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100 Molecular Weight Distribution and
Average Molecular Weights

[Problem A1]

Select at random an unreacted functional group in the polycondensa-
tion of a bifunctional monomer. Let p denote the probability that the
other end (functional group) of that monomer unit has condensed. It is
assumed that p is independent of the length to which end that monomer
unit is attached. Show that when p is very close to unity, the number

distribution of length j chains, f;, is represented by

i = @xxa(—oj)) (1)

where (j),, denotes the number-average degree of polymerization of the

polycondensate.

[Solution A1l]

The probability that the chain consists of at least 7 monomer units
is given by p’~!. The probability that any particular group is not con-
densed is 1 —p. Hence the probability that the chain is limited to exactly
j monomer units is p? ~1(1 — p). If there were NS, monomer molecules
at the beginning of the polycondensation, the total number of molecules
remaining is N, (1 — p). Therefore, the number of chains consisting of j

monomer units, Nj, is expressed by

N;j = Npp' ' (1~ p) (1.2)
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Thus
i = e
7 total number of molecules in the system
p1(1 - p)? -
R (13)

211 —p)?

The number-average degree of polymerization, (j),, is defined by

Gin=_il; (1.4)
j=1
Substitution of Eq.([3]) gives

(J)n = (1.5)

1-p

Solving this for p and putting the result in Eq.([L3), one gets

= (1 - <j1>n>jl (16)

If p is close to unity, (j),, is very large. For this case, the approximation

1 (1 1 ><j>n<j/<j>n>
T\ O

=7 1>neXp< ) (1)

holds if j is not comparable to unity.




[Problem A2]
Show that in the copolymerization process of a monomer A and a
monomer B, the molar concentrations, [Ma]; and [Mg];, of unreacted

monomers A and B in the system at time ¢ obey the equation

d[Ma];  [Mali ra[Mal: + [Mg]:

= 1.8
A[Ms); ~ (M), AL, + 7o (M), (18)
Here 74 and rp are defined by
kaa kB
=— = — 1.9
Tk T ke (1.9)

where kyy, (x, y =A, B) denotes the rate constant for the addition of a

monomer y to the chain with a monomer x as its active end unit.

[Solution A2]
The rates of change of [Ma]: and [Mg]; may be expressed by

d[May]¢

T —kaa[Male[Pr]: — kBa[Mal:[Phle (1.10)
d[JiB]t = —kas[Mz]:[PX]: — ke[Ms]:[P5]: (1.11)

where [P}]; denotes the molar concentration of copolymers which have
the monomer A as its active end unit, with the corresponding interpre-

tation for [Pj]:. We have the additional condition
kBA[MA]t[Pﬁ]t = kAB[MB]t[PX]t (1.12)

because in a long copolymer chain the sequences of A monomers only
and those of B monomers only appear alternately. division of Eq.([10)
by Eq.(CII), with the consideration of Eq.(LI2), leads to the desired
expression for d[Ma]:/d[Mg]:.

[Comments]
The quantities rp and rp are called the reactivity ratios of monomers
A and B, respectively. Equation (I.T2]) is strictly valid for infinitely long
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copolymer chains. When this equation holds, the system is said to be in

the statistically steady (or stationary) state.

If we put

M M

d[Male _ 7 [Mal: (1.13)

d[ Mgl [Mg]

the relation for f given in the problem may be rewritten in the form
p(f=1) _p°
— L ="_rp—1TB 1.14
7 7 (1.14)

In the initial period of copolymerization, in which the rates of conversion
are low, p may be replaced in a good approximation by its initial value
po, which can be varied by changing the amounts of the monomers fed
into the system. For the approximation p = pg the value of f should
be independent of time, as can be seen from Eq.(LI4), and it may be
determined by measuring the average composition of the copolymers
produced in the initial period of copolymerization. In this way, we may
obtain values of f for a series of different values of py, and may plot
them in the form of po(f —1)/f versus p2/f. according to Eq.(LT4), the
resulting data points shoul follow a straight line, and rg and ra may be
evaluated from the intercept and the slope of the line, respectively. This

type of plot is called the Fineman-Ross plot.



g(M)

[Problem A3]

Calculate M,,, M,,, and M, for a sample whose g(M), the weight

distribution of M, is represented by a triangle as shown above.

[solution A3]
g(M) may be represented by

AM (0 < M < My)
g(M) =< —AM +2AM, (Mo < M < 2My)
0 (2M0 < M)

The factor A is to be determined from the condition that fooo g(M

1, giving A = 1/MZ. Thus
_ IS g(M)dM

& G

M,

My
= = 0.721 M
2In2 0

o IS Mg(M)dM
Jo~ g(M)dM
= MO

M IS M2g(M)dM
T Mg(M)dM
_TM,

6

)dM =

(1.15)

(1.16)

(1.17)



6 10 Molecular Weight Distribution and Average Molecular Weights

[Problem A4]
Obtain the expressions for M,,, M,, and M,, of a polymer sample with
the (weight) distribution of molecular weight M given by

exp(~52/4)_{  [m(M/M")]?
M By p{ fi2 }

where M* and (3 are adjustable (positive) parameters. M, is the viscosity-

9(M) = (L18)

average molecular weight defined by

M, = UOOO g(M)M‘”‘dM} v (1.19)

[Solution A4]
Let us calculate

M, = [/000 g(M)Mde] v (1.20)

k= -1, a, and 1 correspond to M,,, M,, and M,,, respectively. Putting

M = M*e* (1.21)
we obtain
o [ e 2l
Since
[ s o o1
S (-2
=\/Tfexp [ﬁQ(k: 1)2] (1.23)



