Orofino and Wenger95 on polystyrene star molecules,
the factor (αη,b/αη,l)3 is slightly greater than unity.

Next we consider the friction coefficient fb of branched molecules.
fb may be evaluated from the Kirkwood equation (32.41), and for the
non-free-draining case,

f −1
b =

1
3πη0n2

∑

(iλ,jµ)

〈R −1
iλjµ

〉 , (36.26)

where the sum is taken over all iλ, jµ pairs. We define a factor h as
the ratio of the friction coefficients of branched and linear chains of the
same number of segments,

h = fb/fl = S̄b/S̄l (36.27)

with S̄ the Stokes radius of the molecule. The problem is to evaluate
the statistical average and the sum in Eq. (36.26).

For star molecules with a uniform or random distribution of sub-
chain lengths, we easily obtain for the factor h

h −1
u (star) = (

√
2− 1)f1/2 + (2−

√
2)f−1/2 , (36.28)

h −1
r (star) =

3π1/2(f + 3)Γ(f + 1)
16Γ(f + 3

2 )
. (36.29)

Equations (36.28) and (36.29) were first derived by Stockmayer and
Fixman96 and by Ptitsyn,97respectively. For the normal or random
type of branching, the method of Kurata and Fukatsu described in
Section 9b(i) is again useful. The results are98

h −1
u (normal) = p−3/2

{
p + (

√
2− 1)f(f − 1)m + (f − 1)2

×
m−1∑
ν=1

[(ν + 2)3/2 − 2(ν + 1)3/2 + ν3/2](m− ν)
}

, (36.30)
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h −1
r (normal) =

3π1/2Γ(p)
4Γ(p + 3

2 )

{
p + 1

4f(f − 1)m + (f − 1)2

×
m−1∑
ν=1

(2ν + 2)!(m− ν)
[(ν + 1)!2ν+1]2

}
(36.31)

h −1
u (random) = p−3/2

{
p + (

√
2− 1)f(f − 1)m + 1

2 (f − 1)2m(m− 1)

×
m−1∑
ν=1

[(ν + 2)3/2 − 2(ν + 1)3/2 + ν3/2]Kν(f,m)
}

, (36.32)

h −1
r (random) =

3π1/2Γ(p)
4Γ(p + 3

2 )

{
p + 1

4f(f − 1)m + 1
2 (f − 1)2m(m− 1)

×
m−1∑
ν=1

(2ν + 2)!
[(ν + 1)!2ν+1]2

Kν(f,m)
}

(36.33)

with

Kν(f, m) =
(fm−m− ν)!(m− 2)!
(fm−m)!(m− ν − 1)!

(f − 1)ν−1(fν − 2ν + f) , (36.34)

where we have used the same notation as that in Section 9b(i). Equa-
tions (36.30) and (36.31) include the special cases derived by Ptitsyn.97

In Table VI.4 are given some numerical values of h calculated from
Eqs. (36.30) and (36.33) by Kurata and Fukatsu. In all cases h is seen
to be smaller than unity. Further, comparing these values with the
corresponding values of the factor g given in Table II.2, we find that

1 ≤ h/g1/2 ≤ 1.39 . (36.35)

This implies that the effect of branching is greater in the intrinsic vis-
cosity than in the friction coefficient. Although both properties may
be, of course, effectively used to distinguish between branched and lin-
ear chains, we must assume we know the type of branching in order to
determine the number of subchains and/or the number of branch units
per molecule.

36c(ii). Ring Polymers

The intrinsic viscosity of single-ring molecules was first evaluated by
Bloomfield and Zimm53 and Fukatsu and Kurata.99 Both theories give
the same result for the unperturbed ring, but are in conflict with each
other regarding the prediction of the effect of excluded volume, which
was treated by the Peterlin method as in Section 35a(ii) in the former
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TABLE VI.4. NUMERICAL VALUES OF THE FACTOR h98

RANDOM NORMAL

f m hu hr hu hr

3 1 0.947 0.972 — —
2 0.992 0.950 — —
3 0.903 0.931 — —
4 0.887 0.915 0.888 0.916
5 0.873 0.901 0.876 0.903

10 0.823 0.846 0.840 0.862
15 0.788 0.808 0.820 0.839
20 0.760 0.779 0.807 0.825
25 0.739 0.756 0.798 0.814

4 1 0.892 0.938 — —
2 0.850 0.891 — —
3 0.820 0.864 — —
4 0.797 0.838 0.799 0.840
5 0.778 0.817 0.782 0.820

10 0.713 0.743 0.733 0.763
15 0.672 0.697 0.708 0.733
20 0.642 0.664 0.692 0.714
25 0.619 0.638 0.681 0.701

and by an approximate perturbation theory in the latter. Moreover,
the Bloomfield–Zimm theory predicts that 〈S2〉r/〈S2〉l decreases with
increasing excluded volume; this is not in agreement with the perturba-
tion theory given in Section 17. For this reason the problem was later
reexamined by Yu and Fujita.100

If we take into account the excluded-volume effect by the Peterlin
method, it is found that

〈R −1
ij 〉 = (6/π)1/2〈R 2

ij 〉−1/2 . (36.36)

For the unperturbed ring, 〈R 2
ij 〉0,r is given by Eq. (9.81) with (9.80).

For the perturbed ring, Bloomfield and Zimm assumed

〈R 2
ij 〉r = a2 |j − i|1+ε(n− |j − i|)1+ε

|j − i|1+ε + (n− |j − i|)1+ε
, (BZ) (36.37)

while Yu and Fujita assumed

〈R 2
ij 〉r = a2|j − i|1+ε(n1+ε − |j − i|1+ε)/n1+ε . (YF) (36.38)

Of course, both Eqs. (36.37) and (36.38) satisfy the circularity condi-
tion that the sum of the two factors in the numerator is equal to the
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denominator. From Eq. (36.38) we obtain

〈S2〉r =
a2n1+ε

2(6 + 5ε + ε2)

(
1 +

ε

3 + 2ε

)
, (36.39)

〈S2〉r/〈S2〉l =
1
2

(
1 +

ε

3 + 2ε

)
. (36.40)

That is , 〈S2〉r/〈S2〉l increases with increasing ε; this is consistent with
the exact perturbation theory. Equation (36.37) leads to the opposite
conclusion. We therefore adopt Eq. (36.38).

Now, the intrinsic viscosity of ring molecules may be expressed in
the form,

[η]r =
2NA〈S2〉rζ

nMη0

∑

j

gjλ
−1

j , (36.41)

corresponding to Eq. (35.19) for linear chain, where gj is the degeneracy
of the jth eigenvalue and is shown to equal 2 for all j. We define the
function Φr by

[η]r = 123/2Φr
〈S2〉 3/2

r

M
. (36.42)

From Eqs. (36.39), (36.41), and (36.42), we then have

Φr =
(2π3)1/2NA

12
2−ε/2(6 + 5ε + ε2)1/2

(
1 +

ε

3 + 2ε

)−1/2 ∑

j

λj
′−1 ,

(36.43)
where the definition of λj

′ is the same as that in Eq. (35.22), and we
have put gj = 2.

The eigenvalue equation becomes

α′′(r) + h(ε)
∫ 1

−1

α′′(s)
|r − s|(1+ε)/2[1− ( 1

2 |r − s|)1+ε]1/2
ds = −n2λ

4
α(r)

(36.44)
with the circularity boundary conditions,

α(1) = α(−1) , α′(1) = α′(−1) . (36.45)

The eigenfunctions turn out to be doubly degenerate simple cosine
or sine functions. If we adopt the cosine functions, for the non-free-
draining case we find (for j = 1, 2, . . ., 1

2n)

λj
′ = 21−δπ2j2

∫ 1

0

(x/2)−δ[1− (x/2)2δ]−1/2 cos(πjx)dx (36.46)

with δ = 1
2 (1 + ε). When ε = 0, Eq. (36.46) may be rewritten in terms

of the Bessel function of the zeroth order, and becomes identical with
the equations obtained by Bloomfield and Zimm and by Fukatsu and
Kurata.
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Fig. VI.12. A multiple-ring molecule composed of m rings of equal size.

All these theories predict that [η]r/[η]l = 0.662 at the theta tem-
perature, where [η]l is the intrinsic viscosity of linear chains of the
same number of segments. For ε 6= 0, Yu and Fujita evaluated numer-
ically the integral in Eq. (36.46), and showed that [η]r/[η]l decreases
from 0.662 to 0.633 as ε is increased from 0 to 0.5. That is, [η]r/[η]l
is almost independent of the excluded-volume effect. The theory of
Bloomfield and Zimm predicts that [η]r/[η]l is a more rapidly decreas-
ing function of ε. On the other hand, Fukatsu and Kurata arrived
at the opposite conclusion by using the exact first-order perturbation
theory result for 〈S2〉r/〈S2〉l appearing in the ratio [η]r/[η]l, but con-
sidering only approximately the effect of excluded volume on the ratio∑

j λ −1
j,r /

∑
j λ −1

j,l .
The friction coefficient of single-ring molecules may be evaluated

straightforwardly by the use of the Kirkwood equation. We consider
only the non-free-draining case. First, the exact first-order perturba-
tion theory of the ratio fl/fr of the friction coefficients is given by

fl/fr = sr/sl = 3
8π(1− 0.021z + · · ·) (36.47)

with s the sedimentation coefficient. Equation (36.47) is due to Fukatsu
and Kurata.99 At z = 0, we have sr/sl = 3

8π = 1.178, the result ob-
tained also by Ptitsyn97 and Bloomfield and Zimm.53 In the Peter-
lin scheme, Yu and Fujita100 obtained by the use of Eqs. (36.36) and
(36.38)

sr/sl = (π1/2/2)δ−1(1− δ)(2− δ)

×
[
Γ
(

1
2δ
− 1

2

)/
Γ
(

1
2δ

)
− Γ

(
1
δ
− 1

2

)/
Γ
(

1
δ

)]
.

(36.48)

This equation predicts that sr/sl decreases from 1.178 to 1.055 as ε
is increased from 0 to 0.5; sr/sl is also almost independent of the
excluded-volume effect. We note that the friction or sedimentation
coefficient is less sensitive to the ring formation than is the intrinsic
viscosity.

Finally, we consider a multiple-ring molecule composed of m rings of
equal size linearly connected, as depicted schematically in Fig. VI.12.
This molecule can be formed from a linear chain of n + 1 segments
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TABLE VI.5. EFFECT OF RING FORMATION ON THE SEDI-
MENTATION COEFFICIENT99

NUMBER OF RINGS sr/sl

1 1.178
2 1.321
3 1.400
4 1.458
5 1.500

10 1.617
∞ 2.000

by joining the (ni/2m)th and (n − ni/2m)th segments with i = 0, 1,
. . ., m − 1. For the unperturbed molecules, sr/sl was evaluated as a
function of m by Fukatsu and Kurata.99 The results are summarized
in Table VI.5. In this connection it is pertinent to refer to the work of
Weil and Vinograd,101 who showed by means of the band-centrifugation
technique that polyoma viral DNA consists of three components I, II,
and III, and assigned these components to the twisted (multiple) ring,
untwisted (single) ring, and linear forms of DNA, respectively. The
ratios of the sedimentation coefficients of I and III and of II and III
were 1.44 and 1.14, respectively.

36d. Rigid Rods and Stiff Chains

Some of the equilibrium properties of rod and stiff-chain molecules,
such as tobacco mosaic virus, helical polypeptides, and DNA, have al-
ready been discussed in the preceding chapters. Measurements of the
frictional properties are, of course, useful in obtaining conformational
information about such molecules. Stiff chains may be well represented
by the wormlike chain model, as described in Section 9c, and for this
model we now evaluate the intrinsic viscosity and the diffusion or sed-
imentation coefficient. Although rod molecules may be regarded as a
limiting case of the wormlike chain, we begin by discussing the dy-
namical properties of rod molecules since these have been thoroughly
investigated. In this section the evaluation is carried out taking into
account the draining effect, which has often been neglected for flexible
chains.

36d(i). Straight and Once-Broken Rods

Many years ago Simha102 extended the Einstein theory of the intrinsic
viscosity of spherical particles to ellipsoidal particles, which may be
regarded as rod molecules when the axial ratio is very large. On the
other hand, Huggins,1 Kuhn,77 and succeeding investigators30, 103 used
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the fully-extended random-flight model to represent a rod molecule,
as described in our study of the Kirkwood equation for the diffusion
coefficient (Section 32). Riseman and Kirkwood30 also developed a
theory for the fully-extended chain model; this theory is analogous to
their theory of flexible chains as described in Section 31. Subsequently,
Kirkwood and Auer103 applied the general theory of Kirkwood to the
same model, and first accounted for the rigidity of polymer solutions.
We describe here the approach of Kirkwood and Auer.

Suppose that the middle ( 1
2nth) segment of the rod is fixed at the

origin of a polar coordinate system (r, θ, ϕ). The two angles θ and
ϕ suffice to specify the orientation of the rod, and may be chosen as
generalized coordinates. If eθ and eϕ are unit vectors in the directions
of θ and ϕ, respectively, we readily have in the same notation as in
Section 32

∂Ri

∂q1
= aleθ ,

∂Ri

∂q2
= al sin θ eϕ (36.49)

with a the spacing between segments and l = i− 1
2n. The components

of the metric tensor in this space are

gθθ = a2ν , gϕϕ = a2ν sin2 θ (36.50)

with

ν =
n/2∑

l=−n/2

l2 =
1
12

n3 . (36.51)

We then have gθθ = g −1
θθ and gϕϕ = g −1

ϕϕ since gθϕ = 0 and the q1

and q2 are separable from the remaining 3n + 3 − 2 coordinates. In
this case the approximate general theory of Kirkwood gives the correct
result for very large n, as will be seen later. We may therefore use
Eqs. (32.36) to (32.38) to find for the rotatory diffusion coefficients

Dθθ = Dϕϕ sin2 θ = kT (1 + µ)/ζa2ν , (36.52)

where
µ =

2λ0

ν

∑∑

−n/2≤s<l≤n/2

ls

l − s
, (36.53)

λ0 = ζ/8πη0a . (36.54)

The diffusion equation for the distribution function P (θ, ϕ, t) may
be written in the form,

∂P

∂t
=

1
g′1/2

2∑
α=1

∂

∂qα
g′1/2

(
Dαα ∂P

∂qα
− gαα

∑

i

v 0
i · ∂Ri

∂qα
P

)
, (36.55)

where g′ = gθθgϕϕ, and we have suppressed the ζβγ terms in Eq. (32.21)
for the same reason as above. After expressing v 0

i in polar coordinates,
Eq. (36.55) may be explicitly rewritten as

6τ
∂P

∂t
− 1

sin θ

∂

∂θ

(
sin θ

∂P

∂θ

)
− 1

sin2 θ

∂2P

∂ϕ2

= 9τgP sin2 θ sin 2ϕ + O(g2) , (36.56)
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where g is assumed to be the time-dependent rate of shear, and τ is
the relaxation time defined by

τ = 1/6Dθθ . (36.57)

Note that this τ corresponds to Zimm’s τ1. At small g the solution of
Eq. (36.56) is

4πP = 1 + 3
2g

(
τ

1 + iωτ

)
sin2 θ sin 2ϕ + O(g2) . (36.58)

Now we derive a set of equations determining the frictional forces
Fi. Since the generalized velocity of the segment is given by

u =
∑

i

ui =
∑

i

∑
α

uα ∂Ri

∂qα
, (36.59)

we have for the velocity of the ith segment

ui =
∑
α

uα ∂Ri

∂qα
=

∑
α

Jα

P

∂Ri

∂qα
. (36.60)

Substitution of Eq. (32.21) into Eq. (36.60) leads to

ui = −
∑
α

∑

β

∂Ri

∂qα

(
Dαβ ∂ ln P

∂qβ
− gαβ

∑

i

v 0
i · ∂Ri

∂qβ

)
. (36.61)

Substitution of Eq. (36.61) into Eq. (31.7) gives a general equation
determining the frictional forces (in the Kirkwood approximation). For
the present case it may be written as

Fl + λ0

n/2∑
s=−n/2
6=l

I + erer

|l − s| Fs

= −ζla

(
1
2g sin2 θ sin 2ϕ er + Dθθ ∂ ln P

∂θ
eθ + Dϕϕ sin θ

∂ ln P

∂ϕ
eϕ

)
.

(36.62)

Substitution of Eq. (36.58) into Eq. (36.62) leads to the equations for
Fl up to terms linear in g,

Fl · er = − 1
2gζaψl(2λ0) sin2 θ sin 2ϕ ,

Fl · eθ = − 1
4gζaψl(λ0)

sin 2θ sin 2ϕ

1 + iωτ
,

Fl · eϕ = − 1
2gζaψl(λ0)

sin θ cos 2ϕ

1 + iωτ
, (36.63)

where the functions ψl(λ) satisfy the set of equations,

ψl + λ

n/2∑
s=−n/2
6=l

ψs

|l − s| = l

(
−n

2
≤ l ≤ n

2

)
. (36.64)
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Equations (36.64) may be transformed into an integral equation. Rise-
man and Kirkwood solved this integral equation by the Fourier series
expansion method, as in the case of the Kirkwood–Riseman theory for
flexible chains. As in that case, the solution is only approximate. How-
ever, Ullman104 has shown that the Riseman–Kirkwood solution for ψl

is asymptotically correct for large n.
If the results for Fl are substituted in Eq. (30.24) rewritten in polar

coordinates, we find the Newtonian complex intrinsic viscosity [η̄]. As is
easily seen from the derivation, the result so obtained is free of possible
error arising from the preaveraging of the Oseen tensor. For large n
we obtain for the intrinsic dynamic viscosity, intrinsic storage modulus,
and rotatory diffusion coefficient

[η′] =
πNAL3

90M ln(L/a)

(
1 +

3
1 + ω2τ2

)
, (36.65)

[G′] =
3RT

5M

ω2τ2

1 + ω2τ2
, (36.66)

η0D
θθ

kT
=

3 ln(L/a)
πL3

(36.67)

with L (= na) the length of the rod. The intrinsic dynamic viscosity is
seen to have a finite value even in the limit ω = ∞, while the Rouse–
Zimm theory for flexible chains predicts vanishing of [η′] at ω = ∞. At
ω = 0 Eq. (36.65) reduces to

[η] =
2πNAL3

45M ln(L/a)
. (36.68)

Simha’s equation for the intrinsic viscosity of prolate ellipsoids is

[η] =
NAvm

M

[
14
15

+
p2

15(ln 2p− 3
2 )

+
p2

5(ln 2p− 1
2 )

]
(36.69)

with vm the volume of the ellipsoid and p the axial ratio. Since p2vm

may be set equal to πL3/6, Eq. (36.68) is in agreement with Eq. (36.69)
for very large p. Since L is proportional to the molecular weight M ,
the dependence of [η] on M for long rods may be expressed in the form,

[η] = CM2/ ln M , (36.70)

where C is a constant independent of M .
Yu and Stockmayer105 extended the above theory to a once-broken

rod, i.e., two rods of equal length (L/2) connected by a flexible joint.
The result for the zero-frequency intrinsic viscosity is (for large n)

[η]b =
73πNAL3

1920M ln(L/a)
. (36.71)

From Eqs. (36.68) and (36.71), we obtain [η]b/[η]s = 0.85, where [η]s is
the intrinsic viscosity of straight rods of the same molecular weight.



334 FRICTIONAL AND DYNAMICAL PROPERTIES OF DILUTE SOLUTIONS

Fig. VI.13. Intrinsic viscosities of poly-γ-benzyl-L-glutamates (PBLG) in

dimethylformamide at 25 ◦C.106, 107 Open circles: PBLG-A (straight rods). Filled

circles: PBLG-B (once-broken rods).

Next we evaluate the translational diffusion or sedimentation coef-
ficient using the Kirkwood equation (32.41). The diffusion coefficient
of straight rods has already been evaluated and is given by Eq. (32.43).
The evaluation can easily be extended to broken rods composed of two
subsections of lengths Lσ and L(1− σ)( 1

2 ≤ σ ≤ 1). The result is

Db =
kT

nζ

{
1 +

ζ

3πη0a
[ln n− 1 + γ + g(σ)]

}
, (36.72)

where γ is the Euler constant, and g(σ) is given by

g(σ) = ln σ + 2(1− σ) . (36.73)

When σ = 1, g(σ) vanishes, and Eq. (36.72) reduces to Eq. (32.43).
Equation (36.72) is due to Teramoto, Yamashita, and Fujita.106 The
molecular weight dependence of the sedimentation coefficient of once-
broken rods may be expressed in the form,

sb = C ln M + C ′ + Cg(σ) , (36.74)

where C and C ′ are constants independent of M and σ.
Finally, we give a brief description of experimental results obtained

by Fujita et al.106, 107 for poly-γ-benzyl-L-glutamates (PBLG) in di-
methylformamide (helicogenic solvent). In Fig. VI.13 are shown the
double logarithmic plots of [η] (dl/g) against the weight-average molec-
ular weight 〈M〉w. The open circles represent the data for triethylamine
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Fig. VI.14. Sedimentation coefficients (in svedbergs) of poly-γ-benzyl-L-

glutamates (PBLG) in dimethylformamide at 25 ◦C.106, 107 Open circles: PBLG-

A. Filled circles: PBLG-B.

or sodium methoxide-initiated samples (PBLG-A), and the filled cir-
cles for trimethylenediamine-initiated samples (PBLG-B). The PBLG-
A molecules in dimethylformamide may be regarded as straight rods.
This was first demonstrated by Doty et al.108 On the other hand, the
PBLG-B molecules in the same solvent may be represented by the
once-broken rod model. The data show that for 〈M〉w above 105 the
introduction of one flexible joint into a straight rod lowers [η] by a fac-
tor of about 14%, almost independent of 〈M〉w. This compares well
with the theory of Yu and Stockmayer. Figure VI.14 shows plots of
the sedimentation coefficient s (in svedbergs, 1 S = 10−13 sec) against
log 〈M〉w for the same systems as above. Again for 〈M〉w > 105, the
relationship (36.74) is seen to be fulfilled.