M, = M*exp [W}
Thus 9
M, = M*exp(i)
M’U - M*eXp<ﬂ2(24+ OL))
M, = M*exp(%?)
Hence
Y =ex 762(1 +a)
A
M, 32
ﬁ exp( B) )
M, — ex _52(1_04)
M, P 1

For example, when 8 =1, i.e., M,,/M,, = 1.649,

MU—OSS f =0.5
i, 2 or a=0.
M,

MZ):O.951 for a« =0.8

[Comments]

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

The g(M) defined by Eq.([I8)) is usually called the logarithmic normal

distribution of M. For this distribution function
62
M, M*exp( ), M,y = M*exp<

and

(1.33)

(1.34)
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1

—

G(M)

[Problem AS5]

Suppose that the curve in the figure represents the integral weight
distribution of molecular weights for a polymeric substance. Prove that
the area of the shaded region is equal to the weight-average molecular

weight of the substance.

[Solution A5]

M, = /OO Mg(M)dM (1.35)
0

where g(M) is the differential weight distribution of M. Since g(M) =
dG(M)/dM [G(M) is the integral weight distribution of M|, Eq.([359)
may be written

M, = /0 MdG(M) (1.36)

where one has considered tha fact that M = 0 and oo correspond to
G = 0 and 1, respectively. One easily sees that the integral in Eq.([L30)

represents the area of the shaded region in the above graph.



[Problem AG6]
Show that M,,/M,, and M,/M, are measures of the spreads of f(M)
and g(M), respectively. Here f(M) and g(M) are the number and weight

distributions of molecular weight M in a given polymer sample.

[Solution A6]

From its definition one finds that M, represents the centroid of an
f(M) curve. Hence the standard deviation of f(M), o,, may be defined
by

n

o /OO(M — M,)?f(M)dM (1.37)
0

and the ratio o, /M, may be regarded as a measure of the spread of
f(M). From Eq.[37) it follows that

2

o _ 1 /OO M2f(M)dM
ME - M3 Jo

2 o0 o0
E/o Mf(M)dM+/O FOMYAM
M

=—2_1 1.38
i (133)

Hence 12

o M,

R e | 1.

i (e ) 09
which indicates that M,,/M,, is an appropriate measure of the spread of
f(M).

In a similar way, one can show that

1/2
Ow M,
— = -1 1.4
M, (Mw ) (1.40)

where o, is the standard deviation of g(M), defined as
o2 :/ (M — My)*g(M)dM (1.41)
0

Hence, M, /M,, is a measure of the spread of g(M).
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[Problem A7)
Show for any polydisperse sample of polymer that

My, <My <M, <M,;1<- (1.42)

[Solution AT]
Define A and B by

N N
= (G g ) (1.4

N
= () _giMm)? (1.44)
i=1

where N is the total number of different molecular wights in the sample,
g; is the weight fraction of the :—th component with molecular weight
M;, and m is an arbitrary number. It can be shown easily that

N—1

N
A-B= > gig; (M M;)™ f(M; /M) (1.45)

1=1 j=1i+41

where

fw) = (f - %) (1.46)

The function f(z) is positive for all positive x, except at = 1. This

means that A > B for any polydisperse sample. In other words,
N 1 N
i g M > 2im1 9iM"
N N -
Zi:1 giMim Zi:1 gz’Mim !

unless the sample is monodisperse. By putting successively m = —1, 0,
1, 2,-- - we obtain from Eq.(I47) the desired in equalities.

(1.47)
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[Problem AS|
A protein called hemocyanin self-associates to a pentamer. The pen-

tamers then tend to stack on each other to produce elongated particles.

K A
Monomer ——  Pentamer ——  Decamer

!/ !
—  Pentadecamer = ——  Higher Aggregates

Obtain the expression for the weight-average molecular weight M,, of
a mixture of the monomer protein and these aggregates of it, assuming
the ideal association for any pair of the successive species and also the

associations between aggregates to be indefinite and isodesmic.

[Solution AS]

The equilibrium relation between the monomer and the pentamer is
cs = Kc? (1.48)

where ¢y and c5 are the molar concentrations of the monomers and the
pentamer, respectively, and K is the molar equilibrium constant between
these two species. Denoting the molar concentration of the aggregate

consisting of ¢ pentamers stacked by c5(;), we have a series of equilibrium

relations:
C5(i+1) = K/C5(,L') (Z = 1, 27 . ) (149)
Combination of Eqs.([[48) and (L49) gives
sy = (KK () (i=1,2,--9) (1.50)

The total molar concentration, C', of the mixture is expressed by

C =c1+c501) + C52) +Cs03) +

=C) + Z(K/)i—l(K)i(cl)fﬂ (1.51)



1210 Molecular Weight Distribution and Average Molecular Weights

The sum can be evaluated to give (with the assumption KK'c§ < 1)

Kct
C= (1 + 1>c1 (1.52)
1-KK'c}

The required M, is represented by

M1201 + Zz1(5M12)2C5(Z)
Mw = 9 .
M161 + Z¢:1(5M12)05(i)

(1.53)

where M; is the molecular weight of the monomer. Introduction of
Eq.([A0) into Eq.([T53), followed by evaluation of the sums, yields

25 KCH14+KK'c?)
L+ (1—1KK/C“;’)3 !

5Kct
L+ akray

M, =M (1.54)

Equation (L54)) combined with Eq.(L52) determines M,, as a funtion
of C, but this functional relation cannot be obtained explicitely, because

Eq.([C52) cannot be solved for ¢; in analytical way.
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[Problem A9]

Find the number-average degree of polymerization as a function of
time when a monodisperse sample undergoes random scission. Assume
that each chain is not broken at more than one position at the same

time.

[Solution A9]
The molar concentration of j-mer at time ¢ is denoted by [P;];. Then
the rate of change in [P;]; is represented by
d[p j]t

Lo G-Il Y [Pal (G=120m) (155)

m=j+1
where k is the rate constant for scission of a bond, and n is the degree
of polymerization of the given monodisperse sample. The first term on
the right hand side of Eq.([.53]) represents the rate of diappearance of
j-mers, and the second term is the rate of formation of j-mers from
any m-mer (m > j). Note that a j-mer molecule can be formed in two
different ways by rupture of a sequence of j bonds from either end of an

m-mer. The initial conditions for the system of Eqs.([L55) are
[Pilo=0 for j<n (1.56)

The desired solutions to Egs.([L55]) can be obtained in elementary way,
giving

[P]: = [Paloexpl—k(n — 1) (L57)

[Pjle =[Pn]oexp[—=k(j — 1)t][1 — exp(—kt)]
x{24+ (n—1—j)[1 —exp(=kt)]} (j<n) (1.58)

The total molar concentration [P]; at time ¢ is given by

[Py = [Pu) + i[Pj]t (1.59)
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Substitution of Eqs.(hT) and (L58) gives

[P]: = [Pu]olz +n(1 — )] (1.60)
where
x = exp(—kt) (1.61)
The number-average degree of polymerization P,(t) at time ¢ is repre-
sented by
2 =1 3lP
P,(t) = = ——— 1.62
== (1.62)
Substituting Eqs.([[57) and([LE])), we find that
ekt -1
P, = + (1 —e* (1.63)
n

which gives P, =n att=0and P, =1 at t = co. These limiting values

of P, would have been anticipated intuitively.
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[Problem A10]

Suppose that addition polymerization initiated by a monofunctional
reagent proceeds without termination. Obtain the expression for the dis-
tribution of polymerization degrees at time ¢ from the start of reaction.

It is assumed that the initiation of polymerization takes place instantly.

[Solution A10]
The polymerization reaction is represented schematically by

k
L, +M — L,

where L; represents the polymer chain with the degree of polymerization
7, M represents the monomer, and k is the reaction constant.

The molar concentration of j—mer and monomers at time t are de-
noted by [P;]; and [M], respectively. Then by simple physical consid-

erations we obtain

[P
dt _k[M]t[Pl]t (1.64)
d[c];g]t = kM ([Pjle = [Pj—ale)  (G=2,3,-) (1.65)
dM]; >
e *k[M]t;[Pj]t (1.66)

The initial conditions for this system of kinetic equations are
[Pilo=1], [Plo=0 (>1) (1.67)

with [I] being the molar concentration of initiators.

For simplicity, it is assumed that % is independent of time. Then it
can be shown easily that the system of equations above subject to the
conditions (67 is given by

(G=12-) (1.68)
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[M]; = [M]o(l - [15]]09> (1.69)
with ]
_ 0 _ ekl )
0= ) (1.70)

The [M]o represents the molar concentration of monomers initially fed
into the reaction vessel.

The mole fraction of j-mers is given by

oy Pl
fi(t) = S (P (1.71)
Substitution of Eq.([68)) yields
—09]’—1
fi(t) = 76(]. = (1.72)

which is the desired distribution of polymerization degrees at time ¢.
The number-average and weight-average degrees of polymerization at
time ¢ are denoted by P, (t) and P, (t), respectively. These are expressed

in terms of f;(t) as

P, (t) = ijj(t) (1.73)
S, 126(0)

Pl = T 70 1

Introduction of Eq.([C72) gives
Py(t) =1+ (1.75)
P,(t) = 1+9+$ (1.76)

Hence Pu(t)
P:(t) =1+6(1+0) (1.77)

Equation (70) indicates that 6 approaches [M]o/[I] as t goes infinity.
Thus we get for polymerization equilibrium
[M]o

P,(c0) =1+ il

(1.78)
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Py(00) =1+ []5]]0 T [ﬁ]&]o (1.79)
Py(o0) [M]o[1]
Paoo) ~ {0+ M (150
and also o
£i(00) = e~ Mlo/11] (U\@oi[fll)); ' (1.81)

This equation gives a very narrow distribution of j if [M]o/[I] > 1.
For example, for [M]y/[I] = 100, P,(c0) = 101, P,(c0) = 102, and
P, (o0)/P,(c0) = 1.01.

[Comments]
The distribution of j represented by the form of Eq.(72) or (L8]] is
called Poisson’s distribution. The present problem refers to the kinetics

of ideal “living” polymerization.
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20 Polymer Chain Characteristics

[Problem B1]
Show that the square radius of gyration, S2, for a molecule consisting

of n identical segments is expressed by

n—1 n

52 = % > ) R} (2.1)

i=1 j>i

where R;; is the vector connecting the i-th segment to the j-th one.

[Solution BI]
52 is defined by

1 n
SP=-3"8; (2.2)
n
i=1

where S; is the distance vector between the center of gravity of the
molecule and the i-th segment, and then a set of Sy, So, ---, S,, satisfies

the condition .
> 8i=0 (2.3)
i=1

From Eq.(Z3]) one obtains

Since
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One gets
n
:%ZS? ZSQ—*ZZR (2:6)
=1 =1 j=1
or
n n n n—1 n
IEEE D RTEFDIH T 1)
i=1 i=1 j=1 i=1 j>i

Note that R;; = 0 for ¢ = j. Substitution of Eq.(2.1) into Eq.([2.2) leads
to the desired relation (Z1I).