36d(ii). Wormlike Chains without Excluded Volume

In the early 1950s the effects of chain stiffness on the frictional proper-
ties of polymers were investigated by Kuhn, Kuhn, and Silberberg,109, 110

and by Peterlin111 using rather simple models, and since the 1960s, ex-
tensive investigations of the frictional properties of wormlike chains
have been published. These studies were often undertaken so as to
obtain conformational information about DNA. Now, the evaluation of
[η] and s requires the average 〈R −1

ij 〉 and its sum over i and j. For
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convenience let Rt be the distance between two points in the wormlike
chain separated by a contour length t = |j − i|a. As shown in Sec-
tion 9c, the averages of the positive powers of any displacement length
or its components can be exactly calculated for wormlike chains, while
this is not the case for the mean reciprocal distance 〈R −1

t 〉. Thus we
must introduce some approximations.

Recalling that the distribution of Rt may be well approximated
by the Daniels distribution for large λt with λ−1 the Kuhn statistical
length, we write

〈R −1
t 〉 =

∫ ∞

0

R −1
t PD(Rt)dRt for λt > σ

=
∫ ∞

0

R −1
t P (Rt)dRt for 0 ≤ λt ≤ σ , (36.75)

where σ is some positive constant, PD is Daniels distribution given
by Eq. (9.112), and P is the exact distribution for the wormlike chain.
Hearst and Stockmayer112 have approximated t〈R −1

t 〉 by a cubic equa-
tion for 0 ≤ λt ≤ σ, i.e., the set

t〈R −1
t 〉 = (6/π)1/2(λt)1/2[1− 1

40 (λt)−1] for λt > σ

= 1 + 1
3λt + c1(λt)2 + c2(λt)3 for 0 ≤ λt ≤ σ , (36.76)

where the first line is obtained by the use of Eq. (9.112). Clearly,
t〈R −1

t 〉 is equal to unity for a rod (λt = 0), and it can easily be shown
that the initial slope of t〈R −1

t 〉 at λt = 0 is 1
3 . The constants σ, c1, and

c2 have been determined in such a way that at λt = σ the two curves
of t〈R −1

t 〉 given by the first and second lines of Eqs. (36.76) intersect
each other and have the same first and second derivatives. The results
are

σ = 2.20, c1 = 0.118, c2 = −0.026 . (36.77)

The values of t〈R −1
t 〉 calculated from Eqs. (36.76) with (36.77) are

plotted against λt in Fig. VI.15.
An alternative approximation has been introduced by Ptitsyn and

Eizner.113 They have approximated the distribution function P (Rt) by
a linear combination of a Gaussian distribution for the random-flight
chain and a delta function for the rod so as to be able to interpolate to
intermediate values of λt;

P (Rt) =
3
2

( 〈R 4
t 〉

〈R 2
t 〉2

− 1
)

PG(Rt) +
(

5
2
− 3

2
〈R 4

t 〉
〈R 2

t 〉2
)

δ(Rt − 〈R 2
t 〉1/2) ,

(36.78)
where PG(Rt) is the Gaussian distribution whose second moment is
〈R 2

t 〉, and 〈R 2
t 〉 and 〈R 4

t 〉 are given by Eqs. (9.87) and (9.88) with
L = t, respectively. Equation (36.78) gives

〈R −1
t 〉 = ψ(λt)〈R 2

t 〉−1/2 (36.79)
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Fig. VI.15. The values of the contour length times the mean reciprocal end-to-

end distance for a rigid rod, a Daniels wormlike chain, and a Daniels wormlike

chain with the cubic correction for small λt.112

with

ψ(λt) = 0.427 + 0.573[180(λt)2 − 312λt + 214
−108(2 + λt)e−2λt + 2e−6λt]/27(2λt− 1 + e−2λt)2 . (36.80)

First we apply the general theory of Kirkwood to wormlike chains,
following Hearst.114, 115 If the direction of the tangent to the chain at
the midpoint of its contour is fixed, the segment distribution may be
considered to be cylindrically symmetric about that tangent (the cylin-
drical axis). We choose the midpoint of the contour as the origin of a
coordinate system, and denote the internal (Cartesian) coordinates of
the ith segment by l1i, l2i, and l3i, the last of these being measured
along the cylindrical axis. The Euler angles θ, ϕ, and ψ are introduced
to specify this coordinate system relative to a fixed laboratory coor-
dinate system (x, y, z) with the same origin. The external rotation of
the cylindrical distribution of segments may be specified by the angles
θ, ϕ, ψ. The components of the metric tensor associated with these
coordinates are

gθθ = A + B , gθϕ = 0 ,

gϕϕ = A(1 + cos2 θ) + B sin2 θ , gθψ = 0 ,

gψψ = 2A , gϕψ = 2A cos θ , (36.81)
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where

A =
∑

i

〈l 2
1i 〉 =

∑

i

〈l 2
2i 〉 , B =

∑

i

〈l 2
3i 〉 , (36.82)

and terms of type l1il3i have been dropped because of the averaging over
internal coordinates subject to the cylindrical distribution. The quan-
tities A and B can easily be evaluated for wormlike chains. We evaluate
the rotatory diffusion coefficient Dθθ from Eqs. (32.36) to (32.38), Dϕϕ

being given by Dϕϕ = Dθθ/ sin2 θ. In doing this, we use Eqs. (36.76)
for 〈R −1

t 〉, and replace the sums over i and j by integrals, taking the
lower limit of t as a, corresponding to |j − i| = 1. The choice of the
lower limit of integration is, to some extent, arbitrary, and has influence
upon the final results. The results thus obtained are

η0D
θθ/kT = (λ/L2)[0.716(λL)1/2 − 0.636 ln(λa)− 1.548 + 0.640(a/b)]

for λL À 1 , (36.83)
η0D

θθ/kT = (1/πL3){3 ln(L/a)− 7.00 + 4(a/b)
+λL[2.25 ln(L/a)− 6.66 + 2(a/b)]}

for λL ¿ 1, L/a À 1 , (36.84)

where L is the contour length of the chain and b = ζ/3πη0 is Stokes
diameter of the segment. Equations (36.83) and (36.84) describe devi-
ations from the random-flight chain rod, respectively. Equation (36.84)
becomes Eq. (36.67) in the asymptotic limit λL = 0.

The diffusion equation for the distribution function P (θ, ϕ, t) de-
scribing the orientation of the cylindrical distribution of segments is
readily obtained as

6τ
∂P

∂t
− 1

sin θ

∂

∂θ

(
sin θ

∂P

∂t

)
− 1

sin2 θ

∂2P

∂ϕ2

= 9τg

(
B −A

B + A

)
P sin2 θ sin 2ϕ + O(g2) , (36.85)

where τ is given by Eq. (36.57) with (36.83) or (36.84). The solution
of Eq. (36.85) is

4πP = 1 + 3
2g

(
B −A

B + A

)(
τ

1 + iωτ

)
sin2 θ sin 2ϕ + O(g2) . (36.86)

When A = 0, Eqs. (36.85) and (36.86) reduce to Eqs. (36.56) and
(36.58) for rods, respectively.

Now we proceed to evaluate the intrinsic viscosity. For the present
model, [η] may be obtained more conveniently by evaluating

∑
i〈Fi·v 0

i 〉
rather than

∑
i〈Fixyi〉 in Eq. (30.24). Recalling that

Fi =
∑
α

[ζ(u− v0)]α
∂Ri

∂qα
, (36.87)

v 0
i =

∑
α

v0α ∂Ri

∂qα
, (36.88)
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TABLE VI.6. GENERALIZED COORDINATES FOR THE CYLIN-
DRICAL DISTRIBUTION OF SEGMENTS116

COORDINATE NUMBER COORDINATE METRIC TENSOR

1 dl1/l1 g11 = A
2 dl2/l2 g22 = A
3 dl3/l3 g33 = B
4 1

2 (dl2/l3 + dl3/l2) g44 = 1
2 (A + B)

5 1
2 (dl3/l1 + dl1/l3) g55 = 1

2 (A + B)
6 1

2 (dl1/l2 + dl2/l1) g66 = A

we find through straightforward tensor algebra

∑

i

Fi ·v 0
i =

∑

α,β,µ,ν

gαµgβνζαβ

∑

i

∑

j

(
v 0

i · ∂Ri

∂qµ

)[
(uj −v 0

j ) · ∂Rj

∂qν

]
.

(36.89)
The velocity of the jth segment uj may be calculated from Eq. (36.61)
by substitution of Eq. (36.86) for P , in which α and β are summed
over θ, ϕ, and ψ. The evaluation of the sum of (36.89) requires a set
of generalized coordinates with which all forces on the distribution of
segments may be expressed. There are three stretching coordinates re-
ferring to stretches in the l1, l2, and l3 directions. Three mutually per-
pendicular shear planes pass through the origin. For each such plane,
there are two orthogonal directions of shear, introducing six shearing
coordinates. Thus Hearst and Tagami116 have introduced the set of co-
ordinates listed in Table VI.6 in the form of differential displacements
together with a number which identifies them and the component of
the metric tensor. This set has been chosen so as to make the metric
and friction tensors diagonal. Then we readily find the contravariant
components gαα and the reciprocal friction tensor, and obtain ζαα by
inversion. Averaging the sum of (36.89) thus obtained over all orienta-
tions, we find

[η] = 2.19× 1023 (L/λ)3/2

M
{1− 0.891[ln(λa) + 2.431− a/b](λL)−1/2}−1

for λL À 1 , (36.90)

[η] =
πNAL3

90M

[
1

ln(L/a)− 2.72 + 0.66(a/b)

+
3

ln(L/a)− 2.72 + 1.33(a/b)

]

for λL ¿ 1, L/a À 1 . (36.91)

Equation (36.91) becomes Eq. (36.68) for rods in the asymptotic limit.
In the non-free-draining limit, from Eq. (36.90), we have Φ0 =

2.19× 1023 for the viscosity constant. For the sake of comparison this
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Hearst–Tagami value of Φ0 for random-flight chains is also included in
Table VI.3. It is seen that for some value of λ the second term in the
curly brackets in Eq. (36.90) vanishes and [η] is therefore proportional
to M1/2 for any value of M . Thus Hearst has attributed proportion-
ality of [η] to M1/2 observed for flexible chains such as vinyl polymers
to their finite stiffness, corresponding to the above value of λ. How-
ever, this interpretation seems artificial. In general, for λL À 1 the
molecular weight dependence of [η] may be written in the form,

[η] = CηM1/2 − Cη
′ , (36.92)

where Cη and Cη
′ are constants independent of M .

Eizner and Ptitsyn117, 118 and Sharp and Bloomfield119 have evalu-
ated the intrinsic viscosity of wormlike chains by the use of the semiem-
pirical equation of Peterlin,82, 120

[η] =
NAζn〈S2〉

6η0M

[
1 +

4ζ

9πη0n2

n/2∑

i=0

n∑

j=0

i 6=j

(n− 2j)〈R −1
ij 〉

]−1

. (36.93)

Eizner and Ptitsyn have used Eq. (36.79) with (36.80) for 〈R −1
ij 〉, while

Sharp and Bloomfield Eqs. (36.76) for 〈R −1
ij 〉. We write the results in

the form of Eq. (35.1), where 〈S2〉 is given by Eq. (9.108). The values
of Φ are plotted in Fig. VI.16 against n for λa = 1/20 and a = b,
the values from the theory of Hearst and Tagami, Eq. (36.90), being
also included. We note that Ullman121 has also calculated the intrinsic
viscosity on the basis of the Kirkwood–Riseman integral equation, but
omit the details here.

The diffusion and sedimentation coefficients can be evaluated straight-
forwardly by the use of the Kirkwood equation. Using Eqs. (36.76) for
〈R −1

ij 〉, Hearst and Stockmayer112 have derived

s =
ML(1− ῡρ̄)

3πη0NA
[1.843(λL)1/2 − ln(λa)− 2.431− a/b] for λL À 1 ,

(36.94)

s =
ML(1− ῡρ̄)

3πη0NA
[ln(L/a) + 0.166λL− 1 + a/b]

for λL ¿ 1, L/a À 1 , (36.95)

where ML(= M/L) is the molecular weight per unit contour length.
For λL À 1, the molecular weight dependence of a may be written in
the form

s = CsM
1/2 + Cs

′ , (36.96)

where Cs and Cs
′ are constants independent of M . Ptitsyn and

Eizner113, 118 have also carried out similar calculations using Eq. (36.79)
with (36.80) for 〈R −1

ij 〉.
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Fig. VI.16. Dependence of the viscosity function Φ on the number of segments,

n, for wormlike chains with λa = 1/20 and a = b and without excluded volume.

Curve HT: the Hearst–Tagami theory. Curve EP: the Eizner–Ptitsyn theory.

Curve SB: the Sharp–Bloomfield theory.

36d(iii). Wormlike Chains with Excluded Volume

Crothers and Zimm122 have summarized viscosity and sedimentation
data122−125 for DNA in buffers of ionic strength near 0.2 as shown in
Fig. VI.17 and obtained empirical relations,

[η] = 0.001371M0.665 − 5 , (36.97)
s = 0.01517M0.445 + 2.7 , (36.98)

where [η] is expressed in deciliters per gram and s in svedbergs. That is,
[η] and s are not linear in M1/2. This suggests that there are excluded-
volume effects in the DNA molecule.

The effect of excluded volume on the intrinsic viscosity of wormlike
chains has been investigated by Sharp and Bloomfield119using Peterlin’s
equation (36.93) and the ε-method. For random-flight chains the Kuhn
statistical segment length A is related to the parameter λ by A = λ−1

and NA2 = L/λ, and therefore there is the relation λL = N . Thus
we may write 〈R2〉 = A2N1+ε = 〈R2〉0Nε = 〈R2〉0(λL)ε and 〈R−1〉 =
〈R−1〉0(λL)−ε/2 for random-flight chains with excluded volume. Sharp
and Bloomfield have assumed equivalent expressions for 〈R −1

t 〉 and
〈R 2

t 〉 for wormlike chains together with the cubic approximation of
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Fig. VI.17. Intrinsic viscosities and sedimentation coefficients of DNA in buffers

of ionic strength near 0.2 obtained by various investigators.122−125

Hearst and Stockmayer;

t〈R −1
t 〉 = t〈R −1

t 〉0(λt)−ε/2 for λt > σ

= 1 + 1
3λt + c1(λt)2 + c2(λt)3 for 0 ≤ λt ≤ σ ,

(36.99)
t−2〈R 2

t 〉 = t−2〈R 2
t 〉0(λt)ε for λt > σ′

= 1− 2
3λt + c1

′(λt)2 + c2
′(λt)3 for 0 ≤ λt ≤ σ′ ,

(36.100)

where 〈R −1
t 〉0 and 〈R 2

t 〉0 are given by the first of Eqs. (36.76) and
(9.87), respectively. The values of the constants in Eqs. (36.99) and
(36.100) can be determined as functions of ε, as before, by matching
the values and the first and second derivatives of the two expressions.
Equation (36.100) is used to evaluate 〈S2〉. Thus Sharp and Bloom-
field have shown that [η] is linear in M (1+3ε)/2. Similar calculations of
the sedimentation coefficient have been carried out by Gray, Bloom-
field, and Hearst,126 leading to the result that s is a linear function of
M (1−ε)/2. Comparing these powers of M with those in Eqs. (36.97)
and (36.98), we find ε = 0.110 for DNA. Further, we can estimate λ−1

and b from the numerical constants in Eq. (36.97) or (36.98) using the
theoretical expression for [η] or s, assuming a = b. The results are
given in Table VI.7, where the estimates from the Hearst–Stockmayer
equation (36.94) for s are also included. The SB value of the hydrody-
namic diameter b for DNA is too large even if it is assumed to be the
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TABLE VI.7. ESTIMATES OF λ−1 AND b FOR DNA

THEORY DATA λ−1 (Å) b (Å)

SBa [η] 542 79-82
GBHa s 900 26-27
HSb s 717 30-41

aWith the excluded-volume effect.
bWithout the excluded-volume effect.

hydrated diameter. This is probably due to the use of the approximate
Peterlin expression [η].

Finally, we must note that the dynamics of the space curve model
has been developed by Harris and Hearst,127−129 but we do not repro-
duce the results here.

36e. Some Other Problems

In this section we discuss some of the other nonequilibrium properties of
dilute polymer solutions, e.g., normal stress effects, flow birefringence,
and dielectric dispersion. We also add some comments on the Rouse–
Zimm theory in relation to these properties.

36e(i). Normal Stress Effects

Consider the steady shear flow given by Eq. (30.12). At infinite dilution
the Rouse–Zimm theory then gives the shear stress,

σxy − η0g =
RTc

M

∑

j

τjg , (36.101)

σyz = σzx = 0 , (36.102)

where Eq. (36.101) has been obtained from Eq. (33.33). Similarly, from
Eq. (30.21) we can easily derive for the normal stresses the expressions

σxx − σyy =
2RTc

M

∑

j

τ 2
j g2 =

2γMc

RT
(η0[η]g)2 , (36.103)

σyy − σzz = 0 , (36.104)

where γ is defined by

γ =
∑

j

λ −2
j

/(∑

j

λ −1
j

)2

(36.105)

with λj the eigenvalues of Rouse and Zimm. γ is equal to 0.4 and
0.205 in the free-draining and non-free-draining limits, respectively.
The nonvanishing of σxx − σyy is called the normal stress effect or the
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Weissenberg effect.130 The Rouse–Zimm theory predicts that (σxx −
σyy)/g2 is independent of the rate of shear g. Experimentally, how-
ever, this quantity decreases with increasing g as does (σxy − η0g)/g
(non-Newtonian viscosity), although there exists a linear relationship
between σxx−σyy and g2 for small g.131 Further, for small g the Zimm
theory does work well for flexible chains, indicating again absence of
the draining effect.

Now, from Eq. (33.35) we obtain for the storage modulus at small
ω

lim
ω→0

G′

ω2
=

RTc

M

∑

j

τ 2
j . (36.106)

Comparison of Eqs. (36.103) and (36.106) leads to a relationship be-
tween the storage modulus and the normal stress,

lim
ω→0

G′

ω2
=

σxx − σyy

2g2
. (36.107)

This equation is found to be valid in the region of Newtonian flow.131

Thus we have seen that the Zimm theory for non-free-draining flex-
ible molecules works well for most phenomena, but breaks down in in-
terpreting the nonlinear viscoelastic behavior, i.e., the non-Newtonian
viscosity and the nonquadratic-dependent normal stress effect. Another
defect of this theory is that it predicts the vanishing of the intrinsic
dynamic viscosity [η′] at ω = ∞, whereas experiments show that [η′]
remains finite at ω = ∞.132, 133 The observed behavior may be deduced
from theory by introducing some rigidity or internal viscosity into the
spring and bead model, as shown by Peterlin.134

36e(ii). Flow Birefringence

The orientation of nonspherical particles or deformed flexible chains
in a shear flow leads to an optical anisotropy of the solution which
may be observed by examining the flow birefringence.25 The degree of
orientation is determined by the balance between the orienting effect
arising from shear flow and the disorienting effect arising from rotatory
diffusion. Thus, the flow birefringence may be used to determine the
rotatory diffusion coefficient, as already mentioned. Using the spring
and bead model we now derive theoretical expressions for two important
quantities observed in flow birefringence experiments, the extinction
angle χ and the magnitude of birefringence ∆ñ.

Let γ1 be the polarizability component along the end-to-end vector
R of the chain of n bonds and γ2 be the value of the two equal compo-
nents normal to R, averaged over all configurations with R fixed. For
the Gaussian chain Kuhn and Grün135 have derived expressions for γ1

and γ2:

γ1 =
n

3
(α1 + 2α2) +

2(α1 − α2)
5〈R2〉0 R2 ,
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γ2 =
n

3
(α1 + 2α2)− (α1 − α2)

5〈R2〉0 R2 , (36.108)

where α1 is the component of polarizability of the bond along its vector,
and α2 is the value of the two equal components normal to the bond
vector. We may use Eqs. (36.108) for individual Gaussian springs in
the spring and bead model, and write their polarizability components
in the form

γ1
′ = p + 2qr2 ,

γ2
′ = p− qr2 , (36.109)

where p and q are constants independent of the length of the spring r.
The polarizability of the whole molecule is the sum of the polarizabili-
ties of the individual springs, and the average of this is designated by
Γ. When all the individual polarizability tensors are referred to the x,
y, z coordinate system and added, we find

Γ = n(p− q)I + 3q



〈xT Ax〉 〈xT Ay〉 〈xT Az〉
〈yT Ax〉 〈yT Ay〉 〈yT Az〉
〈zT Ax〉 〈zT Ay〉 〈zT Az〉


 , (36.110)

where we have used the same matrix notation as in Eq. (33.28).
If we consider a shear flow given by Eq. (30.12) and a light beam

propagating along the z axis, the electric vectors in the xy plane are
the only ones of interest, and we may omit the third row and column of
the tensor in Eq. (36.110). The extinction angle is equal to the smaller
angle between the principal axes of the tensor Γ and the x axis (stream
lines). Therefore, diagonalizing this tensor, we find

tan 2χ =
2〈xT Ay〉

〈xT Ax〉 − 〈yT Ay〉 . (36.111)

The difference of the polarizabilities along the principal axes, ∆Γ, is

∆Γ = 3q[(〈xT Ax〉 − 〈yT Ay〉)2 + 4〈xT Ay〉2]1/2 . (36.112)

The magnitude of the refringence of the solution, ∆ñ, is proportional to
this expression multiplied by the number of molecules per unit volume,
cNA/M .