[Comments]
Taking average of Eq.(2.]) over all possible configurations of the mole-

cule, one obtains
n—1 n

T2 Z Z (2.8)

i=1 j>1
This is very often used in the statistics of chain molecules, either linear
or branched. For example, if the chain is freely jointed with bonds of
length b,

inn

(§%)= QZ > G-

1=1 j=i+1
2 n—1
= i(i+1)
oz il
=1

= %62 <1 - 7112) (2.9)
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We have a linear chain which consists of n + 1 identical segments

(small spheres) connected by bonds of length b. Assume that the bonds

are jointed freely. Then show that the mean square of S;, the distance

from the center of gravity of the chain to the j-th segment, is expressed

by

(52) = éan {1 - 3;(7;2_3)]

if n is sufficiently large.

[Solution B2]

We have _
j
S;j—Si= Y rp forj>i
k=i+1
i
S; —S;=— Z r, for j<i
k=j+1

where ry is the k-th bond vector. By definition

n

Zsl-:o

=0

From Egs.(2I1)), I2), and 2I3) it follows that

S; =2 _vjiri
i=1

where

¢jz‘=H(J—l)+m—1

with
H(z)=1 (x>0), H(x)=0 (x<0)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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With Eq.@I4
(8%)= <(Z Pjiri)?)
i=1
n
= b2 Z U (2.17)
i=1

because (r?) = b? and (r; - r;) = 0 (i # j) for freely jointed chains.
Introducing Eq.(2I5) into Eq.(2I7) and replacing the sum by an integral
under the assumption n > 1, we obtain

(82) = %nbz [1 - 39(22_])} (2.18)

which is the required expression.

[Comments]
From Eq.(2ZI8]) we find that

(S3) = (S2) = %1)2 (maxima of <S§>) (2.19)

b2
<Si/2> = % (minimum of (S?}) (2.20)
Thus, on average, the chain ends are found at the most remote places
from the center of gravity, while the center of the chain is located nearest
to the center of gravity.

Also we find that

_no” (2.21)
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[Problem B3]
For a linear chain containing N + 1 segments connected by N bonds
of length b, show that

N
D (P LTS (222

if the internal rotation about each bond is independent. Here Ry, is the

vector connecting the 0-th segment to the p-th segment.

[Solution B3|

We use the general expression

1 N—-1 N
(5%) = Wt ; j§1<Rij> (2.23)

For the chain under consideration, (R%) for pairs of ¢ and j with |j — i
fixed are all equal, and there are N + 1 — p pairs of ¢ and j which satisfy
the constraint j —4¢ = p > 0. From these two facts we may rewrite
Eq.([223) as follows:

($%)= ﬁ p:1(N +1-p)(RG,)
. %ﬂ ZN(l - 1)<R§p> (2.24)

which is the desired formula. Note that this equation does not hold for
chains which involve interdependent bond rotations or which undergo
excluded-volume effects, because <Rfj> in these chains depend on indi-

vidual values of 7 and j, i.e., not a function only of |j — i|.
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[Problem B4]
Find the expression for (S?) of a chain composed of N thin rods of

length L which are connected by universal joints.

[Solution B4|
The vector R,, from a chain end (the origin) to a point in the n-th

bond (rod) is represented by

n—1
R, =LY u;+ Lxyu, (2.25)
j=1

where u; is the unit vector for the j-th bond, and z, is the fractional

variable. Applying Eq.(228) to the general relation for (S?), we obtain

(8%) = 2N2ZZ// (Ry, — Ryp)Hda,day, (2.26)

n=1m=1

Ths may be rewritten

2 N 2 N-1 N
n=1 n=1 m>n
where
n—/ / )2 da,dal, (2.28)
Anm 7/ / mydenda, (2.29)
with

Vim = TpUp — Ty Uy, — Z u, (m>n) (2.30)
It can be shown that

1
A, ==, Anm:m—n—g (m > n) (2.31)
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where use has been made of tha fact that (u,-u,) =1 and (u,-u,,) =0
(n # m). With Eq.(231)), Eq.@2Z1) becomes

(8?) = %2 (N —1+ 2}v> (2.32)

[Comments]

When N = 1, Eq.[Z32) gives (S?)y—1 = L?/12, which is the well-
known formula for straight rods. For N = 2 the chain is called a once-
broken rod, and Eq.[232) gives (S?)ny—2 = 5L?/24. Thus the mean
square radius of gyration for a once-broken rod is 5/8 of that for a

straight rod of equal total length.
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[Problem B5]
For a freely jointed chain consisting of n bonds of length b, show that

ifn>1,

[ T O I BT
<xz%>f9nb 1 2n(%+‘7+lz J|)+2nQ(Z +7°) (2.33)

Here z; is the z-coordinate of the vector S; which connects the center of

gravity of the chain to its i-th segment (or bead).

[Solution B5]

It is obvious that (z;z;) = (y;y;) = (2:2;). Hence
1
(wirj)= 3 (xswj +yay; + 2i%)
1
=3(8:-8;)
1
= 5 l(S7) +(87) — (R3)] (2.34)
For the chain considered
1 3i(n — 9)
S7) = -nb® |1 - ——— 2.
8 = g1 - 2020 (2.35)
(R) = b°[i — (2.36)
Thus
1[2nb?  i(n—i)b®  jn—50* . .,
(waay)= g | - I I i
’be2 3 . . . . 3 .2 )
9{ — g ity Hli=gl)+ 55 +57) (2.37)

which is the required formula.
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[Problem B6]
Suppose that a linear chain of n identical bonds is divided into two
subchains I and II, which contain m and n—m bonds, respectively. Show
that, with x = (m+1)/(n + 1),
1
L?) = ———
(L) z(1—x)

where L is the distance between the centers of gravity of subchains I and

[(S%) —2(S%)1 — (1 = 2)(S*)11] (2.38)

II, and (S?), (S?);, and (S?);; are the mean-square radii of gyration of

the entire chain, subchain I, and subchain II, respectively.

[Solution B6]

One may rewrite the genaral expression

(5 = s o R (239)

=0 j=0

(8% = ORI [ZZ<R”> + Z (R%) +22 Z (R%)
1=0 5=0 1=m+1j=m+1 =0 j=m+1
(2.40)
But
1 m m
50D (R = (m+ 1S, (2.41)
i=0 j=0
1 & &
3 > (RY) = -m*Sn (2.42)
i=m+1 j=m+1
and . . . .
YD RH=) > (L+sf -8 (2.43)
=0 j=m+1 i=0 j=m+1
Since
Yosi=0, > sf=o,
1=0 j=m+1

Emj En: S} - Si= (isﬁ)-( > sih=o0 (2.44)
=0

=0 j=m+1 j=m+1
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Eq.([243) becomes

Yo > RE) =m0 —m)(LPNS*) +(5%))  (245)
where one has used the relations (S%); = (m + 1)~! 37" (SI?) and

(S%)rr = (n—m)~* Z?:m+1<8£12>-
With Eqs.(240), (Z42), and (Z45), Eq.(240) gives

@%=(m+‘)1§m+(”‘m)7§nf

n+1 n+1
TS+ (8% + 02 (246
whence )
(L) = (%) — (8% — (L-a)(S)u] (247

with z = (m+1)/(n+1).

[Comments]
If the chain is Gaussian and both m and n — m are sufficiently large,

Eq.([Z38)) gives an interesting relation:

(L?) = V2(5?)1/2 (2.48)
For such a chain one has
nb? mb? n —m)b?
<52> = 6’ <S2>I = 5 <S2>H = % (2.49)

where b is the length of a bond. Hence
(8% =a(S?),  (S%)rr = (1—2)(5% (2.50)

Substitution of these into Eq.(2.38]) leads to Eq.([2.4]).
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[Problem B7]

For a polymer molecule composed of n identical units, show that

8= RE) + S0 (RL) - (57) (251)
i=1 i=j+1

Here S; is the vector connecting the center of gravity of the polymer to
its j-th unit, R;; is the vector connecting the i-th to the j-th units, and

(S8?) is the mean-square radius of gyration of the polymer.

[Solution B7]

From chain geometry one readily write down the expressions:

(S7+87—Rj,) for j=>i (2.52)

| — N

S, S, = 2(S?+S?—R§i) for j <i (2.53)

Summing both sides over i, one gets

n J
i:sf +nS? - ) R}, - Zn: RZ =0 (2.54)
i=1 i=1

i=j+1

because S; satisfies the condition for the center of gravity that
Z S, =0 (2.55)
i=1

Taking average over all possible conformations, Eq.([2.52) gives

9= CODRL) + DRI - SSH) (256)
=1 =741 =1

Use of the definition, (S?) = (1/n) >, (S?), for mean-square radius of
gyration, leads to Eq.(2.51]).
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[Problem B8]
Find the expression for (S?) of a block copolymer of A-B type, as-
suming that each block is sufficiently long and may be treated as freely

jointed.

[Solution B8]
Apply the general expression for (S?) of copolymers of general type,
i.e.,
1
(8?) = i 3OS mim;(R) (2.57)
j>i
where M = ). m; = total mass of a molecule. For our copolymer we
have
DD mim(RE) =NimA(S%) 4 + Ngm5(S*)
j>i
Na Ng

+ 30 mamp(R],,,) (2.58)

pa=lgp=1
where N4 and (S?)4 denote the number of segments contained in and
the mean-square radius of gyration for the isolated A block, respectively,

with the corresponding definitions of N and (S?) 5. Now, (R?

pAqB > may

be written
(R2,,,) = (Na = pa)bh + (a5 — 1)b%; + b (2.59)
because both A and B blocks are assumed to behave like freely jointed

chains. Here by = A— A, bg = B— B, and byg = A — B.
Substitution of Eq.([Z359) gives for Ny > 1 and Ng > 1

Na Np 2 2
N4N, NN
> mAmB<RiAqb>=mAmB( ATBy 4 = Ab%) (2.60)
pa=lgp=1
Thus
1 m3 N3 m2 N3
<52>: _ A Abi‘Jr B Bsz
(mANA+mBNB) 6 6

+%(N§N3bi + N%NAbQB)} (2.61)
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where the well-known formula ((S?) = Nb2?/6) has been used for (S?) 4
and (S?) . If the masses of the blocks A and B are denoted by M4 and
Mg, respectively, Eq.(261) may be written

1

<SQ> = G(MA +MB)2

[Ma(Ma +3Mp)Nab% + Mp(Mp +3Ma)Npb%]
(2.62)
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[Problem B9]
Show that the mean-square radius of gyration, (S2);, of a branched

chain molecule which containes no ring portion is represented by

2 p p
(S2), = % <;L Zni — é Zni + Z nknkjnj> (2.63)
k=1 k=1 (K,5)
if each subchain, i.e., a portion of the chain between adjacent branch
points or between a chain end and its adjacent branch point, behaves
as a random-flight chain of bond length b. In Eq.(263]), n is the total
number of beads in the chain, ny is the number of beads contained in the
k-th subchain (k = 1,2,---,p), and ny; is the number of beads in the
chains intervening between the k-th and j-th subchains. The symbol
(k,j) means the sum taken over all different combinations of k£ and j

(k # ).
Equation (2.63) is called Kataoka’s formula for branched chain mole-

cules.