After transformation to normal coordinates we can evaluate the
averages in Eqs. (36.111) and (36.112). The results for steady flow
are

tan 2χ =

∑
j τj

g
∑

j τ 2
j

, (36.113)

∆ñ = q′
cna2[η]η0g

MRT
cosec2χ , (36.114)

where q′ is an optical constant characteristic of the system. Equa-
tion (36.113) may be rewritten as

tan 2χ =
RT

γgη0M [η]
=

4Dr

γg
, (36.115)
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where the second equality has been obtained by the use of Eq. (31.56)
for the rotatory diffusion coefficient Dr, and γ is defined by Eq. (36.105).
The extinction angle is equal to π/4 in the limit g = 0, and decreases
with increasing g/Dr.

36e(iii). Dielectric Dispersion

Consider the application of the alternating electric field E = E0 exp(iωt)
to a dielectric substance with complex dielectric constant ε̄ = ε′ − iε′′,
where ε′ and ε′′ are dependent on ω. The frequency dependences of ε′

and ε′′ are usually referred to as dielectric dispersion. As is well known,
dispersion of the Debye type (single relaxation time) is given by

ε̄− ε∞ =
εs − ε∞
1 + iωτ

, (36.116)

where εs and ε∞ are the values of ε′ at ω = 0 and ∞, respectively. τ
is the relaxation time during which the transition from one equilibrium
orientation of dipoles to another occurs. The imaginary part (dielectric
loss) ε′′ has a maximum at ω = τ−1. For both polymeric and nonpoly-
meric substances deviations from the Debye equation occur frequently.
However, we do not discuss this problem here; rather, we study the
relationship between the relaxation time and molecular parameters.

The dielectric dispersion of rigid macromolecules (globular proteins)
has been investigated by Oncley.136 He has estimated the dimensions
of the particles from the relaxation times, which are associated with
their rotational motions and are inversely proportional to the rotatory
diffusion coefficients. In the case of rod molecules, for example, the
dielectric relaxation time τ is related to the rotatory diffusion coefficient
Dθθ by the equation,

τ = 1/2Dθθ . (36.117)

Note that this τ is different from the viscoelastic relaxation time de-
fined by Eq. (36.57). For very long rods, Dθθ is given by Eq. (36.67).
Yu et al.137 have determined the molecular dimensions of helical poly-
isocyanates by the use of Eq. (36.117).

Now we consider the dielectric dispersion of flexible chain poly-
mers. Our discussion is limited to a chain whose repeating units possess
dipoles rigidly attached to the backbone. Then dipoles in the repeating
units may be classified geometrically into two types. If the dipoles are
along the chain contour, they are referred to as Type A dipoles; on the
other hand, the dipoles attached perpendicular to the chain contour
are referred to as Type B dipoles. For a sequence of end-to-end Type
A dipoles, there must be a complete correlation between the dipole mo-
ment µ of the whole chain and the end-to-end distance; that is 〈µ·R〉 =
const. 〈R2〉. For this case, the mean-square dipole moment 〈µ2〉 has the
same excluded-volume effect as 〈R2〉, and the low-frequency relaxation
time, associated with a rotation of the whole molecule, depends on the
molecular weight. On the other hand, for chains possessing Type B



SEC. 36. Remarks and Some Other Topics 347

dipoles, there is no correlation between µ and R, i.e., 〈µ ·R〉 = 0. For
this case, the mean-square dipole moment is subject to no excluded-
volume effect, and the relaxation time is independent of the molecular
weight, since the dipole relaxation is associated with local segmental
motions.

Although it is difficult to develop a dielectric theory for chains pos-
sessing Type B dipoles, Type A dipoles can easily be treated using the
spring and bead model. We describe this following Stockmayer and
Baur.138 Let ei be the charge on the ith bead, all charges being repre-
sented by a column vector e. Without loss of generality, suppose that
the field E is along the x axis. Then the external force acting on the
ith bead is

−∇iUe = eiEex . (36.118)

We introduce the vector ε defined by

ε = QT e (36.119)

with Q the transformation matrix in Eqs. (33.23). If we ignore the
free diffusion in the y and z directions, the diffusion equation (33.25)
in normal coordinates becomes

∂P

∂t
=

∑

j

[
κλj

ζ
− ∂(XjP )

∂Xj
− Eνjεj

ζ

∂P

∂Xj
+

kTνj

ζ

∂2P

∂X 2
j

]
. (36.120)

The average moment of the whole molecule is given by

〈p〉 = 〈eT x〉 = 〈εT X〉 =
∑

j

εj〈Xj〉 . (36.121)

As before, we derive the differential equation for 〈Xj〉 from Eq. (36.120)
to find (for the alternating field)

〈Xj〉 =
a2εj

3kTµj

E

1 + iωτj
′ , (36.122)

where τj
′ are the dielectric relaxation times and just twice the vis-

coelastic relaxation times,

τj
′ =

ζ

κλj
= 2τj . (36.123)

Now, if we consider the local field in the nonpolar solvent with
dielectric constant ε0, the excess dielectric constant over that of the
solvent alone is

∆ε̄−∆ε∞ = 4πρ

(
ε0 + 2

3

)2 〈p〉
E

(36.124)

with ρ the number of solute molecules per unit volume. Substitution
of Eq. (36.121) with (36.122) into Eq. (36.124) leads to

∆ε̄−∆ε∞ =
4πN 2

A (ε0 + 2)2c
27RTM

∑

j

p 2
j

1 + iωτj
′ , (36.125)
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where
pj = aεj/µ

1/2
j . (36.126)

If we use the Rouse eigenfunctions, we have µj = π2j2/n2 and

pj =
na

πj

∑

i

eiQij =
(2na2)1/2

πj

∫ 1

0

e(s) cos(πjs)ds , (36.127)

where e(s) is an appropriately defined charge density along the chain
contour, expressible in terms of the magnitude and disposition of the
Type A dipoles. Note that the εj are just the Fourier components of
the charge distribution.

We now discuss two particular cases. First, in the case specifically
worked out by Zimm,34 only the two end beads of the chain carry
charges; we have e0 = −e, en = +e, and all other ei = 0, and therefore
εj = e(Qnj − Q0j) = e(8/n)1/2 for odd j and zero for even j. Then
the frequency dependent part in Eq. (36.125) becomes

∑
odd j−2(1 +

iωτj
′)−1. Thus, the dielectric spectrum consists of a single peak, not

too much broader than a Debye dispersion, with a relaxation time that
is essentially equal to the longest relaxation time τ1

′ of the molecule,
which corresponds in large measure to a molecular rotation, and which
can be estimated from viscosity data;

τ1
′ = 1.21Mη0[η]/RT (for h = 0) , (36.128)

τ1
′ = 0.85Mη0[η]/RT (for h = ∞) . (36.129)

Secondly, let the charges on the beads alternate in sign and be equal
in magnitude; n is odd and ei = (−1)ie. This model was studied by
Van Beek and Hermans.139 In this case there are two dispersion peaks:
one near τ1

′ and the other near τn
′. The low-frequency relaxation

can be reduced to negligible proportions by halving the charges on the
two end beads, thus eliminating the elements εj of low j values, which
correspond to the slow relaxation processes. As concerns the high-
frequency dispersion, it can only be said that the model parameters
which enter can be given no molecular significance, since the value of
τn

′ depends on the value of n, which is number to be chosen arbitrarily.
Finally, we note that the charged spring and bead model may also

be used to study relaxation processes in the birefringence produced by
an electric field (the Kerr effect) and in light scattering under an electric
field (the Benoit–Wippler effect),140 provided the chains possess Type
A dipoles.

36e(iv). Some Further Comments on the Spring and Bead
Model

We have seen that the Rouse–Zimm theory for the spring and bead
model is very successful in providing an understanding of various dy-
namical properties of flexible-chain polymers in dilute solution, except
at high frequencies or when nonlinearity is important. Although we
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have thus far considered an alternating external field, the theory also
works well for transient relaxations provided that the processes corre-
spond to slow relaxations.138, 141, 142 In general, the number n of seg-
ments in the random-flight model is, to some extent, arbitrary. There-
fore the Rouse-Zimm theory should be valid for those problems in which
the final equations are invariant to the choice of n. It turns out that this
is true for slow or low-frequency dynamical properties, since then only
the combinations na2 and nζ appear in the final equations. As already
pointed out, a good analog is furnished by the Debye theory of the
heat capacity of crystals, which correctly describes the low-frequency
vibrations but which is not reliable for the description of the high fre-
quency part of the vibrational spectrum, where greater knowledge of
the crystal structure is needed.

Consider again the spring and bead model without hydrodynamic
interaction and excluded volume, i.e., the so-called Rouse model. For
convenience, let the model have n beads (0, 1, 2, . . ., n− 1). For finite
n the eigenvalues of the matrix A of (33.9) and the elements of the
orthogonal transformation matrix Q are then given exactly by

λj = 4 sin2(πj/2n) (j = 0, 1, . . . , n− 1) , (36.130)

Qij = (2/n)1/2 cos[π(i + 1
2 )j/n] (i, j = 0, 1, . . . , n− 1) , (36.131)

the coordinates being transformed by

Ri =
n−1∑

j=0

Qijξj . (36.132)

For large n, Eqs. (36.130) and (36.131) become Eqs. (34.27) and (34.28),
respectively. If we put g = 0 and νj = 1 in Eq. (33.26), the equation
for configurational diffusion subject to no external field is

∂P

∂t
=

n−1∑

j=0

[
kT

ζ
∇ 2

j P +
1

τj
′∇j · (ξjP )

]
(36.133)

with τj
′ the relaxation times defined by Eq. (36.123). Equation (36.133)

is just the Fokker–Planck equation for Brownian motion of a system of
coupled harmonic oscillators investigated by Wang and Uhlenbeck,143

and its fundamental solution is now available. However, the average
of a scalar function f(ξ0, ξ1, . . . , ξn−1) of normal coordinates may be
calculated from

d〈f〉
dt

=
kT

ζ

n−1∑

j=0

〈∇ 2
j f〉 −

n−1∑

j=0

1
τj
′ 〈ξj · ∇jf〉 , (36.134)

which is obtained by multiplying both sides of Eq. (36.133) by f and
integrating. For example, if f = ξi · ξj , we obtain

〈ξi · ξj〉e = 6kTδij/ζ(τ
′−1

i + τ
′−1

j ) , (36.135)

〈ξi · ξj〉 = 〈ξi · ξj〉e + (〈ξi · ξj〉0 − 〈ξi · ξj〉e) exp[−t(τ
′−1

i + τ
′−1

j )] ,
(36.136)
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where the subscripts 0 and e refer to the initial and equilibrium states
(t = 0 and ∞), respectively.

In order to study chain relaxation, we consider the correlation func-
tion ρ(f, g, t) for two functions f and g.144 In general, correlation func-
tions (or better, time-correlation functions) play the dominant role
in the theory of linear irreversible processes, just as partition func-
tions play the dominant role in equilibrium statistical mechanics.16, 145

ρ(f, g, t) may be defined by

ρ(f, g, t) =
〈f(t0)g(t0 + t)〉 − 〈f〉e〈g〉e

(〈f2〉e − 〈f〉 2
e )1/2(〈g2〉e − 〈g〉 2

e )1/2
. (36.137)

In the particular case for which f and g are of the forms f =
∑

i,j fijξi ·
ξj and g =

∑
i,j gijξi · ξj , Verdier144 has obtained an expression for

ρ(f, g, t) by the use of Eqs. (36.134) to (36.136). The result is

ρ(f, g, t) =

∑
i,j fij(gij + gji)τi

′τj
′ exp[−t(τ

′−1
i + τ

′−1
j )]

[
∑

i,j fij(fij + fji)τi
′τj

′]1/2[
∑

i,j gij(gij + gji)τi
′τj

′]1/2
.

(36.138)
In particular, when f ≡ g, Eq. (36.138) leads to and expression for the
autocorrelation function:

ρ(f, f, t) =

∑
i,j fij(fij + fji)τi

′τj
′ exp[−t(τ

′−1
i + τ

′−1
j )]∑

i,j fij(fij + fji)τi
′τj

′ . (36.139)

We can find correlation functions for a number of quantities of inter-
est by direct substitution in Eq. (36.138) or (36.139). For the auto-
correlation function of the squared end-to end distance R2, we have
f ≡ R2 = (Rn−1 −R0)2, and

fij = cicj (36.140)

with

ci = (8/n)1/2 cos(πi/2n) for odd i

= 0 for even i (36.141)

Therefore, we obtain

ρ(R2, R2, t) = φ2(t/τ1
′) , (36.142)

where

φ(x) =
2

n(n− 2)

∑

odd j

cot2(πj/2n) exp(−xτ1
′/τj

′) (36.143)

with φ(0) = 1 and φ(∞) = 0. For large n, Eq. (36.143) becomes

φ(x) = (8/n2)
∑

odd j

j−2 exp(−j2x) . (36.144)
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For example, the relaxation of the mean-square end-to-end distance
may be expressed in terms of ρ(R2, R2, t) as146

〈R2(t)〉 − 〈R2〉e = (na)2ρ(R2, R2, t)− 〈R2〉eρ1/2(R2, R2, t) , (36.145)

where the initial state corresponds to the full extension of the chain,
〈R2〉0 = (na)2.

Verdier and Stockmayer146, 147 have investigated the relaxation be-
havior of the end-to-end distance by simulating the motion of lattice-
model chains on a high-speed digital computer. For simplicity they
have used simple cubic lattice chains together with the following set of
rules for moving the chain, in a random way, from one configuration to
another. Select a bead at random along the chain. If it is not an end
bead, calculate a new position Rj

′ for it as

Rj
′ = Rj−1 + Rj+1 −Rj . (36.146)

If it is an end bead, pick its new position at random from the four
possibilities satisfying

(R′
end −Rnext) · (Rend −Rnext) = 0 . (36.147)

These rules may also be stated as follows. If beads j − 1, j, and j + 1
lie in a straight line, there can be no movement of the jth bead. If the
beads lie at three corners of a square, the jth bead moves across the
diagonal of the square to the opposite corner. For the chain without
excluded volume, there is the possibility that (Rj −Rj−1) + (Rj+1 −
Rj) = 0. Then the jth bead moves to the opposite position beyond
the point Rj+1(Rj−1), so that beads j, j + 1(j − 1), and j′ lie in
a straight line. An end bead moves across the diagonal of a square
in such a way that the bond connecting it with the next-to-end bead
moves through a right angle. Lattice chains moving according to these
rules correspond to Rouse chains without hydrodynamic interaction.
We refer to the process of picking a bead at random and computing
and testing a new position for it as a bead cycle whether or not the
process results in actually moving the bead. We assume that a bead
cycle in the simulation model corresponds to a fixed increment of time
in the real world.

The autocorrelation functions ρ of R2 obtained for the lattice chains
without excluded volume are plotted in Fig. VI.18 against log t. The
curves represent the values calculated from Eq. (36.142) with (36.143)
for the Rouse model, values of τ1

′ at each n having been chosen to
force the Rouse-model and the lattice-model correlation functions to
agree at ρ = 0.3. Similar results are shown in Fig. VI.19 for the lat-
tice chains with excluded volume. From the figure, it is seen that the
relaxation behavior of the lattice chains without excluded volume is
remarkably similar to that of the Rouse chains even for n = 8, the
marked departures from the Rouse-model behavior being due to the
excluded-volume effect. In this connection, Iwata and Kurata148 have
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Fig. VI.18. Autocorrelation functions of R2 for chains without excluded

volume.147 Points: Monte Carlo data on simple cubic lattice chains. Curves:

the Rouse theory. (a) n = 8. (b) n = 64.

developed an analytical theory for the Brownian motion of a simple
cubic lattice chain, and derived a Fokker–Planck equation of the same
form as Eq. (36.133). Orwoll and Stockmayer149 have also developed a
similar theory for the exact random-flight model with the bond prob-
ability given by Eq. (5.3), and demonstrated that the long relaxation
times of the model are identical with those of the Rouse model. These
results provide a theoretical interpretation of the lattice chain dynamics
data obtained by Verdier.

Further, Orwoll and Stockmayer have investigated a one-dimensional
chain with bond correlations. The results show that this model also con-
forms to a Rouse chain, as far as the slow relaxations are concerned,
the ratio τj

′/τ1
′ being equal to j−2 for j ¿ n as in the Rouse model,

but that for higher modes, the ratio τj
′/τ1

′ becomes sensitive to the
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Fig. VI.19. Autocorrelation functions of R2 for chains with excluded volume.147

All symbols have the same significance as those in Fig. VI.18.

bond correlations. The relaxation spectrum is broadened as the en-
ergetic preference for extended configurations is increased. Thus, the
effect of such bond correlations, or local stiffness, counteracts the ef-
fect of hydrodynamic interactions in the spring and bead model.150

On the contrary, the relaxation spectrum of the one-dimensional chain
is narrowed when compact chain configurations are favored. In this
connection we note that the introduction of internal viscosity into the
spring and bead model produces a narrowing of the spectrum.151

Appendix VI A. The Equation of Motion for
Viscous Fluids

Let v be the velocity of a fluid at the point (x, y, z) or (x1, x2, x3)
at time t, and X be the external force exerted on the fluid per unit
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volume at the same point at the same time. The equation of motion
for the fluid may then be written in the form,

ρ̄
Dv
Dt

= X +∇ · σ , (VI A.1)

where ρ̄ is the mass density of the fluid, σ is the stress tensor, and
D/Dt denotes a differentiation following the motion of the fluid and is
given by

D

Dt
=

∂

∂t
+ (v · ∇) . (VI A.2)

The stress tensor is given by

σij = η

(
∂vi

∂xj
+

∂vj

∂xi

)
for i 6= j

= 2η
∂vi

∂xi
− p− 2

3η∇ · v for i = j , (VI A.3)

and may be simply written in the form,

σ = 2η(∇v)s − (p + 2
3η∇ · v)I , (VI A.4)

where the superscript s indicates the symmetric part of the tensor, p is
the pressure, and η is the viscosity coefficient of the fluid. Substitution
of Eq. (VI A.4) into Eq. (VI A.1) leads to

ρ̄

[
∂v
∂t

+ (v · ∇)v
]

= X−∇p + 1
3η∇(∇ · v) + η∇2v . (VI A.5)

This is the Navier-Stokes equation. For incompressible fluids,

∇ · v = 0 , (VI A.6)

and therefore Eq. (IV A.3) or (IV A.4) reduces to Eq. (30.11) and
Eq. (IV A.5) becomes

∂v
∂t

+ (v · ∇)v =
1
ρ̄
X− 1

ρ̄
∇p +

η

ρ̄
∇2v . (VI A.7)

We note that for steady flow ∂v/∂t = 0.
Equation (IV A.7) is a nonlinear differential equation, and it is

difficult to find its solution. Thus we neglect the inertia term ρ̄(v ·∇)v
compared to the viscosity term η∇2v. In general, this approximation,
called the Stokes approximation, is valid if the Reynolds number is
small. Then Eq. (IV A.7) becomes

∂v
∂t

=
1
ρ̄
X− 1

ρ̄
∇p +

η

ρ̄
∇2v . (VI A.8)

This is called the Stokes equation for incompressible fluids. A higher
approximation was studied by Oseen. He considered the case in which
the velocity field is given by v = (−v0 + v1

′, v2
′, v3

′), where v0 is a
positive constant and v′ is small and vanishes at infinity, and retained
the term −v0∂v′/∂x1 in (v · ∇)v. This is called the Oseen approxima-
tion for a uniform flow. Most cases, but not all, can be treated in the
Stokes approximation.
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Appendix VI B. The Oseen Hydrodynamic Interaction
Tensor

We consider the problem of finding the fundamental solution of the
Stokes equation for incompressible fluids in steady flow,

η∇2v −∇p + X = 0 (VI B.1)

with
∇ · v = 0 . (VI B.2)

We follow the procedure of Oseen.10

We assume that in a domain V there exist the solution (v, p) of
Eq. (IV B.1) with (IV B.2) and the solution (v′, p′) of Eq. (IV B.1)
with (IV B.2) and X = 0, and that in the same domain, v and v′

are single-valued, continuous, and twice differentiable, and p and p′ are
single-valued, continuous, and differentiable. We then have

∫

V

[v′ · (η∇2v −∇p + X)− v · (η∇2v′ −∇p′)]dV = 0 . (VI B.3)

By the use of Green’s formula we transform the volume integral to a
surface integral as follows:

3∑

i=1

∫

S

[
vi
′
(

η
dvi

dν
− pνi

)
− vi

(
η
dvi

′

dν
− p′νi

)]
dS +

∫

V

v′ ·XdV = 0 ,

(VI B.4)
where v is the unit vector normal to the surface S, the domain V being
taken as the negative side of that surface. In order to express three
components of v on the surface S, we need three pairs of solutions
(v′, p′). These nine components of v′ may be chosen so as to depend
only on the distance r between two points P = (x1, x2, x3) and P 0 =
(x 0

1 , x 0
2 , x 0

3 ) and not to depend on the choice of a coordinate system,
and may therefore be considered nine components of a tensor invariant
to coordinate transformation.

Thus we introduce a tensor t defined by

t = I∇2Φ(r)−∇∇Φ(r) (VI B.5)

with

r2 =
3∑

i=1

(xi − x 0
i )2 , (VI B.6)

where Φ is scalar function of r and ∇ is the differential operator with
respect to x1, x2, and x3. If tij are the components of t, the vectors
tj = (t1j , t2j , t3j) satisfy the equation,

∇ · tj = 0 . (VI B.7)

If we assume that
∇2(∇2Φ) = 0 , (VI B.8)
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and put

−η
∂

∂xj
∇2Φ = pj , (VI B.9)

we then have
η∇2tj −∇pj = 0 . (VI B.10)

Equations (VI B.7) and (VI B.10) imply that the tj and pj (j = 1, 2, 3)
determined by Eqs. (VI B.5), (VI B.8), and (VI B.9) are three solutions
of the Stokes equation (VI B.1) with X = 0. Equation (VI B.8) may
be rewritten as d4(rΦ)/dr4 = 0, whose general solution is of the form
Φ = ar2 + br + c + dr−1. If we put Φ = r, we have ∇2Φ = 2/r and
substitution of these relations into Eqs. (VI B.5) and (VI B.9) leads
to

tij =
δij

r
+

(xi − x 0
i )(xj − x 0

j )
r3

, (VI B.11)

pj = −2η
∂

∂xj

1
r

= 2η
xj − x 0

j

r3
. (VI B.12)

These tij and pj (j = 1, 2, 3) are the three desired solutions for v′ and
p′, respectively.