[Solution B9)

The general expression

(5%) = 27112 > > (rls) (2.64)

all combinations of « and 3

holds for branched molecules as well. If beads o and ( belong to the
same subchain, say the k-th chain, one obtains by using the knowledge

about random-flight linear chains

1 9 b*n3
3 Z Z(raﬁ> x> —= (2.65)

fixed k

When beads a and 8 belong to different chains, say the k-th and j-th
subchains, respectively, one obtains

ng 1y

% Yo D A=Y Y (g +f+g) (2.66)

fixed k and j f=1g=1
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where f and g are new parameters to count the beads on the k-th and
j-th subchains, respectively, with f = 1 and g = 1 assigned to their
teminal beads. The double sum in Eq.(266) may be evaluated to give

1 ni(n; +1 ne(ng +1
3 Z Z<I‘iﬁ>b2 [nknkjnj + ng it ]2 ) +n; k( ; ):|
fixed k and j

(2.67)

2 2
nEny + ning
2

~ p? {nknkjnj +
It should be noted that the symbol ~ in Egs.(2.63), (2.64), and (ZE1)

implies “being valid for large ny, n;, and ny;.”

With Eqgs.(265) and (Z.67), Eq.([264) gives for (S?2),

D1 1
(5%)y = w2 [6 Zni + 5 Z(nkn? +nng) + Z nknkjnj:| (2.68)
k=1

(k.4) (k,35)

where Z(k-, ;) stnds for the sum over all different combinations of k and
j with k& # j. Since

Il
N |
g
QS
NE
S
ol
M=
oo
+
|~
NE
oo

j=1 k=1 k=1 k=1
n L 1 P
:§Zni—§2ni (anzn) (2.69)
k=1 k=1 k=1

Eq.([258) can be written

B2 (& 1 <&
=G (3t e+ Smgny) @10
k=1 k=1 (k,5)
which is Kataoka’s formula.

The ¢ factor is defined by

(2.71)
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where (S?); denotes the mean square radius of gyration of a linear
chain with the same number of beads and the same bond length as

the branched chain. Since

(2.72)

one obtains

6 (N~ 5, 1L 3
9= (2 an 3 ;nk + Z nknkjnj> (2.73)

k=1 (k.3)
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[Problem B10]
Use Kataoka’s formula for branched molecule to derive the g factor for

a star molecule consisting of p equal random-flight chains.

[Solution B10)
For star molecules Kataoka’4 formula (2.73)) in [Problem B9] gives

6 (n < 1
k=1

k=1

because ny; = 0 for k£ # j. For the regular star considered here

Nne = — 2.75
» (2.75)
Hence Eq.([2.74) becomes
3 2
g=—(1- )
p( 3p
_3p—2

- (2.76)

This gives g = 1 for p = 1 and 2 as should be expected. g = 7/9 for
p=3,9=5/8 for p =4, and so forth.
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[Problem B11]
Calculate the g factor averaged over an assembly of star molecules
each of which sonsists of p branches of statistically varying lengths. It

is assumed that each branch behaves like a random-flight chain.

[Solution B11]
Using Kataoka’s equation (ZG63]) presented in [Problem B9], one ob-

tains for the desired g
n < 1 o
= (5 b= ) 2
=1

where (n?),, stands for the average of n} over all values of nj, possible
under fixed n (= >_¥_, ng) and p, with a similar definition of (n} ).

Since

2 _ 2 n2

<nk>np - p(p7+ 1) (2.78)

3 _ 6 3
(i) np = (p+1)(p+2) (2.79)

Eq.([2X7) becomes
e[t 2

NP ES R CER PR

O (2.80)

e+ Dp+2)
It would be of interest to this with Eq.(2.76]) in [Problem B10].
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[Problem B12]

Given a linear chain whose repeat unit is the type -X-Y-, derive the
expression for (R?) under the assumption of free rotation about each of
the bonds. X =Y =0b1,Y — X =by, ZXYX =0, ZYXY = 0.

[Solution B12]
The total number (even) of the bonds is denoted by n. Then, under

the assumption made in the problem, we find that

2 2 n/2—1
ILEIED D D S CE LRSS

J>i =1 m=1k=0,l<2k+m

This may be written

n/2—1
n
E E r; 1) r1 ro) + E <2k)[<1‘1'r2k+1>
i>i k=1

+(r2 - Tort1) + (r1 - Togy2) + (r2 - Torg2)] (2.82)
Since for freely rotating bonds

(ry-ro) =bibary,  (r1-Topp1) = b (v172)F
(r1 - ropso) = bibo(1172)"v1,  (r2 - Topy1) = biba(1172)" 72
(r2 - Topya) = b3(1172)",

where v; = —cosb; (i =1,2), Eq.(2.82) becomes

1
Z Z<I‘i ~I‘j> :gble’Yl + |:b1b2 <’Y1 + >
>i Y1
n/2—-1

+0? +b§} > <; - k) (m)® (2:83)

k=1
Evaluating the sum, we arrive at

n 1 Y172
DN (riry) =S bibama + |bib + — +b2+b2}}
< g> 2{1271 [12(’)’1 71) 1 2 1— 172

j>i
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1
- {5152 (71 + ) +b7 + b%}
71

y 1721 = (1172)"?]

2.84
(1- 7172)2 ( )
If this is substituted into
(R?)=>"> (ri 1))
i=1 j=1
n n
= §<T%> + §<7‘§> + QZZW “T;)
j>i
n
= §(b%+bg)+2zz<ri-rj> (2.85)

j>i

the desired expression for (R?) is obtained.

[Comments]

For the special case Y = X, we have #; = 0, = 6 and by = by = b.
Then, Eq.([285) with Eq.(Z84) gives
2527] S 20%9(1—=9")
1—n (1—7)?