Now, suppose that V is the domain between the spherical surface
with the center at P 0 and radius ε (→ 0) and a large closed surface S′

enclosing the sphere. We then have

lim
ε→0

∑

i

∫

r=ε

tij

(
η
dvi

dν
− pνi

)
dS = 0 , (VI B.13)

lim
ε→0

∑

i

∫

r=ε

vi

(
η
dtij
dν

− pjνi

)
dS

= lim
ε→0

η

∫

r=ε

[
vj + 3

∑

i

vi

(xi − x 0
i )(xj − x 0

j )
r2

]
dS

r2
= 8πηvj(P 0) .

(VI B.14)

We therefore obtain from Eqs. (VI B.4), (VI B.13), and (VI B.14)

vj(P 0) =
1

8πη

∫

S′

∑

i

[
tij

(
η
dvi

dν
− pνi

)
− vi

(
η
dtij
dν

− pjνi

)]
dS

+
1

8πη

∫

V

∑

i

tijXidV . (VI B.15)

When the surface S′ goes to infinity the surface integral must vanish,
and Eq. (VI B.15) becomes

v(P 0) =
1

8πη

∫
tXdV , (VI B.16)
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where the integration extends over the whole space.
In particular, if the external force is exerted only at the origin, i.e.,

X = Fδ(R) (VI B.17)

with dR = dV , and if the point P 0 is at the distance r from the origin,
we have

v(r) = T(r)F (VI B.18)

with

T =
t

8πη
=

1
8πηr

(
I +

rr
r2

)
. (VI B.19)

This is Oseen tensor. Note that it has been derived in the Stokes
approximation, and not in the Oseen approximation, and that it does
not depend on the original velocity field.

Appendix VI C. The Intrinsic Viscosity and Friction
Coefficient of Rigid Sphere
Macromolecules

The Einstein equation for the viscosity of solutions of rigid spheres and
the Stokes formula for the friction coefficient of rigid spheres are well
known. In this appendix we describe some recently clarified aspects of
these theories.

Consider a single sphere of radius S̄ located at the origin of a co-
ordinate system. The motion of the surrounding fluid with viscosity
coefficient η0 may be determined by the Stokes equation, which may
be rewritten in the form,

∇ · σ = 0 (VI C.1)

with

σ = 2η0f − pI , (VI C.2)
∇ · v = 0 , (VI C.3)

where we have assumed the incompressibility of the fluid and f denotes
the symmetric part of ∇v.

First we consider the viscosity. Suppose that the unperturbed ve-
locity v0 in the absence of the sphere is given by v0 = g0r, where g0

is a constant tensor, i.e., g0 = ∇v0, and let f0 be the symmetric part
of g0. The rotational velocity of the sphere is Ω0r, where Ω0 is the
antisymmetric part of g0. We denote the solutions of Eqs. (VI C.1) to
(VI C.3) in the presence of the sphere by v = v0 + v′ and p = p0 + p′,
where p0 is the constant unperturbed pressure. With the boundary
conditions that the sphere and fluid velocities match at the surface of
the sphere, and that v′ vanishes at infinity, we find for the velocity and
pressure perturbations11

v′ = ∇×∇× (f0 · ∇ψ) , (VI C.4)
p′ = η0f0 : ∇∇(∇2ψ) (VI C.5)
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with
ψ = − 1

6 (5S̄3r + S̄5r−1) , (VI C.6)

that is,

vi
′ =

5
2

(
S̄5

r4
− S̄3

r2

) ∑

j

∑

k

f 0
jk νiνjνk − S̄5

r4

∑

j

f 0
ij νj , (VI C.7)

p′ = −5η0
S̄3

r3

∑

i

∑

j

f 0
ij νiνj , (VI C.8)

where ν is a unit vector in the direction of the radius vector r.
Now we consider a solution of volume V containing N spheres. The

average stress tensor is given by Eq. (36.6),

〈σ〉 = 2η0〈f〉+ V −1

〈∫
(σ − 2η0f)dV

〉
, (VI C.9)

where we have suppressed the pressure terms. The integrand in Eq.
(VI C.9) is nonvanishing only inside the spheres. When the solution
is very dilute the second term on the right-hand side of Eq. (VI C.9),
which we denote by σ′, may be equated to the integral for a single
sphere multiplied by ρ = N/V . Further, at a point inside the sphere
undergoing rigid rotation, the symmetric gradient of velocity vanishes.
We therefore have66

σ′ = ρ

∫

vm

σdr , (VI C.10)

where vm is the volume of the sphere. Equation (VI C.1) leads to the
identity,

σij =
∑

k

∂(σikxj)
∂xk

, (VI C.11)

and the integral in Eq. (VI C.10) is therefore converted to the integral
over the surface of the sphere,

σij
′ = ρ

∫

r=S̄

∑

k

σikνkxjdS . (VI C.12)

Substitution of Eq. (VI C.2) with (VI C.7) and (VI C.8) into Eq.
(VI C.12) leads to

σ′ = 5η0ϕf0 (VI C.13)

with ϕ = vmρ. Since for the solution 〈σ〉 = 2η〈f〉 and f ' f0 at small
ϕ, we obtain from Eqs. (VI C.9) and (VI C.13)

η = η0(1 + 5
2ϕ) , (VI C.14)

and therefore

[η] =
10π

3
NA

S̄3

M
. (VI C.15)
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Next we evaluate the friction constant. We write the velocity field
around a single sphere fixed at the origin as v = u + v′, where u is
a constant unperturbed velocity. With the boundary conditions that
v = 0 at r = S̄, and that v′ = 0 at infinity, the velocity and pressure
perturbations are obtain as11

v′ = ∇×∇× (ψu) , (VI C.16)
p′ = η0u · ∇(∇2ψ) (VI C.17)

with
ψ = 1

4 (3S̄r + S̄3r−1) . (VI C.18)

The stress tensor is obtained from Eq. (VI C.2) with (VI C.16) to
(VI C.18). Then the frictional force F exerted by the sphere on the
fluid is obtained by integrating σν over the surface of the sphere. The
result is

F = −6πη0S̄u , (VI C.19)

and therefore the friction coefficient f is

f = 6πη0S̄ . (VI C.20)

The Stokes formula may be derived more simply by the use of the Oseen
velocity perturbation.8 We approximate v′ by TF, with T the Oseen
tensor, and make the average fluid velocity, 〈u+v′〉 = u+ 〈v′〉, vanish
at the surface of the sphere. Since 〈v′〉 = F/6πη0S̄ at r = S̄, we recover
Eq. (VI C.19).

Bloomfield et al.152 have used the Kirkwood equation (32.41) to
evaluate the friction coefficient of a shell model, i.e., a large number of
small spheres distributed in a spherical shell of radius S̄, each obeying
Stokes’ law. They have shown that in the limit of a continuous sur-
face distribution of small spheres the friction coefficient of the shell is
given by Eq. (VI C.20), and that Eq. (VI C.20) still holds quite ac-
curately even when a large fraction (about 60%) of the small spheres
are removed. This suggests the inadequacy of free-draining models for
certain structures of frictional elements.
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Chapter Seven

Comparison
with Experiment

37. Introduction

In the preceding chapters we have seen that a theoretical description
of the equilibrium and nonequilibrium properties of dilute solutions of
flexible-chain polymers requires (except in the theta state) two basic
molecular parameters, the effective bond length a and the binary clus-
ter integral β for a pair of segments, and that these parameters suffice
as long as we do not inquire into the detailed chemical structure of
the polymer and solvent molecules. In particular, the molecular di-
mensions, second virial coefficients, and intrinsic viscosities of linear
flexible chains may be expressed in terms of only these two parame-
ters. The primary purpose of this chapter is to make a comparison
of the so-called two-parameter theories of these fundamental proper-
ties with experiment, with special attention to their dependence on the
excluded-volume parameter z. As already discussed, a fundamental
difficulty then arises from the fact that the parameter z is not directly
observable. It is therefore impossible to make an explicit comparison
of theory with experiment in the usual sense, and it is necessary to set
forth some criteria for this purpose. For this reason a description of
this subject has been deferred to the present chapter.

We begin by making some comments on the experimental determi-
nation of molecular weights, second virial coefficients, and molecular
dimensions, since observed values of these quantities depend markedly
on the method of treating experimental data. We also discuss the
method of determining unperturbed molecular dimensions from intrin-
sic viscosity data. Finally, we give a simple analysis of the two basic
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molecular parameters estimated for several systems.

38. Determination of Molecular Weights,
Molecular Dimensions,
and Second Virial Coefficients

There are several direct methods of determining molecular weights of
polymers. Of those, the light-scattering method is most important,
since it yields not only molecular weights but also molecular dimen-
sions and second virial coefficients, i.e., the equilibrium properties for
which a comparison of theory with experiment is made in later sections.
Molecular weights and second virial coefficients may also be determined
from osmotic pressure measurements. In this section, we discuss only
these two methods.

The basic equations for osmotic pressure and light-scattering mea-
surements are given by Eqs. (18.3), (26.45), and (27.36);

π

c
= RT

(
1
M

+ A2c + A3c
2 + · · ·

)
, (38.1)

(
Kc

Rθ

)

θ=0

=
1
M

+ 2A2c + 3A3c
2 + · · · , (38.2)

(
Kc

Rθ

)

c=0

=
1
M

+
16π2

3(λ′)2M
〈S2〉 sin2(θ/2) + · · · , (38.3)

where the symbols have the same meaning as before. As seen from these
equations, the determinations of molecular weights, molecular dimen-
sions, and second virial coefficients require extrapolations to infinite
dilution from measurements made at finite but low concentrations.

In the conventional extrapolations, π/c and (Kc/Rθ)θ=0 are plotted
against c to determine molecular weights and second virial coefficients.
These plots exhibit deviations from linearity over the concentration
range in which measurements are made, because of the contributions
of the third and higher virial coefficients, especially for high-molecular-
weight polymers in good solvents. This leads to some ambiguity in
estimates of molecular weights and second virial coefficients. In order
to avoid this difficulty, the so-called square-root plots are used; that is,
(π/c)1/2 and (Kc/Rθ)

1/2
θ=0 are plotted against c.1, 2 These plots are lin-

ear in many cases, and are better than the conventional plots. However,
we must examine the limitations of application of the square-root plots.
In what follows, the discussion is confined to linear flexible chains.

Assuming that the solution is so dilute that the fourth and higher
virial coefficients may be neglected, we rewrite Eqs. (38.1) and (38.2)
as

Mπ/RTc = 1 + v + gv2 , (38.4)

(MKc/Rθ)θ=0 = 1 + 2v + 3gv2 , (38.5)
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TABLE VII.1. UPPER LIMITS OF MOLECULAR WEIGHT IN THE
SQUARE-ROOT PLOTS OF OSMOTIC PRESSURE
AND LIGHT-SCATTERING DATA

OSa LSb

z g vm Mm × 10−5 vm Mm × 10−5

0.115 0.108 0.5 159 0.3 57.2
0.267 0.185 0.5 40.7 0.4 26.0
0.701 0.280 0.5 9.67 0.6 13.9
2.149 0.360 0.5 1.95 1.0 7.82

a Osmotic pressure.
b Light scattering.

where

v = A2Mc , (38.6)
g = A3/A

2
2 M . (38.7)

For convenience, we adopt the values of g evaluated by Stockmayer
and Casassa for the Gaussian smoothed-density model and shown in
Fig. IV.6 as a function of z̄ = z/α 3

S . If we use the modified Flory
equation for αS consistent with this model, we find the correspond-
ing values of z. The values of g as a function of z thus obtained
are given in Table VII.1. For these values of g, (Mπ/RTc)1/2 and
(MKc/Rθ)

1/2
θ=0 are plotted against v in Figs. VII.1 and VII.2, respec-

tively. From Eqs. (38.4) and (38.5), (Mπ/RTc)1/2 and (MKc/Rθ)
1/2
θ=0

are seen to be linear in v for g = 1
4 and 1

3 , respectively. These cases
are also shown in the figures. The plots deviate from linearity except
at small v unless g takes the particular values cited; the plots are ap-
proximately linear for values of v smaller than those indicated by vm

in Table VII.1. In the conventional plots, of course, deviations from
linearity occur at values of v much smaller than vm. Now, we can esti-
mate the upper limits of molecular weight, Mm, such that for M < Mm

the square-root plots are linear over a given range of concentration. If
it is required that the square-root plots be linear for c < 0.5 × 10−2

(g/cc), the corresponding values of Mm may be calculated from

200vm = 4π3/2NA

( 〈S2〉0
M

)3/2

α 3
S ΨM 1/2

m , (38.8)

where we have used Eqs. (38.6) and (21.17). In Table VII.1 are given
the values of Mm thus obtained as a function of z, adopting the modi-
fied Flory equation for αS and the modified Flory–Krigbaum–Orofino
equation (20.44) with 〈S2〉0/M = 7.6 × 10−18 (observed value for
polystyrene).2 Now, Mm may be considered to ba a function of the
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Fig. VII.1. (Mπ/RTc)1/2 plotted against v = A2Mc for the indicated values of

g = A3/A 2
2 M. The plot is linear for g = 0.250.

Fig. VII.2. (MKc/Rθ)
1/2
θ=0 plotted against v = A2Mc for the indicated values of

g = A3/A 2
2 M. The plot is linear for g = 0.333.
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Fig. VII.3. Double logarithmic plots of Mm against z/M1/2. OS: osmotic pres-

sure. LS: light scattering.

ratio z/M1/2, which is independent of molecular weight and propor-
tional to the binary cluster integral, or the solvent power, and which
is to be equated to z/M

1/2
m . That is, Mm represents the upper limit

of molecular weight for a given value of solvent power under the condi-
tion stated above. Double logarithmic plots of Mm against z/M1/2 are
shown in Fig. VII.3, using the values given in Table VII.1. It is seen that
Mm decreases with increasing solvent power, as expected, and that for
poor-solvent systems both osmotic pressure and light-scattering data
may be treated using the square-root plots for almost all molecular
weights experimentally accessible. However, the square-root plots as
well as the conventional plots fail to yield accurate estimates of molec-
ular weights and second virial coefficients. In the case of polystyrene in
toluene, for example, z/M1/2 is about 2.5× 10−3, as shown later, and
the Mm are about 3 × 105 and 8 × 105 for osmotic pressure and light
scattering, respectively. These values, although depending on theories
used for g, αS , and Ψ, suggest the limitations of application of the
square-root plots.

Next we consider the determination of molecular dimensions. The
conventional plot of (Kc/Rθ)c=0 against sin2(θ/2) is not linear in most
cases. Now, the quantity (MKc/Rθ)c=0 is equal to the inverse of the
intramolecular interference factor P1(θ). For unperturbed linear chains,
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Fig. VII.4. The intramolecular (scattering) interference factor P 0
1 (θ) as a func-

tion of u for linear unperturbed chains. (a) The conventional plot. (b) The

square-root plot.

P1(θ) is given by Eq. (27.34),

P 0
1 (θ) =

2
u2

(e−u − 1 + u) (38.9)

with

u =
16π2

(λ′)2
〈S2〉0 sin2(θ/2) . (38.10)

The inverse of the function P 0
1 (θ) is plotted against u in Fig. VII.4(a),

while Fig. VII.4(b) shows [P 0
1 (θ)]−1/2 plotted against u. Clearly, this

indicates that linear extrapolation on the plot of (Kc/Rθ)
1/2
c=0 against

sin2(θ/2) yields a much more reliable estimate of 〈S2〉0 than the con-
ventional plot.2 Smith and Carpenter3 have shown experimentally that
the function P1(θ) given by Eq. (38.9) is approximately valid even for
perturbed chains if we redefine u by Eq. (38.10) with 〈S2〉 in place
of 〈S2〉0. Therefore, the square-root plot for the determination of
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molecular dimensions may be applied to good-solvent systems. As seen
from Fig. VII.4(b), however, this plot also becomes unreliable for high-
molecular-weight polymers in good solvents.

In later sections, light-scattering data, which are to be used for
a test of the two-parameter theory, will be treated by means of the
square-root plot. We must then keep in mind the limitations discussed
above.

39. Determination of Unperturbed Molecular
Dimensions

The unperturbed mean-square radius 〈S2〉0 is one of the two basic
molecular parameters, which represents short-range interferences in the
chain, and from which valuable information concerning the chain struc-
ture is obtained. In addition, in order to estimate the expansion factor,
as defined by the ratio of the mean-square radius to its unperturbed
value, we must determine the latter. Thus, it is very often necessary
to estimate unperturbed molecular dimensions. This can, of course,
be done from light-scattering measurements at theta temperatures. In
this section we describe several indirect or extrapolation methods of
estimating unperturbed molecular dimensions.

First we discuss the methods using intrinsic viscosity-molecular
weight data. The intrinsic viscosity may be expressed in the form,

[η] = [η]θα 3
η , (39.1)

where the intrinsic viscosity [η]θ at the theta temperature, or in the
unperturbed state, is proportional to the square-root of the molecular
weight for flexible chains with ordinary molecular weights and without
hydrodynamic interactions; that is,

[η]θ = KM1/2 , (39.2)

so that
α 3

η = [η]/KM1/2 (39.3)

with
K = Φ0A

3 , (39.4)

A2 = 〈R2〉0/M . (39.5)

Equation (39.2) with (39.4) and (39.5) suggests that measurements of
intrinsic viscosities at theta temperatures for various molecular weights
yield values of K (see Fig. VI.6), from which the parameter A can be
estimated when the value of the viscosity constant Φ0 is given. Var-
ious theoretical values of Φ0 have been obtained, as summarized in
Table VI.3. On the other hand, the best experimental value of Φ0 that
was established from viscosity and light-scattering measurements for
a number of systems seems to be 2.5 × 1023 (cgs). For the present
purpose, we adopt this value for Φ0.
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Now, under non-theta conditions, the radius expansion factor αη for
the viscosity is an increasing function of the excluded-volume parameter
z. For convenience, we rewrite this paramere in the form,

z = (3/2π)3/2(B/A3)M1/2 , (39.6)

where
B = β/M 2

s (39.7)

with Ms the molecular weight of the segment. The factor αη must
become unity as the molecular weight is decreased to zero, since αη = 1
at z = 0. In other words, the excluded-volume effect is negligibly
small for short chains. This fact suggests that values of [η]θ or K may
be obtained by extrapolation to zero molecular weight from intrinsic
viscosity data obtained in an ordinary range of molecular weight in
good or non-theta solvents. There have been proposed several graphical
methods for extrapolation, all based on approximate closed expressions
for the expansion factor.

The foremost of these investigations is a viscosity plot attempted by
Flory, Fox, and Schaefgen.4 If we assume that αη = αS , and substitute
Eq. (39.3) into the original Flory equation for αS , we obtain

[η]2/3/M1/3 = K2/3 + 0.858K2/3Φ0BM/[η] . (FFS) (39.8)

Thus the constant K could be estimated from the ordinate intercept
of a plot of [η]2/3/M1/3 against M/[η], the slope giving the parameter
B. This is the so-called Flory–Fox–Schaefgen plot. Figure VII.5 shows
the FFS plots for polystyrene in various solvents, [η] being expressed in
deciliters per gram. The filled circles represent the data in benzene at
30◦C,5 the squares represent the data in toluene at 25◦C,6 the semifilled
circles represent the data in methyl ethyl ketone at 22◦C,7 and the
open circles represent the data in cyclohexane at Θ = 34.5◦C.5 The
remarkable feature of the FFS plot is that for very good solvent systems
linear extrapolation from large values of M yields a negative intercept.
This demonstrates the inadequacy of the Flory equation for αS (= αR)
or of the assumption αη = αS . If we assume that values of K or
unperturbed dimensions are insensitive to the nature of the solvent,
extrapolations in the region of small M must be made along the broken
curves in the figure. Such extrapolations are difficult, and the FFS plot
was discarded by Flory himself.

Kurata and Stockmayer8 attributed the defects of the FFS plot
to the inadequacy of the Flory equation which is of the fifth-power
type for α. They proposed a new viscosity plot based on the Kurata–
Stockmayer–Roig equation, which is of the third-power type for αR.
Kurata and Stockmayer have assumed that αη has the same functional
form as the KSR equation for αR, and readjusted the numerical coef-
ficient involved in it so that at small z the assumed equation for αη

agrees with an empirical equation

α 3
η = α

5/2
R , (39.9)



SEC. 39. Determination of Unperturbed Molecular Dimensions 373

Fig. VII.5. The Flory–Fox–Schaefgen plots for polystyrene in benzene at 30 ◦C
(filled circles),5 toluene at 25 ◦C (squares),6 methyl ethyl ketone at 22 ◦C (semi-

filled circles),7 and cyclohexane at Θ = 34.5 ◦C (open circles).5

which is an analog of Eq. (35.15). Substituting Eq. (39.3), we then find

[η]2/3/M1/3 = K2/3 + 0.363Φ0Bg(αη)M2/3/[η]1/3 (KS) (39.10)

with
g(αη) = 8α 3

η /(3α 2
η + 1)3/2 . (39.11)

In the KS plot we first plot [η]2/3/M1/3 against M2/3/[η]1/3 to find
a first-order approximate value of K, and then replot [η]2/3/M1/3

against g(αη)M2/3/[η]1/3, where g(αη) is calculated from Eqs. (39.3)
and (39.11) with the first-order value of K. Examples of this plot are
shown in Fig. VII.6, the data being the same as those in Fig. VII.5. It
is observed that the KS plot leads to a much more reliable estimate of
K than the FFS plot. Kurata and Stockmayer8 have analyzed a wide
variety of polymer–solvent systems using the KS plot, and shown that
the plots are always linear at least for vinyl polymers. However, some
of the viscosity data accumulated to date deviate from linearity, espe-
cially for high molecular weights in good solvents, e.g., for polystyrene
in benzene and toluene, as shown in Fig. VII.6.