()R] e o

(R?)= n[bQ +
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[Problem B13]

Compute the characteristic ratio for unperturbed linear polymethylene
chains at 140 °C, assuming the rotational isomer model in which (1)
internal rotations about successive bonds are independent, (2) bonds
are not allowed to take the cis conformation, and (3) the difference in
potential energy, Ae, between the gauche and trans conformation is 500

cal/mol.

[Solution B13]

Under the condition (1) and for the reason that the internal rotation
about each bond is symmetric about the trans conformation, the char-
acteristic ratio Cy, is

== (T () e

where 6 is the valence angle, and (cos ¢) is given, with the conditions (2)
and (3), by

J” cos dexp[—u(¢)/kT]d¢

e )= P u(@)/K T3
1—71
T 1+2r (2:88)
where
7 = exp(—Ae/kT) (2.89)
Thus ) 9 o4
— cos T
Coo = <1c089>( 37 ) (2:90)

Substituting cosf = —1/3 (appropriate for hydrocarbon chains) Ae =
500 cal/mol, and T' = 140+273 K, we obtain

Coo = 3.11 (2.91)

This value is far off the experimental values of C, which range from 6
to 7.
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[Problem B14]
For Gaussian chains in which the distribution function, P(R), of the

end-to-end vector R is represented by

3 \Y? 3R>

with n = total number of bonds and b= length of a bond, show that

(R2) — @l’;l)! (”2) (p=1,2,--) (2.93)
and 1/2
R = (25) 291

[Solution B14]

To derive the result (2.92) it is convenient to use the generating (or
characteristic) function Q(s), which is the Fourier transform (three-
dimensional) of P(R). Thus

Q(s) = /P(R)exp(is -R)dR (2.95)

Expanding exp(is - R) in powers of is - R, we obtain

Qs)=> % / (is - R)*P(R)dR (2.96)
k=0
But
Sk Iy ) o) 5
/ (s-R)*P(R)dR= 5 /0 (cos 0)F sin 0dO /0 RYP(R)4nR?dR

sk

= k+1<R’“> (k = 2p)

=0 (k=2p+1)
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because
(R¥) = 4r / R*2P(R)dR
Thus
_ - (_1)17 2p\ .2p
Q(s) = pz:(:) W<R )s (2.97)

On the other hand, direct substitution of the given P(R) into Eq.([2.94)
yields

oo pm 3 3/2 3R2 ) ] 5 .
Q(s)= 27r/0 /0 sz Pl g2 +isRcosf | R” sin 0dRdf

3 \*4r (7 3R?
2 = 2 g d
<27T7’Lb2 > S /0 exp < 7 > sin(sR)RdR

_N Y (’f)psn (2.98)

where use has been made of the formula:

/ ze ™ sin(bz)dz = ?be*lﬂ/4 (2.99)
0

Comparison of Eqs.([297) and (29]) gives Eq.([293).

The calculation of (|R|™!) goes as follows:
[o%s} 3/2 2
3 3R
R =4 — - d
(R[™) 7r/0 R(Zﬂn62> exp( 2nb2> R

6 \1/2
= — 21
(wan) (2.100)
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[Problem B15]

Suppose we have a linear chain which consists of two Gaussian chains
1 and 2. The chain 1 contains n; bonds of length b; and the chain 2
contains ny bonds of length by. Obtain the expression for P(R), the

distribution function of end-to-end vector R for the composite chain.

[Solution B15]
The distribution function P;(R;) for end-to-end vector R; of the i-th
subchain (i = 1,2) is given by

3 \%? 3R2
Pi(Ri)Z(Qﬂmlﬁ) eXp<_2nib2> (2.101)

The generating function Q(s) of the composite chain is

Q(s)= /P(R)exp(iR~s)dR

= [/ Pl(Rl)exp(iRl . S)deH/ PQ(RQ)eXp(iRQ . S)dRé?].OQ)

Substitution of Eq.(ZI0I) gives

Q(s) = exp[—(nlbf + ngbg)SQ/G] (2.103)
Hence
3 3/2 3R2
P =|— —_— 2.104

It follows from this expression that

(R?) = m1b? + nob3 = (R?) + (R2) (2.105)

[Comments]
For a linear chain which is composed of m freely jointed chains con-

taining n; bonds of length b; (i =1,2,---,m) we have

P(R) = <27r3<b2>) 3/2exp (-%) (2.106)



where

m
n = E ng,
i=1

I, o,
%) = - > nib;
i=1

43

(2.107)
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[Problem B16]
For linear and single-ring Gaussian chains, each containing n bonds of
length b, show that if n > 1,

(S%)r = %(SQN (2.108)

Here r and [ indicate ring and linear chains, respectively.

[Solution B16]
The distribution function P(R;;) for the ring chain, where R;; in the
vector connecting the i-th segment to the j-th segment, is given by
3R?, 3R2
P(R;j) = Cexp|——5—2— —_— 2.109
) = Cosp| gy g o g = @109
with C' being a proportionality constant. The C may be determined

from the normalization condition

/P(Rij)dRij =1 (2.110)
Thus
3 \%? 3R,
P(Ryj) = <277626) exp(— 2b25) (2.111)
where i
Ty R
B=1j zl(l - > (2.112)
With Eq.(ZI1I)
(RY)) = /R?jP(Rij)dRij = gv? (2.113)

Introduction into the general expression (S%) = (n+1)72 32, >2(R3;)

gives, after the sum is replaced by an integral,

2 1
= — 2.114
(S%) 12nb ( )

In the same approximation, we have
1
(%) = 6”b2 (2.115)

From Egs.2I14) and @ZII5) the desired relation between (S?), and
(5?); follows.
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[Problem B17]
Show that
nb* 1, j—i
for a flexible Gaussian ring polymer composed of n (>> 1) units of bond

length b. Here S; is the vector connecting the i-th unit to the center of

gravity of the polymer.