As already mentioned, the Kurata–Stockmayer–Roig equation is nu-
merically very close to the Fixman equation of the third-power type for
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Fig. VII.6. The Kurata–Stockmayer plots for polystyrene in various solvents.

The symbols have the same significance as those in Fig. VII.5.

αR. Based on the latter, Stockmayer and Fixman9 have proposed a
simpler equation,

[η]/M1/2 = K + 0.51Φ0BM1/2 . (SF) (39.12)

Equation (39.12) is obtained by substitution of Eq. (39.3) into Eq. (35.13)
with omission of higher terms. According to Eq. (39.12), we may simply
plot [η]/M1/2 against M1/2 which is clearly less laborious than making
the KS plot. Figure VII.7 shows the SF plots for the same systems as
before. The SF plot is also seen to yield accurate estimates of K. For
good-solvent systems, however, the plots deviate from linearity in the
region of large M , as in the case of the KS plot.

Thus, both KS and SF plots lead to overestimates of K when for
good-solvent systems only high-molecular-weight data are available. In
order to avoid the possible errors in extrapolation under these cir-
cumstances, various devices have been proposed.5, 10−14 For example,
Inagaki5 has proposed the equation,

[η]4/5/M2/5 = 0.786K4/5+0.454K2/15Φ 2/3
0 B2/3M1/3 . (IP) (39.13)

This equation is obtained by substitution of Eqs. (39.3) and (39.9)
into the asymptote of the Ptitsyn equation for αR. In this case we
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Fig. VII.7. The Stockmayer–Fixman plots for polystyrene in various solvents.

The symbols have the same significance as those in Fig. VII.5.

plot [η]4/5/M2/5 against M1/3. In Fig. VII.8 are shown the IP plots
for the same systems as before. It is important to note that linear
extrapolation to zero molecular weight from large values of M gives the
intercept 0.786K4/5, and not K4/5, and that the IP plot applies only
to high-molecular-weight polymers in good solvents. In Fig. VII.8, the
broken curves indicate extrapolations to [η]4/5/M2/5 = K4/5 following
actual experimental points in the region of small M if they are available.

In Table VII.2 are summarized the values of the parameters A and
B estimated from the straight lines in Figs. VII.6 to VII.8. The KS, SF,
and IP plots are seen to give the same values of A but different values
of B for a given system. Furthermore, we see that the unperturbed

TABLE VII.2. VALUES OF A AND B ESTIMATED FROM VISCOS-
ITY PLOTS FOR POLYSTYRENE

B × 1027 (cm3)

METHYL ETHYL

PLOTS A× 108(cm) BENZENE (30◦C) TOLUENE(25◦C) KETONE(22◦C)

KS 0.698 1.41 1.35 0.248

SF 0.698 1.48 1.43 0.251

IP 0.698 2.55 2.11 0.387
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Fig. VII.8. The Inagaki–Ptitsyn plots for polystyrene in various solvents. The

symbols have the same significance as those in Fig. VII.5.

dimension is, in fact, almost independent of solvent for the systems
under consideration. We may therefore use properly any of these vis-
cosity plots to estimate unperturbed dimensions. However, it is not
satisfactory to apply these procedures to the estimation of the param-
eter B. Clearly, estimates of B depend appreciably on the functional
form of α to be used, and also on the assumed relation between αη and
α. Therefore, a more rigorous experimental test of the theories of αS

and αη is needed before we can establish a basic equation for viscosity
plots to be used for the estimation of B.

Next we discuss extrapolation methods using data for second virial
coefficients.Krigbaum15 has proposed a semiempirical equation relating
the second virial coefficient to the intrinsic viscosity,

[η] = [η]θ + 5.0× 10−3A2M , (39.14)

[η] being expressed in deciliters per gram. Values of [η]θ and hence K
can be calculated from this equation using experimental values of M ,
[η], and A2. If we neglect the dependence of A2 on M , Eq. (39.14) is
seen to be equivalent to Eq. (39.12) for the SF plot. Kurata et al.16

have derived an equation for A2-plots from the asymptote of Eq. (21.17)
for A2 with K function h0(z̄) given by Eq. (20.77) (with z̄ in place of
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Fig. VII.9. The Kurata plots of the second virial coefficient for polystyrene in

toluene (squares)6 and methyl ethyl ketone (semifilled circles).7

z) and the third-power type equation for α; that is,

A2M
1/2 = 1.65× 1023A3 + 0.968× 1023BM1/2 . (39.15)

Thus, this equation corresponds to Eq. (39.12) for the SF plot, which is
based on the third-power type equation for α. According to Eq. (39.15),
values of A and B can be obtained from the intercept and slope of a plot
of A2M

1/2 against M1/2. This is called the Kurata plot of the second
virial coefficient. Figure VII.9 shows the K plots for polystyrene in
toluene6 and methyl ethyl ketone.7 Clearly, A2M

1/2 must become zero
as M is decreased to zero, and the broken curves in the figure indicate
this fact. In Table VII.3 are given the values of A and B estimated from
the straight lines in Fig. VII.9. In the case of toluene the value of A

TABLE VII.3. VALUES OF A AND B ESTIMATED FROM THE
KURATA PLOTS OF A2 FOR POLYSTYRENE

SOLVENT A× 108 (cm) B × 1027 (cm3)

Toluene (25◦C) 0.648 2.56

Methyl ethyl ketone (22◦C) 0.533 0.667
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Fig. VII.10. The Berry plot of the second virial coefficient for polystyrene in

methyl ethyl ketone.7

is in fair agreement with those obtained from the viscosity plots, while
in the case of methyl ethyl ketone the agreement is not good (compare
Tables VII.2 and VII.3). This is not surprising, since Eq. (39.15) is
invalid for poor-solvent systems. Furthermore, it is seen that the values
of B from the K plots are not in agreement with those from the SF plots.
This means that the K theory of the second virial coefficient does not
correlate well with the third-power type equation for the expansion
factor. This point will be discussed again in the next section. In any
case, Eq. (39.15) may not be used to estimate the parameter B.

Berry2 has recently found that A2M
1/2 is proportional to α 2

S − 1,
where the proportionality constant must be of the form, const.(〈S2〉0/
M)3/2, from dimensional considerations. With the numerical constant
determined experimentally, we may write

1.42× 10−24A2M
1/2 = −A3 + 6A〈S2〉/M . (39.16)

Thus the Berry plot consists of plotting A2M
1/2 against 〈S2〉/M .

Figure VII.10 shows the B plot for polystyrene in methyl ethyl ke-
tone. The parameter A may be estimated from the abscissa intercept
(= A2/6). The value of A so determined for this system is 0.672×10−8,
which compares well with the value from the viscosity plots given in
Table VII.2. The Berry plot seems to yield a more reliable estimate of
A than Eq. (39.14) or (39.15).
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In the above discussion, we have assumed, from the outset, that
the expansion factors and the dimensionless ratio A2M

2/〈S2〉 3/2
0 are

functions of only the parameter z, following the theoretical conclusions
reached in Chapters III and IV. However, this is to be examined exper-
imentally.

40. Correlations Between the Expansion Factor
and the Second Virial Coefficient

As already mentioned in Section 17c, Kurata8 claimed that an equa-
tion of the third-power type for αR and αS is superior to that of the
fifth-power type on the grounds that the KS or SF plots of intrinsic
viscosities gave reliable estimates of unperturbed dimensions, and also
that the available Monte Carlo data of Wall and Erpenbeck17 indicated
a linear relationship between α 3

R (or α 3
S ) and n1/2. Further, Kurata16

developed a theory of the second virial coefficient corresponding to
the Fixman-type theory of the expansion factor, as described in Sec-
tion 20b. This was the basis of Eq. (39.15) for the K plot. As seen
in the last section, however, the KS of SF plots are not always linear,
and moreover, there is no agreement between values of B estimated
from the SF plots of intrinsic viscosities and from the K plots of second
virial coefficients. These facts led to the re-reexamination of the the-
ory of the excluded-volume effect. Indeed, most of the work published
since the mid-1960s, especially the theories of Flory and Fisk,18 Reiss,19

Fujita,20, 21 Alexandrowicz,22 and Yamakawa,23, 24 were intended to
answer the question of which of the third-power type and fifth-power
type equations is better. These investigations have already been de-
scribed in Chapter III. Since that time, great efforts have also been
made especially by Berry2, 14 to achieve a direct experimental test of
the theory, instead of the indirect test provided by viscosity plots.

Now, the binary cluster integral β, and hence the parameter z,
cannot be estimated directly from experiment. However, Berry has
attempted to estimate β, or B, assuming the temperature dependence

B = B0(1−Θ/T ) , (40.1)

as suggested originally by Flory,25 where B0 is a constant independent
of temperature, and can be determined from the temperature depen-
dence of the second virial coefficient near the theta temperature. Thus
Berry has determined values of z for polystyrene in decalin and toluene,
and plotted α 2

S , and also α 3
η , against z. We believe that it is the best

way to use, if possible, these plots as a criterion of validity for a the-
ory of the excluded-volume effect. To our knowledge, there has not yet
been given a theoretical or experimental justification of the assumption
(40.1). Therefore, we wish to examine the agreement between theory
and experiment without the use of any ad hoc assumption. In this sec-
tion, our discussion is confined to the equilibrium properties, αS and
A2.
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Yamakawa26 and Fujita27 have proposed a procedure for examining
the agreement between theory and experiment,which is based on the
correlation between the expansion factor and the second virial coeffi-
cient. What have been adopted as criteria of validity of a theory are the
following: (1) consistency in the values of z determined from observed
values of αS and from observed values of the function Ψ defined by

Ψ = A2M
2/4π3/2NA〈S2〉3/2 , (40.2)

using the theoretical expressions for αS and Ψ, and (2) linearity be-
tween M1/2 and z determined from observed values of αS using its
theoretical expression. The first criterion arises from the fact that the
binary cluster integral for segments in the same chain must be the
same as that for two segments belonging to different chains. Clearly
the second criterion is required by the definition of z. These two criteria
involve no assumptions.

Although various approximate theories of αS and Ψ have been de-
veloped, as seen in Chapters III and IV, there are very few expressions
for Ψ which can be chosen for a given theory of αS if we insist on the
self-consistency of intramolecular and intermolecular theories of inter-
action. Strictly, there are only three such self-consistent combinations:
(1) the original Flory–Krigbaum–Orofino theory of Ψ and the original
Flory theory of αS , (2) the modified Flory–Krigbaum–Orofino theory of
Ψ and the modified Flory theory of αS , and (3) the Kurata–Yamakawa
theory of Ψ and the Yamakawa–Tanaka theory of αS . That is,
Combination (1):

Ψ = [ln(1 + 2.30z̄)]/2.30 , (FKO,o) (40.3)
α 5

S − α 3
S = 2.60z , (F,o) (40.4)

Combination (2):

Ψ = [ln(1 + 5.73z̄)]/5.73 , (FKO,m) (40.5)
α 5

S − α 3
S = 1.276z , (F,m) (40.6)

Combination (3):

Ψ = 0.547[1− (1 + 3.903z̄)−0.4683] , (KY) (40.7)
α 2

S = 0.541 + 0.459(1 + 6.04z)0.46 , (YT) (40.8)

where z̄ is defined by Eq. (21.16),

z̄ = z/α 3
S . (40.9)

Now, Ψ may be considered to be a function of αS when z is elimi-
nated from Ψ and αS . Values of Ψ may be calculated from Eq. (40.2)
with values of 〈M〉w, A2, and 〈S2〉 obtained from light-scattering mea-
surements, while αS may be calculated from α 2

S = 〈S2〉/〈S2〉0 with
values of 〈S2〉0 at the theta temperature; that is, observed values of Ψ
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Fig. VII.11. Plots of Ψ against α 3
S for fractions of polystyrene;2 f, in toluene

at 12 ◦C; k, in decalin at various temperatures. Curves (1) to (3) represent

the theoretical values calculated from combinations (1) to (3) of equations for

Ψ and αS, respectively.

and αS are both available. Therefore, we first test each of the above
three combinations with respect to the functional dependence of Ψ on
αS , following Fujita.27 This is equivalent to examining the fulfillment of
criterion (1), and can be done without any assumption. Figures VII.11
and VII.12 show plots of Ψ against α 3

S for fractions of polystyrene and
polychloroprene in various solvents, respectively, the data being due to
Berry2 (polystyrene) and Norisuye et al.27 (polychloroprene). In each
case, the data points are seen to form a single composite curve. This
implies that the two-parameter scheme is good enough to describe the
intramolecular and intermolecular interactions. Curves (1) to (3) in
the figures represent the values calculated from combinations (1) to (3)
of intramolecular and intermolecular theories, respectively. It is seen
that curves (2) and (3) fit the data well; combination (3) is particularly
satisfactory.

As seen from Fig. IV.5, the Kurata theory and the Fixman–Casassa–
Markovitz theory predict that Ψ does not exceed 0.2. This prediction
is not in agreement with experiment, as seen from Figs. VII.11 and
VII.12. This is one of the reasons why there is no agreement between
values of B estimated from the SF plots of intrinsic viscosities and from
the K plots of second virial coefficients.
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Fig. VII.12. Plots of Ψ against α 3
S for fractions of polychloroprene;27 c, in

carbon tetrachloride at 25 ◦C; G, in n-butyl acetate at 25 ◦C; l, in trans-

decalin at various temperatures. The curves have the same significance as those

in Fig. VII.11.

Next we examine the fulfillment of criterion (1) only for combination
(3). We first determine values of z̄ from observed values of Ψ using
Eq. (40.7). From these values of z̄ and the corresponding observed
values of αS , we can then estimate values of z by the use of Eq. (40.9).
Thus we can plot values of αS (usually α 3

S ) against the corresponding
values of z so determined. Figure VII.13 shows such plots for Berry’s
polystyrene in decalin and toluene. If combination (3) satisfies criterion
(1), curve YT, which represent the theoretical values calculated from
Eq. (40.8), must fit the data points. This seems to be true, though the
data are scattered. In Fig. VII.13 are also shown the values predicted by
other theories: the original Flory theory (F,o), Eq. (40.4), the modified
Flory theory (F,m), Eq. (40.6), the Fixman theory (F), the Ptitsyn
theory (P), the Flory–Fisk theory (FF), the Fixman–Stidham theory
(FS), and the Fujita–Norisuye theory (FN). The F,P, and FF theories
read

α 3
S = 1 + 1.914z , (F) (40.10)

5.12α 2
S = 4.12 + (1 + 9.79z)2/3 , (P) (40.11)

α 5
S − α 3

S = 0.648z[1 + 0.969(1 + 10z/α 3
S )−2/3] . (FF) (40.12)
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Fig. VII.13. Plots of α 3
S against z for fractions of polystyrene in toluene and

decalin.2 The values of z were determined from observed values of Ψ by the

use of Eq. (40.7). The curves represent the values predicted by the indicated

theories.

Fig. VII.14. Test of the linearity between z and 〈M〉 1/2
w with data for polystyrene

in toluene at 12◦C.2 The values of z were calculated from various theories of αS;

k, from the FF theory; u, from the FS theory; l, from the F,m theory; b,

from the YT theory; c, from the FN theory; a, from the F,o theory; q, from

the P theory; r, from the F theory.
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Fig. VII.15. Test of the linearity between z and 〈M〉 1/2
w with data for polychloro-

prene in carbon tetrachloride at 25 ◦C.27 The symbols have the same significance

as those in Fig. VII.14.

The FS and FN theory results have been obtained only numerically. We
note that Berry’s assumption of (40.1) leads to estimates of z greater
than ours; he has concluded that the FF theory is in good agreement
with experiment.

As already noted in Chapter III, the above theories of αS other than
the F,o theory give the exact first-order perturbation theory at small
z. Indeed, it is seen that the F,o theory does not predict the correct
initial increase in α 3

S . The corresponding defect of the FKO,o function
Ψ has already been observed in Figs. VII.11 and VII.12. The modified
Flory theory was designed to remove this defect, and was the first step
to improvements of the theory. We note that this earliest improvement
is fairly satisfactory; there have been many subsequent improvements,
as seen from Figs. VII.11 and VII.12.

We now turn to the examination of criterion (2). Figures. VII.14
and VII.15 show plots of z against 〈M〉 1/2

w for polystyrene in toluene2

and polychloroprene in carbon tetrachloride,27 respectively, where the
values of z have been estimated from observed values of αS using the
theories indicated. The data points obtained from the F,o, F,m, YT,
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Fig. VII.16. Plots of B against 1 −Θ/T for fractions of polystyrene in decalin.2

The values of B were calculated from values of αS by the use of Eq. (40.8)

with (39.6). The full curve is an empirical fit to the data. The broken line

represents the temperature dependence of B determined by Berry from second

virial coefficients.

FF, FS, and FN theories are seen to fall close to respective straight
lines passing through the origin, indicating that these theories satisfy
criterion (2). On the other hand, the F and P equations are seen to
lead to nonlinear relations between z and M1/2, indicating an inad-
equacy of equations of the third-power type. However, we note that
for intermediate or poor solvent systems all the theories cited above
lead to linear relations between z and M1/2, and criterion (2) is not
sufficiently sensitive to be a test of validity of a theory.

From the above analysis, we may conclude that combinations (2)
and (3) satisfy both criteria (1) and (2); in particular, combination (3)
is satisfactory even for good solvent systems. Thus, in what follows, we
adopt the YT equation (40.8) to determine values of z from observed
values of αS .

Finally, we examine the temperature dependence of the parameter
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B. Figure VII.16 shows plots of B against 1−Θ/T for polystyrene in
decalin,2 where values of B have been calculated from values of αS using
Eq. (40.8) with (39.6) and 1018〈S2〉0/M = 7.6 (for the homogeneous
polymer). The full curve is an empirical fit to the data. The broken
straight line is given by

B = 9.04× 10−27(1−Θ/T ) , (40.13)

which has been determined by Berry2 from the temperature dependence
of the second virial coefficient near the theta temperature. This straight
line is seen to represent closely the initial tangent to the curve in the
figure. This also implies that values of B determined from Eq. (40.8)
are consistent with those from second virial coefficients. Further, it is
seen that the curve in the figure is concave downward, and therefore
that Berry’s assumption of (40.1) leads to overestimates of B, and hence
z, except near the theta temperature. The validity of this assumption
is confined to a very narrow range near the theta temperature.

41. Correlations Between the Expansion Factor
and the Intrinsic Viscosity

Berry14 has found that for polystyrene the viscosity-radius expansion
factor αη is not a function of only the parameter z, again making use of
the values of z determined on the basis of the assumption (40.1). This
result has been interpreted in terms of the draining effect. As already
mentioned in Section 34, however, this effect has never been observed
for flexible chains, at least at theta temperatures. Then, there arises
the question of whether the draining effect exists for z > 0. We begin
by considering this problem.

Figure VII.17 shows plots of A2〈M〉w/[η] against α 2
S −1 for fractions

of polychloroprene27, 28 and poly-p-methylstyrene29 in various solvents,
[η] being expressed in deciliters per gram. It is seen that the plots may
be well represented by a single-composite curve. This suggests that the
two-parameter theory does work well for the intrinsic viscosity as well
as the equilibrium properties, and therefore that there is no draining
effect irrespective of the value of z. We note that the behavior of
the above dimensionless ratio as a function of αS has been frequently
examined for various systems, and earlier data have been found to
scatter remarkably when plotted against α 2

η − 1, or α 2
S − 1.8, 30 This

is probably due to the inaccuracy of the estimates of the second virial
coefficient obtained from the conventional plots; the light-scattering
data used in Fig. VII.17 were obtained from the square-root plots, as
described in Section 38.

Now, whether the draining effect exists or does not for z > 0 may be
examined more explicitly as follows. If αη is a function of only αS , then
αη must be a function of only z since αS has been proved to be a func-
tion of only z. In order to demonstrate this and also make a compari-
son of theory with experiment, Fujita et al.28, 31 have proposed to plot
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Fig. VII.17. Plots of A2〈M〉w/[η] against α 2
S − 1 for fractions of

polychloroprene27, 28 in carbon tetrachloride at 25 ◦C (c), n-butyl acetate at

25 ◦C (G), and trans-decalin at various temperatures (l), and for fractions

of poly-p-methylstyrene29 in toluene at 30 ◦C (b), dichloroethane at 30 ◦C
(m), cyclohexane at 30 ◦C (H), methyl ethyl ketone at 30 ◦C (I), and diethyl

succinate at various temperatures (a). The curve is an empirical fit to the data.

log α 3
η against log α 3

S . Such plots can be made without any assump-
tion, and are shown in Fig. VII.18, where we have used almost all the
published data for polystyrene,14, 32 polymethylmethacrylate,33 poly-
α-methylstyrene,34 polychloroprene,27, 28 and poly-p-methylstyrene29

in various solvents. It is seen that the plots form a single-composite
curve, the full curve being an empirical fit to the data. Thus we have
support for the earlier conclusion that there is no draining effect for flex-
ible chains irrespective of the value of z, as advocated first by Flory4

and assumed in Section 35. We believe that Berry’s conclusion conflicts
with ours because of his incorrect estimates of z.

Our next problem is then to test the (two-parameter) theory of
the intrinsic viscosity in the non-free-draining limit. In Fig. VII.18 are
shown the values calculated from three theories: the Flory–Fox theory
(FF), αη = αS , the Kurata–Yamakawa theory (KY), Eq. (35.15),

α 3
η = α 2.43

S , (41.1)
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Fig. VII.18. Double logarithmic plots of α 3
η against α 3

S for polystyrene in

toluene (f), decalin (k), and cyclohexane(u),2, 14, 32 polymethylmethacry-

late in n-butylchloride(q),33 poly-α-methylstyrene in cyclohexane(r),34 and

polychloroprene27, 28 and poly-p-methylstyrene29 in various solvents. For the

last two polymers, the same symbols as those in Fig. VII.17 are used. The full

curve is an empirical fit to the data. Full line FF : the Flory–Fox theory. Broken

line KY : the Kurata–Yamakawa theory. Chain curve FS : the Fixman–Stidham

theory.

or
log α 3

η = 0.81 log α 3
S , (41.2)

and the Fixman–Stidham theory (FS), Eq. (35.67) with (35.74). It
is seen that most of the data points lie below the straight line FF.
Such behavior of αη was found first by Krigbaum and Carpenter32 for
polystyrene in cyclohexane near the theta temperature. Indeed this
observation stimulated further investigations of the intrinsic viscosity
following the Flory–Fox theory, as described in Section 35. However, it
is important to observe that both of the improved theories of Kurata
and Yamakawa, and Fixman and Stidham, still overestimate αη near
the theta temperature. In other words, the coefficient C1 in the ex-
pansion, α 3

η = 1 + C1z + · · ·, is definitely smaller than 1.55, the value
predicted by Kurata and Yamakawa. Further, it is seen that there is
not linearity between log α 3

η and log α 3
S , as predicted by Kurata and
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Fig. VII.19. Plots of Φ/Φ0 against α 3
S for various polymer-solvent systems.

The symbols have the same significance as those in Fig. VII.18. Curve KY : the

Kurata–Yamakawa theory. Curve FS : the Fixman–Stidham theory.

Yamakawa.
This conclusion can be made clearer if we examine the behavior of

the viscosity constant Φ, or the ratio

Φ/Φ0 = α 3
η /α 3

S . (41.3)

Figure VII.19 shows plots of Φ/Φ0 against α 3
S , the data being the

same as those in Fig. VII.18. The horizontal line, and curves KY and
FS represent the values predicted by the Flory–Fox theory, the Kurata–
Yamakawa theory,

Φ/Φ0 = α −0.57
S , (41.4)

and the Fixman–Stidham theory, respectively. The observed Φ/Φ0 is
seen to decrease first more rapidly with increasing αS than do any of
the theoretical values, and then increase gradually. Although the data
scatter appreciably for large αS , it is reasonable to consider Φ/Φ0 to
approach unity asymptotically. Thus there is no satisfactory theory of
αη or Φ.

Now we examine the behavior of α 3
η as a-function of z. As sug-

gested in the last section, values of z may be determined from val-
ues of αS using Eq. (40.8). In Fig. VII.20 are plotted values of α 3

η

against the values of z thus determined using the same data as those
in Figs. VII.18 and VII.19. The full curve is an empirical fit to the
data, which has only slight curvature. As pointed out first by Fujita et
al.,28 this characteristic of the plot accounts for why there is a linearity
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Fig. VII.20. Plots of α 3
η against z for various polymer-solvent systems. The

symbols have the same significance as those in Fig. VII.18. The values of z

were calculated from values of αS by the use of Eq. (40.8). The full curve is

an empirical fit to the data. Broken line (1) and (2) are the best fits over the

ranges 0 < α 3
η < 1.6 and 0 < α 3

η < 2.5, and are given by Eqs. (41.5) and

(41.6), respectively.

between [η]/M1/2 and M1/2 over a relatively wide range of M as seen
in Fig. VII.7, and thus the Stockmayer-Fixman plot gives a reason-
able estimate of K when extrapolated linearly to M = 0. Note that
the plot of α 3

η against z is essentially equivalent to the SF plot since
α 3

η = [η]/KM1/2 and z ∝ M1/2. As already mentioned, Kurata and
Stockmayer concluded that an equation of the third-power type for αS

is better than an equation of the fifth-power type because of the supe-
riority of the Stockmayer–Fixman or Kurata–Stockmayer plot to the
Flory–Fox–Schaefgen plot. However, this conclusion requires modifica-
tion in the light of the above analysis. It is now clear that the adequacy
of the Stockmayer–Fixman equation for αη is not a consequence of the
third-power type equation for αS , but arises from the resultant effect
of the F,m or YT equation for αS and the characteristic dependence of
Φ/Φ0 on αS . The curvature of the plot of α 3

S against z is diminished
by the opposite curvature of the curve of Φ/Φ0, leading to the weak
curvature of α 3

η . Since the F,m equation for αS has been found to be



SEC. 41. Correlations Between the Expansion Factor and the Intrinsic Viscosity 391

fairly satisfactory, the defect of the FFS plot must be attributed to the
assumption αS = αη. We cannot support Flory’s claim35 that none
of the viscosity plots is valid because of the breakdown of the theory
of αS in the range of low molecular weights where short chain effects
come out.

Straight lines (1) and (2) in Fig. VII.20, which are represented by

α 3
η = 1 + 1.05z for 0 < α 3

η < 1.6 , (41.5)

α 3
η = 1.05 + 0.87z for 0 < α 3

η < 2.5 , (41.6)

respectively, are the best fits to the data over the indicated ranges.
The coefficient 1.05 in Eq. (41.5) is not necessarily equal to the first
coefficient C1 in the exact perturbation series, α 3

η = 1+C1z−· · ·, since
the perturbation theory is valid only for |z| < 0.15. Rather C1 may
be regarded as greater than 1.05. On the other hand, we have already
seen in Fig. VII.18 that C1 is smaller than 1.55. Thus the exact C1,
which is unknown theoretically, must be

1.05 < C1 < 1.55 . (41.7)

To derive such a value of C1 is a future theoretical problem.∗

The new empirical equation (41.5) and (41.6) for αη lead to

[η]/M1/2 = K + 0.346Φ0BM1/2 for 0 < α 3
η < 1.6 , (41.8)

[η]/M1/2 = 1.05K + 0.287Φ0BM1/2 for 0 < α 3
η < 2.5 . (41.9)

These equations yield estimates of B different from those derived from
the Stockmayer–Fixman equation (39.12). Equations (41.8) and (41.9)
are called the modified Stockmayer–Fixman equations. For polystyrene
in decalin near the theta temperature, Inagaki et al.36 have obtained
the value 6.0 × 10−27 for the constant B0 in Eq. (40.1) from intrin-
sic viscosity data using Eq. (39.12) or the equation, α 3

η = 1 + 1.55z.
This value for B0 is smaller than Berry’s value 9.04 × 10−27, as given
in Eq. (40.13), estimated from second virial coefficients. Clearly this
disagreement arises from the inaccuracy of the numerical coefficient in
Eq. (39.12). If we use Eq. (41.5) or (41.8) instead of Eq. (39.12), Ina-
gaki’s value for B0 is revised to 8.85 × 10−27 and the agreement with
Berry’s value becomes better. Thus the modified SF equations will,
in general, lead to more nearly correct estimates of B than does the
original SF equation, the latter giving underestimates of B.

Finally, we estimate B for several systems from the modified SF
equations, and compare the results with those from expansion fac-
tors αS . Figure VII.21 shows the SF plots for poly-p-methylstyrene
in toluene at 30◦C (filled circles), methyl ethyl ketone at 30◦C (center-
filled circles), and diethyl succinate at the theta temperature 16.4◦C

∗Recently, H. Yamakawa and G. Tanaka [J.Chem.Phys., to be published] have
obtained C1 = 1.06 theoretically, introducing exactly the excluded-volume effect
into the Zimm–Hearst theory.
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Fig. VII.21. The Stockmayer–Fixman plots for poly-p-methylstyrene: b, in

toluene at 30 ◦C; I, in methyl ethyl ketone at 30 ◦C; a, in diethyl succinate at

16.4 ◦C (Θ).29 The broken lines are the initial tangents. The two thin horizontal

lines indicate the upper bounds given in Eqs. (41.5) and (41.6).

(open circles),29 [η] being expressed in deciliters per gram. Extrapola-
tions to M = 0 are carried out so as to yield the same ordinate intercept
103K = 0.7. The two thin horizontal lines in the figure indicate the
upper bounds below which Eqs. (41.8) and (41.9) are applicable, cor-
responding to [η]/KM1/2 = 1.6 and 2.5, respectively. Linear extrap-
olations may be carried out over these regions for toluene and methyl
ethyl ketone solutions, and the tangents to the linear parts are indi-
cated by the broken lines. Values of B may then be determined from
the slopes of these broken lines using Eq. (41.8) for methyl ethyl ketone
solutions, and Eq. (41.9) for toluene solutions, where we simply replace
the coefficient 1.05 in Eq. (41.9) by unity. Similar analyses have been
made using the data for polystyrene,14 poly-p-chlorostyrene,37 poly-p-
bromostyrene,37 and polychloroprene.28 The results are summarized in
Table VII.4. In the last column of the table are given the correspond-
ing values of B estimated from the slopes of the plots of z against
〈M〉 1/2

w with the values of A or 〈S2〉0/M (for the homogeneous poly-
mers), where values of z have been calculated from values of αS using
Eq. (40.8). It is seen that there is good agreement between the values
of B estimated from [η] and αS .

As easily recognized from the preceding discussion, one of the im-
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TABLE VII.4. VALUES OF B ESTIMATED FROM INTRINSIC VIS-
COSITIES AND STATISTICAL RADIUS EXPAN-
SION FACTORS

B × 1027(cm3)

POLYMER SOLVENT FROM [η] FROM αS

Polystyrene2, 14 Toluene (12◦C) 2.11 2.19

Poly-p-methylstyrene29 Toluene (30◦C) 2.73 2.90

Poly-p-methylstyrene29 Methyl ethyl ketone (30◦C) 0.74 0.89

Poly-p-chlorostyrene37 Toluene (30◦C) 0.51 0.52

Poly-p-bromostyrene37 Toluene (30◦C) 0.058 0.055

Polychloroprene27, 28 Carbon tetrachloride (25◦C) 3.22 2.87

Polychloroprene27, 28 n-Butyl acetate (25◦C) 1.20 1.23

portant theoretical problems which remains is to derive the relation
between α 3

η and z, as displayed in Fig. VII.20. This will complete a
consistent system of two-parameter theories along with the theory of
the equilibrium properties of dilute polymer solutions.

42. The Two Molecular Parameters

In the previous sections, we have seen that the two-parameter scheme
is good enough to describe the properties of dilute solutions of long
flexible chain polymers, and we established a procedure for estimating
the two parameters A and B, as defined by

na2 = 〈R2〉0 = MA2 , (42.1)

n2β = M2B . (42.2)

The estimation of A and B is independent of the choice of the number
of segments, n, in the model chain, and their values can be determined
uniquely. The reason is obvious: all the two-parameter theory results
may be written in terms of the above two-parameter combinations na2

and n2β, and the parameters n and a, and also n and β, never appear
separately in the final equations. In other words, the final equations
are invariant to the choice of n, and the value of n is, to some extent,
arbitrary. Further analysis of the parameter A, or the ratio 〈R2〉0/M ,
thus estimated is free from this arbitrariness, and the conformation
factor σ, as defined by Eq. (9.39), can readily be calculated from

σ = A/(〈R2〉0,f/M)1/2 , (42.3)

where 〈R2〉0,f is the mean-square end-to-end distance of the chain in
the freely rotating state. As described in Section 9a, the theoretical
investigation of σ has recently progressed at a rapid rate. On the other
hand, the molecular parameter related to B is the binary cluster inte-
gral β for a pair of segments, and its analysis requires a definite choice
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of n, or the assumption of the size of a segment, as seen from Eq. (42.2).
Very few investigations of β have been published. In this final section
we give a brief summary of the investigations of the parameters σ and
β.

42a. The Conformation Factor

The unperturbed mean-square end-to-end distance is determined by
its value in the freely rotating state and the conformation factor. The
former is a geometrical quantity and can easily be estimated by the use
of appropriate spectroscopic data for bond lengths and bond angles,
while the latter is a purely statistical–mechanical quantity and yields
useful information about chain conformation. However, it is not always
convenient to separate the factor σ and discuss it alone; recall the case
of stiff chains. In 1963, Kurata and Stockmayer8 published a tabu-
lation of the values of the conformation factor σ for various types of
polymers which were obtained from extensive viscosity data by means
of the Kurata–Stockmayer plot. A large part of their qualitative in-
terpretation of the results remains correct. Subsequently, theoretical
values of σ (strictly 〈R2〉0) for various polymers have been published,
especially by Flory and collaborators.

In Table VII.5 are given observed values of σ for several typical
polymers.2, 29, 32, 38−49 They were obtained from light-scattering or
viscosity data at theta temperatures, or from the Stockmayer–Fixman
viscosity plots. Viscosity data were analyzed assuming Φ0 = 2.5× 1023

(cgs). The salient features of the results together with some comments
on the theoretical values may be summarized as follows.

1. The value 1.83 for σ for polyethylene compares well with the
theoretical values 1.84 (at 160◦C) and 2.00 (at 140◦C) obtained by
Hoeve50 and by Nagai,51 respectively. Recall that the theoretical values
have been obtained on the basis of the interdependent-rotation model,
taking into account the difference between energies in the trans (T )
and gauche (G) states and also the pentane effect, i.e., the exclusion of
the GG′ or G′G conformation [see Section 9a(ii)]. The latter effect is
common to most polymers.

2. The value of σ for polystyrene is greater than that for polyethy-
lene. For vinyl polymers, in general, σ lies between 1.8 and 2.5. The
result may be interpreted as arising from the hindrances to internal ro-
tation due to the repulsion between side groups attached to the chain
backbone in addition to those as in a polymethylene chain.

3. Values of σ for diene polymers are smaller than that for polyethy-
lene, and moreover, values of σ for trans-polymers are smaller than
those for the cis-polymers. The reason is that the introduction of dou-
ble bonds into the backbone is equivalent to lengthening the single
bonds, thereby weakening the hindrances to internal rotation, the ef-
fect being exaggerated for the trans-polymers. Although a theoretical
calculation has been carried out for cis-polybutadiene, it requires ad-
justment of parameter values.52
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TABLE VII.5. OBSERVED VALUES OF THE CONFORMATION
FACTOR σ FOR VARIOUS POLYMERS

1018〈R2〉0,f

POLYMER SOLVENT TEMP. (◦C) M σ REF.

Polyethylene Diphenyl ether 161.4(Θ) 33.5 1.83 38

Polystyrene Cyclohexane 34.8(Θ) 9.01 2.25 2, 32

Poly-p-methylstyrene Diethyl succinate 16.4(Θ) 7.94 2.41 29

cis-Polybutadiene Isobutyl acetate 20.5(Θ) 30.6 1.64 39

trans-Polybutadiene Diethyl ketone 5 (Θ) 62.2 1.15 40

trans-Polybutadiene Diethyl ketone 24 (Θ) 62.2 1.32 40

cis-Polyisoprene Methyl n-propyl ketone 14.5(Θ) 23.5 1.61 41

trans-Polyisoprene n-Propyl acetate 60 (Θ) 49.4 1.39 41

Polydimethylsiloxane Methyl ethyl ketone 20 (Θ) 23.8 1.39 42

Polydimethylsiloxane Alkane mixture 22.5(Θ) 23.8 1.54 42

Polyoxymethylene Phenol 90 27.3 1.99 43

Polyoxymethylene Hexafluoroacetone(0.84)–

water(0.16) 25 27.3 2.29 44

Polyoxymethylene 0.45 M K2SO4 35 (Θ) 22.0 1.65 45

Polycarbonate n-Butyl benzyl ether 170 (Θ) 46.7 1.38 46

Polyethylene Phenol(0.50)–

terephthalate tetrachloroethane(0.50) 25 47.1 1.30 47

Poly-γ-benzyl-

L-glutamate Dichloroacetic acid 25 12.7 1.84 48, 49

4. Values of σ for polymers, such as polydimethylsiloxane and
polyethers, whose backbones contain oxygen atoms are smaller than
that for polyethylene, an exception being polyoxymethylene. The re-
duction in σ arises from the fact that there are no hydrogen-atom
substituents on the backbone oxygen atoms, thereby weakening the
pentane effect. Indeed, Flory et al.53 have carried out a theoretical
calculation for polydimethylsiloxane, excluding the GG′ conformation
completely for the sequence of bonds Si−O−Si−O−Si but partially
for the sequence O−Si−O−Si−O. Similarly, for polyoxyethylene, Mark
and Flory54 have excluded the GG′ conformation completely for the se-
quence C−C−O−C−C but partially for the sequence O−C−C−O−C.
On the other hand, in order to account for the relatively large values
of σ for polyoxymethylene, it is necessary to exclude completely the
GG′conformation.55 The reason will probably be that the C−O bond
is shorter than the C−C bond.

5. Aromatic polyesters, such as polycarbonate and polyethylene
terephthalate, have small σ values. The situation is similar to that in
diene polymers; note that the introduction of the six-membered rings
into the backbone reduces the hindrances to internal rotation. For
polyethylene terephthalate, Williams and Flory56 have obtained a the-
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oretical value of 1.40 for σ. This value is in fairly good agreement with
the observed one.

Thus the values of σ for various types of polymers as cited above
may be well understood from the point of view of the chain structure.
We note that theoretical calculations have also been carried out for
some other polymers, e.g., polyamides57 and polypeptides,58 which we
have not cited above. Although the method of evaluating σ is well
established, numerical results involve some ambiguity arising from the
assignment of proper values to the energy parameters.

We must now discuss the conformation factors of cellulose, amylose,
and their derivatives. Kurata and Stockmayer8 applied the KS plot to
these polymers, assuming that the two-parameter scheme is valid for
them, as for flexible polymers, with neglect of the draining effect, and
obtained the following conclusions. First, unperturbed dimensions for
cellulose derivatives are independent of the solvent, since the KS plot
gives the same intercept for the same polymer in different solvents.
Second, values of σ for cellulose derivatives are not so different from
those for vinyl polymers, i.e., about two. This result was interpreted
as arising from the existence of the pyranose rings in the backbone.
In this sence, cellulose derivatives may be considered rather flexible
polymers. Third, the viscosity plots for cellulose derivatives in good
solvents lead to very large values of B, and therefore large expansion
factors. These conclusions are in conflict with earlier conclusions that
unperturbed dimensions for cellulose derivatives are dependent on the
solvent and temperature, and that they have large average dimensions
but small expansion factors.

Naturally Flory35 has criticized the new version of Kurata and
Stockmayer, and supported the earlier conclusions about the chain con-
formation of cellulose derivatives.Flory’s grounds for objection are the
following: (1) the KS plot requires extrapolation into the (short-chain)
region where breakdown of the theory on which the plot is based is to
be expected; thus the result that the KS plot gives the same intercept
for the same cellulose derivative in different solvents is accidental, and
(2) the KS plot predicts the value of B for hydroxyethyl cellulose in
water to be greater than that in cadoxen, while the data for the second
virial coefficient leads to the opposite conclusion.59

However, Flory has not given an explicit theoretical interpretation
of the apparent success of the KS plot for cellulose derivatives—the
experimental result. Further, we must note that some cellulose deriva-
tives exhibit the draining effect, i.e., the dependence of the viscosity
constant Φ on the molecular weight M ,60, 61 and for others [η]θ/M1/2

is independent of M over a wide range of M .62, 63 On the other hand,
if the two-parameter scheme is assumed to be valid for cellulose deriva-
tives, the KS or SF plot gives values of B about twice as large as those
predicted from values of A2M/[η].64 Both Flory’s and Kurata’s versions
involve several weak points, as mentioned above, and seem inconclu-
sive. Further theoretical and experimental investigations of cellulose
derivatives are needed.
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TABLE VII.6. WHOLE AND EXCESS BINARY CLUSTER IN-
TEGRALS PER MONOMERIC UNIT FOR
POLYSTYRENE AND ITS DERIVATIVES IN
TOLUENE AT 30◦C

βe × 1024(cm3)

POLYMER β × 1024(cm3) OBSERVED THEORETICAL

Polystyrene 23.7 — —
Poly-p-methylstyrene 40.4 — —
Poly-p-chlorostyrene 9.90 −30.5 −44.0
Poly-p-bromostyrene 1.84 −38.6 −49.3

42b. The Binary Cluster Integral

In this section our discussion is confined to polystyrene and p-substi-
tuted polystyrenes. As already noted, an analysis of the binary clus-
ter integral β itself requires the assumption of the size of a segment.
For homopolymers possessing structurally similar backbones, as in the
present case, it is convenient to consider the binary cluster integral per
monomeric unit. With this assumption, we obtain the values of β,
given in Table VII.6, for polystyrene and its derivatives in toluene at
30◦C. (Although the data for polystyrene in toluene were obtained at
12◦C, the temperature dependence of β for this system is very small.)
These values were calculated from the values of B given in the last
column of Table VII.4.

Now, β is defined by Eq. (13.3),

β =
∫

[1− g(R)]dR , (42.4)

where g(R) is the pair correlation function between segments (mono-
meric units) with R the separation at infinite dilution. As discussed in
Section 13, g(R) is a very complicated function of R. Thus Yamakawa,
Rice, and collaborators65 have considered only the excess binary cluster
integral βe over a reference value β0; that is,

β = β0 + βe . (42.5)

In the case of polar polymers such as poly-p-chlorostyrene and poly-
p-bromostyrene, β0 and βe are the nonpolar and polar contributions,
respectively, and β0 may be taken as equal to the whole β for the
structurally similar, nonpolar polymer, poly-p-methylstyrene, in the
same solvent.

The excess binary cluster integral arising from the long-range dipo-
lar interaction, which falls off as R−6, has been evaluated on the basis
of the Onsager approximation, involving the use of cavity field and
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reaction field arguments.65 The result is

βe = −4π2

3Vs

1
ε 2
0

(
3ε0

2ε0 + 1

)4(
µ∗2

3kT

)(
µ∗2

3kT
+ α∗

)
, (42.6)

where

µ∗ =
(2ε0 + 1)(ñ2 + 2)

3(2ε0 + ñ2)
µ , (42.7)

α∗ =
(2ε0 + 1)(ñ2 + 2)

3(2ε0 + ñ2)
α , (42.8)

α =
3Vs

4π

ñ2 − 1
ñ2 + 2

, (42.9)

with ε0 the dielectric constant of the solvent, and Vs, µ, α, and ñ
the volume, dipole moment (in vacuo), polarizability, and refractive
index of a spherical segment (monomeric unit). Values of βe for poly-
p-chlorostyrene and poly-p-bromostyrene in toluene at 30◦C calculated
from Eqs. (42.6) to (42.9) are given in the last column of Table VII.6,
where we have adopted the following values: ε0 = 2.36, Vs = 188
×10−24 cm3, µ = 1.70×10−18 esu and ñ2 = 2.31 for poly-p-chlorosyrene,
and µ = 1.73 × 10−18 esu and ñ2 = 2.42 for poly-p-bromostyrene. It
is seen that there is fairly good agreement between the observed and
theoretical values of βe.

The monomeric unit of polystyrene has a dipole moment of about
0.4 × 10−18 esu, while poly-p-methylstyrene may be regarded as com-
pletely nonpolar. In addition, the value of Vs for polystyrene is smaller
than that for poly-p-methylstyrene. These two effects account semi-
quantitatively for the observation that the binary cluster integral for
polystyrene is smaller than that for poly-p-methylstyrene in the same
solvent. In this case, however, Eq. (42.6) cannot be applied, since there
is the significant difference in Vs between these polymers.

Now, if the monomeric units were identical with the solvent mole-
cules, g(R) in Eq. (42.4) would become equal to the pair correlation
function for the pure solvent, and β would be equal to the molecular
volume of the solvent (see Section 13). Therefore, if the monomeric unit
of polystyrene may be regarded as identical with a toluene molecule, β
for polystyrene in toluene would be equal to the molecular volume of
toluene, 178× 10−24 cm3 (at 30◦C). This value is much larger than the
observed value, 23.7× 10−24 cm3. This difference cannot be considered
to arise from only the difference between the volumes of the monomeric
unit and the solvent molecule, and suggests that there is a preferential
attraction between the monomeric units of polystyrene in toluene.

In conclusion, a complete theoretical calculation of the whole β
should be based on Eq. (42.4) with the use of the theory of simple
liquids.
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Chapter Eight

Concluding Remarks

This book has been devoted to the development of the theory of the
equilibrium and nonequilibrium properties of dilute polymer solutions;
the main subjects have been the excluded-volume effect and related
equilibrium properties, and the transport properties for linear flexible
polymer chains. Throughout the book we have emphasized the estab-
lishment of the two-parameter theory in a systematic way, the historical
significance of the individual theories and their interrelations, and the
distinction between the solved and unsolved problems. Now the prob-
lematical points which require further investigations are summarized
as follows.

1. The two-parameter theory has been developed on the basis of
the random-flight model and the use of the approximation that the
potentials between segments are short-ranged and pairwise additive.
Within this framework, the formulation of the partition function for a
single chain is well established. However, its evaluation is a many-body
problem and there has not yet been obtained the exact solution of the
excluded-volume problem; the problem of short-range interferences in
the chain can be reduced to that in linear cooperative systems and is
amenable to exact solution. Thus, to find, specifically, the asymptotic
solution for the expansion factor remains as a mathematical–physical
problem which is of particular interest to theoreticians. On the other
hand, we must remember that several approximate theories may ac-
count for the experimental data.

2. The theory of the frictional properties has been developed using
the Oseen hydrodynamic interaction tensor. This procedure has been
common to almost all theories in the field since the Kirkwood–Riseman
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theory. For flexible polymers, nevertheless, the draining effect has not
been observed which is predicted by a theory of this type. In this con-
nection, we must refer to the recent work of Zwanzig, Kiefer, and Weiss
[Proc. Natl. Acad. Sci. U.S., 60, 381 (1968)]. They have pointed
out that the solutions of a set of linear equations of the Kirkwood–
Riseman type determining the frictional forces on the segments possess
singularities for some values of the draining parameter, and these sin-
gularities lead to unphysical behavior of the transport properties, e.g.,
negative translational diffusion coefficients. The main source of error
seems to be the treatment of segments as point sources of friction. In-
deed, Rotne and Prager [J. Chem. Phys., 50, 4831 (1969)] have derived
an approximate diffusion tensor which is positive definite for all chain
configurations and approaches the Kirkwood–Riseman diffusion tensor
at large separations between segments. These analyses suggest that
the size of segments must be taken into account more accurately. The
problem of the hydrodynamic interaction requires much more inves-
tigations. However, we must also remember the apparent success of
approximate solutions of the Kirkwood–Riseman equations, especially
in the non-free-draining limit

3. There is no satisfactory theory of the viscosity-radius expansion
factor. This problem is very difficult to solve, since it involves the
problems of the excluded-volume effect and the hydrodynamic interac-
tion which have not been completely solved. Further investigations are
needed in order to make the two-parameter theoretical description of
the behavior of dilute polymer solutions more complete.

4. DNA molecules have been found to be fairly well represented
by wormlike chains, specifically in describing their frictional behavior.
Although the wormlike chain model has also been applied to cellulose
derivatives by several authors, there have not yet been obtained defi-
nite conclusions regarding the chain conformation and dilute solution
behavior of cellulose derivatives. In this connection, further research on
wormlike chains with excluded volume is needed. This will necessarily
lead to a three-parameter theory. It is, of course, questionable whether
the dilute solution behavior of cellulose derivatives may or may not be
described by a three-parameter theory of this type.

5. In Section 9a(ii) we have defined flexible chains as those which
have the Markoff nature in the unperturbed state. It is clear that
even such chains have stiffness to some extent; different kinds of chains
have different flexibilities. Then what is the quantitative definition of
chain flexibility? In many cases we may use the persistence length or
the Kuhn statistical segment length for this purpose. In particular, for
chains possessing the same type of backbone, we may use the conforma-
tion factor which measures the degree of hindrance to internal rotation.
However, there will be some cases for which it is not convenient to use
the persistence length. In other words, there is no unique quantitative
definition of chain flexibility; it depends on the molecular model on the
basis of which a theory is developed.

In closing the book, we hope that it will provide a thorough under-
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standing of the theory of dilute polymer solutions and stimulate further
research in this field.
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237–241

in mixed-solvent systems, 208,
229

Apparent second virial coefficients
for chains composed of op-

tically anisotropic seg-
ments, 236

in mixed-solvent systems, 208,

229
Autocorrelation function, 350
Average molecular dimensions,

2, 3, 21, 94, 365, see
also End-to-end distance;
Radius of gyration

at finite concentrations, 218,
219

Benoit–Wippler effect, 348
Binary cluster integral

for a pair of segments, 82,
94, 130, 150, 161, 365,
379, 393, 397–398

two-dimensional, 124, 134
Bivariate distribution function,

see Distribution func-
tion

Bond angle restriction, see Short-
range interferences

Bond length, 11, 46
effective, 47, 69, 70, 75, 94,

365
Bond probability, 6, 8–11, 129

approximate, see Gaussian,
below
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exact, 11
Gaussian, 16, 18, 19, 21,

28, 133, 285
Bond vector, 6, 21, 28, 47
Boson operator, 311
Boyle point, 74, 82
Boyle temperature, see Boyle point
Branch unit, 47

functionality of, 47
Branched polymers, 3, 47, 48,

322, see also Normal
molecules; Star molecules

friction coefficient of, 325
intrinsic viscosity of, 323–

325
mean-square radius of

with excluded volume, 121
unperturbed, 47–52

second virial coefficients for,
181

subchain lengths of
distribution of, 49
random distribution of,

49, 50, 52
uniform distribution of,

49, 50, 52
subchains of, 47, 49

Branching
normal type of, 50
random type of, 50
star type of, 50

Brownian motion, 5, 7, 131, 132,
258, 266–269

Cabannes factor, 234
Canonical ensemble, 139, 140

partition function, 6, 140
Cellulose

conformation factor for, 396
draining effect in, 396
mean-square end-to-end dis-

tance for
in the freely rotating state,

38
Center of resistance, 293–295
Central limit theorem, 16
Chain configuration, 5

instantaneous, 5

Chain stiffness, 54, 335, 404
Chapman–Kolmogoroff equation,

see Markoff integral equa-
tion

Characteristic function, 9–12, 15,
16, 45

for a Gaussian chain, 19,
20, 29, 32

Chemical potential, 137, 139
Flory–Huggins expression for,

73, 245
Cluster analysis, see Cluster-diagram

analysis
Cluster diagram, 90, 154, 170
Cluster-diagram analysis

for intermolecular interac-
tions, 153–155, 170

for intramolecular interac-
tions, 90, 91, 170

Cluster expansion
for gas pressure, 146–149
for osmotic pressure, 150

Cluster expansion method, 87–
89, 144, 146, 149–153,
169, 170

of Ursell and Mayer, 87, 139
Cluster integral, 145–148, 175

irreducible, see Irreducible
cluster integral

Comb molecules, see Normal molecules
Complex intrinsic rigidity, 264
Complex intrinsic viscosity, 264,

289
Complex rigidity modulus, 265
Complex viscosity coefficient, 264
Component potentials, 143
Composition fluctuation, 199–

204, 241
Concentration fluctuation, see

Composition fluctuation
Conditional probability, 25, 76,

98, 131
Configurational partition func-

tion, 38, 54, 55, 70, 140
Conformation factor, 43, 393–

396, 404
Conformational statistics, 3, 4
Constructive interference
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of light, 192
Continuity equation, 266, 268,

281
Contravariant basis vectors, 279,

see also Covariant ba-
sis vectors

Copolymers
apparent molecular weights

of, 236
light scattering from solu-

tions of, 236–240
weight-average molecular weights

of, 237, 239
Correlation function, 142, 145,

149, 174
direct, 243
pair, see Pair correlation func-

tion
space-time, 247
time, 350

Coupling parameter method, 79,
177

Covariant basis vectors, 279, see
also Contravariant ba-
sis vectors

Critical opalescence, 241–244
of a binary solution, 244–

246
Cruciform molecules, 121
Cumulants, 11, 32, 45
Current density, 266, 268, 278,

281, 282, 286, see also
Flux

Curvilinear coordinates
in chain space, 279

Daniels distribution, 57, 336, 337
moments of, 57

Density fluctuation, 192, 199–
202, 241–244, 253

Deoxyribonucleic acid, see DNA
Depolarization

degree of, 233, 234, 248
Destructive interference

of light, 192, 198
Dialysis technique

in light-scattering measure-
ments, 208–210

Dielectric dispersion, 346–348
Diffusion coefficient, 266, 268,

284
Einstein’s relation for, 267
rotatory, see Rotatory dif-

fusion coefficient
translational, 276, 293–295

Kirkwood formula for, 285
of rigid ring molecules,

285
of rigid rod molecules, 285

Diffusion equation, 132, 266, 268,
278, 287, 289, 296, 331,
338, 347, 349

generalized, 258, 281, 282
Diffusion process, 266
Diffusion tensor, 281–284

Kirkwood equation for, 284
Diffusional force, 278
Dirac delta function, 11, 19

Fourier representation of, 9
Direct correlation function, 243,

244
Distribution function, 6, 8–10,

82, 114, 142, 144, 145,
149–152, 174, 175, 213,
281–283

bivariate, 25, 28, 30, 76
generic, 22, 128, 140–142
multivariate, 19, 88–89, 152,

157
Gaussian, 18–21

nonequilibrium, 282, 286, 296,
309

singlet, 76, 84, 85, 128
specific, 22, 140
time evolution operator of,

296
DNA, 53, 323, 404

intrinsic viscosity of, 341–
343

Kuhn statistical segment length
of, 343

persistence length of, 343
sedimentation coefficient of,

330, 341–343
Stokes diameter of, 343

Draining effect, 275, 276, 303,



Subject Index 421

344, 359, 386, 387
in cellulose derivatives, 396
free-draining limit, 274, 276,

292, 293, 295, 296, 343
non-free-draining limit, 274,

276, 277, 292, 293, 295,
296, 303, 304, 307, 308,
313, 323, 325, 328, 329,
339, 343, 344, 387

Draining parameter, 274, 275
Drift velocity, 318

Effective bond length, see Bond
length

Effective excluded volume, see
Excluded volume

Ellipsoid model, 101, 103
Ellipsoidal molecules, 187, 333
End-to-end distance, 7

distribution of, 7, 10, 16,
44–46

for chains with short-range
interferences, 35, 44–
46

for Gaussian chains, 15–
18, 98

for nonintersecting lattice
chains, 124–126

for perturbed chains, 97,
118

for random-flight chains,
8, 11–18

for wormlike chains, 57
expansion factor for, see Ex-

pansion factor
mean-square, 1, 23, 35, 89

for chains with excluded
volume, 70, 95

for chains with hindered
internal rotations, 38–
44

for chains with short-range
interferences, 4, 43, 44

for equivalent chains, 46
for freely rotating chains,

37, 38, 43, 394
for ideal chains , see un-

perturbed chains, be-

low
for nonintersecting lattice

chains, 122–129
for perturbed chains, see

chains with excluded vol-
ume, above

relaxation of, 351
for unperturbed chains,

2, 12, 18, 70, 74
for wormlike chains, 53,

56, 57
moments for, see Moments,

for end-to-end distance
most probable value of, 16
root-mean-square, 12, 16,

99
Energy dissipation, 264
Entropy parameter, 73, 160
Equation

of continuity, see Continu-
ity equation

of motion
for viscous fluids, 353, 354

Equivalent chain, 46
Excluded volume

effective
for a pair of molecules,

158
for a pair of segments, 3,

70, 76, 82
Excluded-volume effect, 2–4, 69–

71, 74, 75, 138
on friction coefficients, 257,

315, 329
on intramolecular interfer-

ence factors, 221
on intrinsic viscosities, 258,

305, 324, 328, 341
on mean-square end-to-end

distance, 70, 93–96, 112
on mean-square radius of

gyration, 70, 92, 94, 96,
112

Peterlin’s method
for treating, 307, 327, 341

Excluded-volume parameter, 3,
4, 87, 94, 157, 307, 365,
372, 383, 384
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Expansion factor, 70, 130, 182,
305, 315

approximate closed expres-
sions for, 96, 112–113

asymptotic behavior of, 96,
113, 120, 403

boson-operator theory of, 110,
113, 313, 314

for branched molecules, 121–
123

Bueche–James theory of, 99,
103, 110, 111

Bueche theory of, 74, 104,
110, 111, 121

dependence of
on molecular weight, 74
on solvent, 74
on temperature, 74

double-contact terms in, 89–
91

for end-to-end distance, 70,
89–95, 99, 121

fifth-power-type equations
for, 100, 101, 103, 120,
121, 130, 372, 379, 390

at finite concentrations, 75,
218

closed expressions for, 219
first-power-type equations for,

99
Fixman theory of, 105, 108,

112–113, 382–385
Flory–Fisk theory of, 101,

112, 113, 382
Flory theory of

modified, 96, 100, 103,
112–113, 121, 129, 130,
175, 380, 383, 384

original, 71–75, 96, 100,
112–113, 121, 130, 175,
372, 380, 383, 384

friction-radius, see Friction-
radius expansion fac-
tor

Fujita–Norisuye theory of,
101, 113, 382–385

Fujita–Okita–Norisuye the-
ory of, 104, 110, 111,

121
Kurata–Stockmayer–Roig the-

ory of, 101, 130, 372,
374

Kurata theory of, 103, 110,
111

perturbation theory of, see
First-, Second-, Third-
order perturbation the-
ories

Ptitsyn theory of, 105, 108,
110–112, 128, 129

for radius of gyration, 70,
94, 120, 121, 173, 307

for ring molecules, 122
self-consistent-field theory of,

114–120
single-contact terms in, 86,

89–91
third-power-type equations

for, 102, 105, 130, 372,
374, 377, 379, 390

triple-contact terms in, 88–
91

viscosity-radius, see Viscosity-
radius expansion fac-
tor

Yamakawa–Tanaka theory
of, 106–113, 121, 129,
166, 173, 380, 382–385

Zimm–Stockmayer–Fixman
theory of, 79, 81–87

Extinction angle, 344

Factorization approximation
to the distribution function,

99, 115, 158, 161
Fick equation, 266
First-order perturbation theory,

79, 87, 149, 169, 305
of expansion factor, 90, 169,

305
for chains with intermolec-

ular interactions, 171,
172

for end-to-end distance,
87, 89–91, 93–96, 111,
133, 134, 314
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for radius of gyration, 92–
95, 120–122, 314

of friction-radius expansion
factor, 315

of second virial coefficient,
149–157, 167, 169–171,
181, 182

of third virial coefficient, 174–
176

of viscosity-radius expansion
factor, 305–307, 391

Flexibility, 54, 335, 404, see also
Chain stiffness

Flexible chain, 44, 46
linear, 3, 5

Flexible polymer chain, see Flex-
ible chain

Flexible ring molecules, 3
friction coefficient of, 329
intrinsic viscosity of, 326–

329
mean-square radius of

effect of excluded volume
on, 122, 328

unperturbed, 52
second virial coefficient for,

182, 183
Flory–Fox–Schaefgen plot, 372,

373, 390, 391
Flory–Huggins free energy

of mixing, 73, 245
Flory–Huggins theory, 2, 73, 184
Flory–Krigbaum potential, 159,

176, 177, 183
Flory potential, 100
Flow birefringence, 277, 344–346
Fluctuating force, 267
Fluctuation distribution function,

199–202
Fluctuation theory, 192, 198
Fluid flow

deformation component of,
259–261

rotation component of, 259–
261

Flux, 266, see also Current den-
sity

Fokker–Planck equation, 76, 132,

267
of a system of coupled har-

monic oscillators, 349
Freely rotating chain, 36, 44–45

mean-square end-to-end dis-
tance for, 36, 38

Friction coefficient, 4, 265, 266,
268–270

of branched polymers, 325–
326

concentration dependence of,
318–320

of rigid sphere molecules,
319

effect of excluded volume
on, 315, 329

Einstein’s relation for, 267
of flexible ring molecules,

329
Kirkwood–Riseman theory

of, 270, 275–277, 316
Mandelkern–Flory theory of,

315
of rigid sphere molecules,

359
rotatory, see Rotatory fric-

tion coefficient
translational, 265, 275, 276

Friction-radius expansion factor,
315

Horta–Fixman theory of, 316
Kurata–Yamakawa theory of,

316
Stockmayer–Albrecht theory

of, 316
Friction tensor, 280–283
Fugacity, 141, 143–146

Gas pressure
cluster expansion for, 144,

146
virial expansion for, 147

Gaussian chain, 16–18, 69, 149,
217, 285

Gaussian chain model, see Gaus-
sian chain

Gaussian distribution, 15–17, 27,
57, 61, 118, 125, 132,
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199
Generalized vectors

in Riemann space, 281
Generating function, 11
Gibbs–Duhem equation, 203, 205
Gibbs free energy

of mixing, 137
Good solvent, 70

system, 82, 366, 371–376
Grand canonical ensemble, 139–

142
Grand partition function, 139,

140, 143
Green’s function, 55

Hard sphere molecules, see Rigid
sphere molecules

Helmholtz free energy, 114, 115
of mixing, 72, 73

Hermans–Overbeek procedure,
73, 98, 119

Heterogeneity
in composition, 236–240
in molecular weight, 2, 179,

204, 222
Heterogeneous polymers, 179, 204,

222
average molecular weight of,

180, 205, 222–224
intramolecular interference

factor for, 222–224
light scattering from solu-

tions of, 204–206, 222,
226

osmotic pressure of solutions
of, 179, 205

second virial coefficient for,
179–180, 206, 224–226

Hindered internal rotation, see
Steric hindrances

Huggins coefficient, 316–318
Hybrid ensemble, 199

partition function for, 199
Hydrodynamic interaction, 258,

269, 320, 403
tensor, see Oseen tenser

Hydroxyethyl cellulose, 396

Ideal chain, see Unperturbed chain

Inagaki–Ptitsyn plot, 374–376
Incompressible fluid, 260, 354,

355
Independent rotation, 39–41
Independent-rotation model, 43
Interdependent rotation, 39, 41
Interdependent-rotation model,

39, 41, 43, 394, see also
Rotational-isometric ap-
proximation

Intermolecular excluded volume,
see Excluded volume

Intermolecular interference
of scattered light, 212, 220

Intermolecular interference fac-
tor, 214, 220–222, 230–
231

Intermolecular potential, 149, 150,
158, 163

Internal-rotational freedom, 5,
279

Internal viscosity, 320, 353
Interpenetration function

appearing in second virial
coefficient, 172, 177, 379–
382

Intramolecular interference
of scattered light, 192, 216–

220, see also Angular
dissymmetry

Intramolecular interference fac-
tor, 216–220

for heterogeneous polymers,
222–224

for rigid rod molecules, 250–
252

for rigid sphere molecules,
250–252

for unperturbed linear flex-
ible chains, 217, 251,
252, 370

Intramolecular (excluded-volume)
potential, 69–73, 87, 98,
114, 119, 120, 312

Intrinsic dynamic viscosity, 265
of rigid rod molecules, 333

Intrinsic loss modulus, 265, 291
of rigid rod molecules, 333



Subject Index 425

Intrinsic storage modulus, 265,
291

of rigid rod molecules, 333
Intrinsic viscosity, 2, 4, 257, 261–

265, 365, 371, 388
Bloomfield–Zimm theory of,

309
of branched polymers, 323–

325
Debye–Bueche theory of, 274
dependence of

on molecular weight, 257,
274, 303, 304, 334, 340,
371

on rate of shear , see Non-
Newtonian viscosity

draining effect on, 274–275,
303, 386, 387

effect of excluded volume
on, 304, 305, 325, 327,
341, see also Viscosity-
radius expansion fac-
tor

Fixman–Pyun theory of, 294,
296–303

Fixman (boson-operator) the-
ory of, 309–315

of flexible ring molecules,
326–329

Flory–Fox theory of, 305,
387–389

Kirkwood–Riseman function
appearing in, 271–274, 277,

306
Kirkwood–Riseman theory

of, 257, 258, 270–275,
303, 404

Kurata–Yamakawa theory of,
305–307, 309, 315, 387–
389

Ptitsyn-Eizner theory of, 307
of rigid ellipsoidal molecules,

333
of rigid rod molecules, 331–

333
of rigid sphere molecules,

274, 357–359
Rouse theory of, 285, 333

at theta temperatures, 303,
371, 396

of wormlike chains, 340–343
Yamakawa–Tanaka theory

of, 391
Zimm theory of, 285–295,

303, 333
Irreducible cluster integral, 147
Ising model, 41

Joint probability, 76, 85, 116,
see also Distribution func-
tion, bivariate

Kramers relation
for radius of gyration, 24,

49
Kuhn statistical segment length,

46, 54, 336, 341, 404
Kurata–Stockmayer plot, 372–

374, 379, 394, 396
Kurata–Stockmayer–Roig poten-

tial, 102

Langevin equation, 267, 278
Langevin function, 14, 267

inverse, 14
Lattice chain, 80–81, 351, see

also Monte Carlo chain
mean-square end-to-end dis-

tance of, 122–129
mean-square radius of, 123–

124, 127, 128
nonintersecting, 122–126
relaxation of, 350–353

Lattice chain dynamics, 351–353
Lattice theory, 2, 138, 184
Light scattering, 2, 4, 130, 191,

192, 318, 366–371
angular dissymmetry of , see

intramolecular interfer-
ence, below

and composition fluctuation,
192, 198–204, 241–242

and concentration fluctua-
tion, see composition
fluctuation, above

from copolymer solutions,
236–241
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and density fluctuation, 192,
198–203, 241–244

distribution function theory
of, 4, 192, 211

Doppler shift in, 246–247
effect of anisotropy on, 231–

236
fluctuation theory of, 4, 192,

198, 241–242
frequency distribution of, see

Doppler shift, above
in heterogeneous systems,

204–206, 222–226
intermolecular interference

of, 212–216, 220–222
intramolecular interference

of, 192, 216–220, 250–
252

in mixed-solvent systems, 206–
210, 226–231

from a single isotropic par-
ticle, 193–196

Long-range interferences, 6, 69,
94, see also Excluded-
volume effect

McMillan–Mayer symbolism, 139–
140

McMillan–Mayer theory
of solutions, 2, 4, 138–149,

208, 228
Many-body problem, 3, 4, 70,

71, 96, 114, 149, 403
Markoff integral equation, 76,

77, 79, 84, 116, 131
Markoff method, 8, 21, 75, 78,

81
Markoff nature, 12, 43–45, 78
Markoff process, 8, 35, 44, 131,

see also Diffusion pro-
cess

Mean-square end-to-end distance,
see End-to-end distance

Mean-square radius of gyration,
see Radius of gyration

Metric tensor, 279, 280
Micro-Brownian motion, 268
Microdiffusion tensor, 269

Molecular dimensions, see Av-
erage molecular dimen-
sions

Molecular distribution function,
see Distribution func-
tion

Molecular weight, 1–3
apparent, see Apparent molec-

ular weights
determination of, 191, 204,

208–210, 227, 233, 236,
366–369

distribution of, 2, 222, 223
heterogeneity in, 2, 179, 204,

222
number-average, 180, 224
weight-average, 205, 224
z-average, 223, 224

Moment generating function, 11
Moments, 10

of Daniels distribution, 57
for end-to-end distance

for perturbed chains, 93,
95

for random-flight chains,
11, 12, 46

for wormlike chains, 53,
56, 57

of Gaussian distribution, 16,
46, 95

for quasi-radius of gyration
for Gaussian chains, 24,

62
for radius of gyration

for Gaussian chains, 32
relation between cumulants

and, 11
Monte Carlo chain, 125–130
Multivariate distribution func-

tion , see Distribution
function, multivariate

Navier–Stokes equation, 258, 354
Nonintersecting lattice chain, 122,

123
mean-square end-to-end dis-

tance of, 124, 127, 128
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mean-square radius of, 124,
127, 128

Non-Markoff nature, 74, 75, 79,
95, see also Excluded-
volume effect

Non-Newtonian viscosity, 261,
291, 320, 344

effect of excluded volume
on, 322

Normal coordinates, 289–291, 310,
313

free-draining (Rouse), 292,
296, 299

Normal modes, 290, 301
Normal molecules, 50

friction coefficient of, 325,
326

mean-square radius of gy-
ration

perturbed, 122, 123
unperturbed, 50, 51

second virial coefficient for,
181–183

Normal stress, 260, 343, see also
Shear stress

Normal stress effect, 343
Number-average molecular weight,

180, 224

Once-broken rod molecules, 333,
334

diffusion coefficient of
translational, 334

intrinsic viscosity of, 333
sedimentation coefficient of

molecular weight depen-
dence of, 334, 335

Optical anisotropy, 231, 344
effect of

on light scattering, 231–
236

Ornstein–Zernike equation, 127,
243

Orthogonal transformation, 29,
59–61

Oscillating electric dipole, 191,
193, 211

electromagnetic field due to,
193–196, 211, 248–250

Oseen approximation
for uniform viscous flow, 354,

357, see also Stokes ap-
proximation

Oseen tensor, 258, 269, 280, 284,
355–357, 403

averaging of, 281, 286
avoidance of preaveraging,

296–299
Osmotic condition, 147
Osmotic pressure, 137, 138, 148,

180, 205, 208, 228, 366–
369

cluster expansion for, 147–
149

of moderately concentrated
solutions, 182–184

virial expansion for, 147–
149

Pair correlation function, 82, 127,
183, 242–244, 397, 398

Pairwise-independent rotation,
39, 41

Pairwise-independent-rotation model,
39, 41

Partition function, 139–141, 199
configurational, 6, 38, 54,

55, 70, 114, 140, 150
Pentane effect, 43, 394, 395
Percus–Yevick equation, 243
Persistence length, 53, 54, 404
Perturbation theory, see First-

, Second-, Third-order
perturbation theories

Polarizability, 232, 344, 345
Polarizability tensor, 232
Polyamide star molecules, 324
Polyamides, 396
Poly-γ-benzyl-L-glutamate

conformation factor for, 395
intrinsic viscosity of

molecular weight depen-
dence of, 334, 335

once-broken-rod molecules
of, 334, 335
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sedimentation coefficient of
molecular weight depen-

dence of, 334, 335
Poly-p-bromostyrene

binary cluster integral for,
397, 398

interaction parameter for,
392, 393

Polybutadienes
cis- and trans-, 37, 38, 394,

395
Polycarbonate, 37, 395
Polychloroprene

interaction parameter for,
392, 393

test of the two-parameter
theory with, 381–384,
386–391

Poly-p-chlorostyrene
binary cluster integral for,

397, 398
interaction parameter for,

392, 393
Polydimethylsiloxane, 37, 395
Polyesters, 395
Polyethers, 395
Polyethylene, 43, 395
Polyethylene terephthalate, 395
Polyisobutylene

intrinsic storage and loss mod-
uli of, 295, 296

intrinsic viscosity of
at the theta temperature,

303, 304
second virial coefficient of,

226
Polyisocyanate, 346
Polyisoprenes

cis- and trans-, 395
Polymer dynamics, 2, 4, 257,

258, 278, 286, 296, 330
Fixman–Pyun theory of, 294,

296–303
Fixman (boson-operator) the-

ory of, 309–315, 388,
389

Kirkwood general theory of,
278–285, 337–340

Rouse theory of, 285, 295,
296, 320, 343, 344, 348–
351

Zimm theory of, 285–296,
320, 343, 344, 348

Polymethylene, 394
Polymethylene chain, 5
Polymethylmethacrylate, 386–391
Poly-α-methylstyrene, 386–391

second virial coefficient of,
226

Poly-p-methylstyrene
binary cluster integral for,

397, 398
conformation factor for, 395
interaction parameter for,

392, 393
Stockmayer–Fixman plots for,

391, 392
test of the two-parameter

theory with, 386–391
Polyoxymethylene, 37, 395
Polypeptides

cis- and trans-, 37, 38, 53,
396

Polysaccharides
cis- and trans-1, 4’-, 37, 38,

see also Amylose; Cel-
lulose

Polystyrene
binary cluster integral for,

397, 398
branched, 324, 325
conformation factor for, 394,

395
critical opalescence of solu-

tions of, 246
interaction parameter for,

376, 377, 392, 393
intrinsic viscosity of

at the theta temperature,
303, 304

isotactic
composed of optically anisotropic

segments, 236
non-Newtonian viscosity of

solutions of, 322
second virial coefficient of
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Berry plot of, 378
Kurata plot of, 377, 378

star molecules of
intrinsic viscosity of, 325

test of the two-parameter
theory with, 381–391

turbidity in mixed-solvent
systems, 208

unperturbed dimension of
determination of, 371–378

Zimm plot for, 217
Poor solvent, 74

system, 74, 82
Potential

intermolecular, 149, 150, 158,
163

internal-rotational, 38–40
intramolecular, 69–73, 87,

98, 114, 119, 120, 150,
312

pair, 82, 174
between segments, 69, 115,

117, 150
Potential of mean force, 6, 70–

72, 79, 81, 82, 142, 143,
149–150

Poynting vector, 195
Probability density, see Distri-

bution function
Prolate ellipsoid molecules, 333

Quasi-radius of gyration, 24
distribution of, 22, 24, 26,

27
moments of, 23, 24, 27,

63, 64
with radius of gyration

fixed, 62–65

Radial distribution function, see
Pair correlation func-
tion

Radius of gyration, 23
distribution of, 24, 28, 32–

34, 71, 72, 98
Flory–Fisk function for,

34, 100

for Gaussian chains, see
random-flight chains, be-
low

moments of, see Moments,
for radius of gyration

for random-flight chains,
32–34, 72

for random-flight chains
with end-to-end vector
fixed, 25

expansion factor for, see Ex-
pansion factor

mean-square, 23, 70, 217
for branched polymers, 47–

52, 121, 122
for chains with excluded

volume, 70, 92, 95, 121,
122, 124

determination of, 191, 217–
219, 227, 231, 234, 235,
245–246, 366, 369–371

with end-to-end vector fixed,
25, 26

at finite concentrations,
218–220

for flexible ring molecules,
52, 122

in mixed-solvent systems,
231

for nonintersecting lattice
chains, 122–124, 126–
129

for perturbed chains, see
chains with excluded vol-
ume, above

for wormlike chains, 57
z-average of, 223

Random-flight chain, 2, 4, 8, 16–
18, 69, 74, 149

Random-flight chain model, see
Random-flight model

Random-flight model, 1, 4, 69,
70, 99, 102, 149, 163,
175, 220, 285, 319

Random-flight statistics, 2, 4,
8, 132

Random process, 131
Random walk, 7–8
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with absorbing barriers, 81
nonintersecting, 122, 126–

128
with reflecting barriers, 81

Rate of shear, 4, 260, 264, 291,
see also Velocity gra-
dient

reduced, 321
time-dependent, 264, 289

Rayleigh ratio, 196–198, 203, 205,
206, 208–210, 233, 241,
242, 245, 247

Rayleigh scattering, 191
Relaxation spectrum, 348, 353
Relaxation time

dielectric, 346, 347
viscoelastic, 290, 292, 293,

332, 346
Rigid ovaloid molecules, 186
Rigid ring molecules, 285
Rigid rod molecules, 184, 331

diffusion coefficient of
rotatory, 331–333
translational, 284, 334

intramolecular interference
factor for

in light scattering, 250–
252

intrinsic dynamic viscosity
of, 333

intrinsic storage modulus of,
333

intrinsic viscosity of, 331–
333

second virial coefficient for,
184, 186

Rigid sphere molecules, 185, 357
friction coefficient of, 359

concentration dependence
of, 319

shell model for, 359
intramolecular interference

factor for
in light scattering, 250–

252
intrinsic viscosity of, 258,

275, 357–359
second virial coefficient for,

185
third virial coefficient for,

187–188
Ring molecules

flexible, see Flexible ring molecules
multiple, 329, 330
rigid, see Rigid ring molecules

Rotational-isomeric approxima-
tion, 41–42

Rotatory diffusion coefficient, 268,
344

of rigid rod molecules, 331–
333

of wormlike chains, 338
Rotatory friction coefficient, 268,

276, 277
Rouse eigenfunctions, 292, 299
Rouse eigenvalues, 292, 299
Rouse normal coordinates, see

Normal coordinates, free-
draining

Saddle-point method, see Steepest-
descent method

Scalar product
of two functions, 297

Scattering angle, 196
Scattering function, see Intramolec-

ular interference factor
Schulz distribution

of molecular weight, 223, 224
Second-order perturbation the-

ory, 87, 149
of expansion factor, 89

for end-to-end distance,
89–91, 93–96, 111, 112,
314

for radius of gyration, 92–
95, 314

of second virial coefficient,
149–157, 167, 169–171

Second virial coefficient, 2, 4,
74, 148, 172, 176, 177,
181, 182, 365, 376

Berry plot of, 378
for branched polymers, 181–

183
determination of, 191, 204,
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217, 227, 229, 234, 235,
366, 367, 369

effect of intramolecular ex-
cluded volume on, 169–
171

effect of molecular weight
heterogeneity on, 179–
180, 204, 224–226

Fixman–Casassa–Markovitz
theory of, 161–162, 167,
168, 178, 381

for flexible ring molecules,
182, 183

Flory–Krigbaum–Grimley the-
ory of, 159, 167, 168

Flory–Krigbaum–Orofino the-
ory of

modified, 160, 167, 168,
173, 367, 380–382

original, 160, 167, 168,
173, 380–382

Flory theory of
for uniform-density sphere

models, 159
interpenetration function

appearing in, 172, 379–
384

Isihara–Koyama theory of,
160, 167, 168, 179

Kurata plot of, 376–378
Kurata theory of, 165–168,

378, 381
Kurata–Yamakawa theory of,

163–168, 173, 380
light scattering, 206, 224,

226
molecular weight dependence

of, 149, 185, 186, 224
osmotic, 179, 205, 224, 226
perturbation theory of, see

First-, Second-order per-
turbation theories

for rigid ovaloid molecules,
186

for rigid rod molecules, 185,
186

for rigid sphere molecules,
185

Stockmayer equation for, 167,
168

Sedimentation coefficient, 265–
266, 285, see also Dif-
fusion coefficient; Fric-
tion coefficient

concentration dependence of,
265, 318–320

of flexible ring molecules,
329–330

of once-broken-rod molecules,
334–335

relationship between friction
coefficient and, 265

of wormlike chains, 340–343
Segment, 5

distribution function
of the distance between,

17, 45, 87–89, 220
of the distance of

from the center of mass,
21–23, 25–26

Segment-density distribution func-
tion, 21, 22, 77, 78, 100–
102, 159, see also Quasi-
radius of gyration, dis-
tribution of

with radius of gyration fixed,
62–65, 72–73

Segment distribution function,
21, 25, 28–30, 76, 82–
85, 114, 118, 157

Self-adjoint operator, 283, 296,
297

Semi-flexible chain, see Stiff chain;
Wormlike chain

Shear stress, 260, 343, see also
Normal stress

Shear viscosity coefficient, see
Viscosity coefficient

Short-range interferences, 3, 6,
35, 69, 94, 247, 371

Simple cubic lattice chain, 123,
124, 126, 128, 129, 352–
353

Single-contact approximation, 86,
172

Smoluchowski equation, 268, see
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also Fokker–Planck equa-
tion

Smoothed-density model, 71, 99,
102, 157–161, 179, 183,
321

Gaussian, 71, 159, 160, 173,
176, 367

Space-time correlation function,
247, 253

Spectral density, 247
Sphere molecules, see Rigid sphere

molecules
Spring and bead model, 285, 286,

320, 323, 348, 349
Hearst eigenvalues for, 293
Rouse eigenfunctions for, 292,

299, 348, 349
Rouse eigenvalues for, 292,

299, 348, 349
Zimm eigenvalues for, 292,

293
Spring potential, 286, 299, 300,

309
Square lattice chain, 80
Square-root plot

of osmotic pressure, 366–
369

of the reciprocal intensity
of scattered light, 366–
371

Star molecules, 49, 50
friction coefficient of, 325
intrinsic viscosity of, 323–

325
mean-square radius of

with excluded volume, 121,
122

unperturbed, 50
second virial coefficient for,

181, 183
Staudinger rule, 257, 274–275
Steepest-descent method, 14, 33,

34, 57–59, 63, 64
Steric hindrances

to internal rotation, 3, 6,
35, 43, 394

Stiff chain, 3, 53, see also Worm-
like chain

Stochastic variable, 185, 267
Stockmayer–Fixman plot, 130,

373–376, 379, 389–393
Stokes approximation, 269, 316–

318, 354, 357, see also
Oseen approximation

Stokes equation
for incompressible fluids, 354,

355, 357, see also Navier–
Stokes equation

Stokes law, 257, 277, 359
Strain tensor, 259, 260
Stress, normal, see Normal stress

shear, see Shear stress
Stress tensor, 259, 262–264, 354
Superposition approximation, 70,

79, 81, 94, 174, 183,
184

Surface effect
in viscous fluids, 316–318

Thermodynamic interaction pa-
rameter, 73

Theta point, see Theta temper-
ature

Theta solvent, 75, 395
system, 74, 393

Theta state, 2, 3, 74–75, 172,
303, 371, see also Un-
perturbed state

Theta temperature, 3, 73, 74,
172, 173, 303, 395, see
also Boyle point

Third-order perturbation theory
of expansion factor, 87–95,

111, 112
Third virial coefficient, 149, 174,

177, 366
Flory–Krigbaum treatment

of, 174
perturbation theory of, see

First-order perturbation
theory

for rigid sphere molecules,
186–188

Stockmayer–Casassa theory
of, 174–177



Subject Index 433

Yamakawa theory of, 175–
179

Time-correlation function, 350
Tobacco mosaic virus, 252
Transformation matrix

in chain statistics, 38
for normal coordinates, 287,

289, 299
Transient term, 290
Transition probability, 76, 78–

81, 84, 116, 117, 131,
267, see also Markoff
integral equation

Translational diffusion coefficient,
see Diffusion coefficient,
translational

Translational friction coefficient,
see Friction coefficient,
translational

Trivariate distribution function,
see Distribution func-
tion

Turbidity, 197, 198, 208, see also
Light scattering

Two-parameter theory, 2–4, 94,
129, 138, 157, 182–184,
307, 365, 371, 393, 396,
403–405

Uniform-density ellipsoid model,
101

Uniform-density sphere model,
149, 159, 274, 319

Uniform-expansion approxima-
tion, 102, 103, 105, 108,
118, 120, 165, 171, 175,
220, 306–308

Unperturbed chain, 44, 46, 69,
74

Unperturbed molecular dimen-
sion, 44, 70, 371, 376,
393, 396

determination of, 371–377
Unperturbed state, 44, 371, see

also Theta state
Ursell–Mayer theory

of imperfect gases, 79, 87,
139

Variation principle, 114–116
Velocity gradient, 260, 264, 317,

318
Vinyl polymers, 35, 37, 38, 43,

46
Virial coefficients, 2, 4, 138, 146–

149, see also Second,
Third virial coefficients

Virial expansion
for gas pressure, 146–147
for osmotic pressure, 138,

147–149
Viscosity

internal, see Internal vis-
cosity

intrinsic, see Intrinsic vis-
cosity

non-Newtonian, see Non-Newtonian
viscosity

Viscosity coefficient, 259–261
Viscosity constant, 274, 293, 294,

296, 302–305, 307–309,
313, 315, 328, 339, 341,
371, 389, 394

Viscosity function, 296, 303, 304,
341, see also Viscosity
constant

Viscosity-radius expansion fac-
tor, 305, 371, 372, 389–
391, 404, see also In-
trinsic viscosity

Fixman (boson-operator) the-
ory of, 309–315

Kurata–Yamakawa theory of,
305–307, 315

Yamakawa–Tanaka theory
of, 391

Volume effect, see Excluded vol-
ume effect

Wang–Uhlenbeck method, 8, 18–
21, 25, 29, 52, 83, 133,
152

Weight-average molecular weight,
205, 224

of copolymer, 237–240
Weissenberg effect, see Normal

stress effect
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Wormlike chain, 53, 54, 404
cubic approximation for, 336,

337, 342
distribution of the end-to-

end distance of, 57, see
also Daniels distribu-
tion

Hearst–Stockmayer approx-
imation for , see cubic
approximation, below

intrinsic viscosity of, 338,
340

effect of excluded volume
on, 341–343

mean-square end-to-end dis-
tance for, 53, 56, 57

mean-square radius of gy-
ration for, 56

moments for, 53, 57
persistence length of, 53, 54,

343
Ptitsyn–Eizner approxima-

tion for, 336–337
rotatory diffusion coefficient

of, 338
sedimentation coefficient of,

340
effect of excluded volume

on, 343
treatment of

as a space curve, 54–56

Z-average mean-square radius,
223

Z-average molecular weight, 223,
224

Zimm plot, 217, 218
Zimm–Stockmayer relation, 24,

47, 93