[Solution B17]
The mean-square distance between the ¢-th and the j-th units (R%)T

and the mean square radius of gyration of the ring (S?), are given by

o J—t S
(RE)r=(—19) <1 - n>1’2 (j > i) (2.117)

o i—j C
(RE))r = (i —J) (1 - n>b2 (i > j) (2.118)

2 L o
=5 2.11
(8%), = L nb (2.119)
If Egs.(2117), 2I18), and (ZI19) are introduced into the general rela-
tion .

(S:-5)) = 5[(S7) +(82) — (B2) (2.120)

one gets the desired equation ([ZII6). Note that (S7) = (S?).
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[Problem B18]

In order to maintain a flexible chain undergoing microbrownian motion
at a given end-to-end distance R it is necessary to pull the chain ends
in the direction R by a certain force K. Show for a Gaussian chain
consisting of n equal bonds of length b that K is given by

3kT
K= @R (2.121)
where T is the absolute temperature, k£ is Boltzmann’s constant, and
(R?) = nb?.

[Solution B18|
Let the internal energy and entropy of the chain be denoted by E and
S, respectively. Then applying the first and second law of thermody-

namics one can write the relation
dE=TdS+ K -dR (2.122)
This gives
K= —T(gZ)E (2.123)
The Boltzmann equation for S in the present case reads
S=klnW(E,R) (2.124)

where W(E, R) designates the number of chain configurations realizable
at an energy E and an end-to-end distance R. Substitution of Eq.(Z124)

for S in Eq.([2123) gives

K_—kT(

(2.125)

OlnW
R )

Because W is proportional to P(E, R), the distribution function of R at
an energy level E, and since for the chain stated in the problem, P(E,R)
is given by

P(E,R) = (27T<3R2>>3/2exp <_2?£z>) (2.126)
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Eq.[ZI25) yields

Oln P
)

= <?]§2T>)R (2.127)

which is the desired expression (ZI12T]).

[Comments]
Equation ([ZI127) indicates that a Gaussian chain behaves like a spring
whose elastic modulus is 3kT'/(R?).
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[Problem B19]
A Gaussian chain consisting of n equal bonds of length b is atretched
at its ends to keep the end-to-end distance at a given value R. Show

that the distribution of # and ¢ for any constituent bond is given by

f(0,9) =

3R (3Rcos9> (2.128)

47nbsinh(3R/nb) P nb

Here 6 is the angle between r and R, with r being the vector representing
the bond considered, ¢ is the rotational angle of r about the direction of
R, and (0, ¢)sin 8dfd¢ is the probability that the orientation is found
between (0, ¢) and (6 + db, ¢ + d¢).

[Solution B19]
The probability that the chain has a particular configuration {r;}
(which represents a set of ry,rs, -+, r,, with r; being the vector for

the i-th bond) is proportional to
eutes) - wien(SB) ®R=Yr)  az)
w(rp )w(rg w(ry, )exp 5T = : r; .

where kT has the usual meaning, and w(r;) designates the probability
density of the i-th bond. For the chain under consideration w(r;) =
§(|r;| — b)/4mb?, where § is Dirac’s delta function.

From these considerations it follows that the distribution of 6; and ¢;
(these are 6 and ¢ for the i-th bond), f(6;, ¢;) is given by

f(0i,01) = CeXp<m]§;89i) (K =|K]) (2.130)

where C' is defined by

27
/ / (K beosb; ) sin 0;d60,d¢,

AnkT Kb
( b )blnh(kT> (2.131)
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Thus
_ Kbexp(Kbcos0/kT)

0 =
1(9,9) 4drkTsinh(Kb/kT)
where subscript 7 has been omitted because Eq.(ZI30) holds for any
constituent bond in the chain. According to Eq.[ZI2I) in [Problem

B18], one gets for Gaussian chains

(2.132)

3kT 3kT
Hence Eq.([2.132) is written
3R 3Rcosf
0 = 2.134
1(6.9) 4mnbsinh(3R/nb) exp( nb > (2.134)

which agrees with Eq.(Z128]).
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[Problem B20]

Suppose that the curve represents a wormlike chain. Let s be the
contour length of the chain from its one end to a point P and let u(s) be
the unit vector representing the tangent to the chain at P. Show that if

s> 5,
/

(u(s) -u(s)) = exp ( S ) (2.135)

q

where (- --) designates the average over all possible configurations of the

chain and ¢ is the persistence length of the chain.

[Solution B20)
For a freely rotating chain consisting of n equal bonds of length b the

statistical average of r; - r; (j > ) is represented by
(r; - r;) = b*(—cos )" (2.136)

where r; is the vector for the i-th bond and @ is the bond angle. Let
b and 6 tend, respectively to 0 and 7 in such a way that b/(1 4 cos®)
remains finite, say ¢. Also let i and j go to infinity so that bi and bj
remain at s’ and s, respectively. Then the chain tends to a wormlike

chain with a persistence length ¢, and Eq.([2I36]) becomes
(s—s")/b ,
(u(s) - u(s)) = lim (1 - > — e (s=5)/a (2.137)
- q

which is the required expression (2.I35). Note that, in this derivation,
r;/b goes to u(s) as b — 0. Though Eq.(2.I35]) is subject to the condition

s > s', one can show that

(u(s) -u(s')) = exp (—ls_s/l> (2.138)

q

regardless of the relative magnitude of s to s’.

[Comments]



o1

The quantity (u(s) - u(s’)) represents the correlation of the tangents
to a continuous space curve at two different points on it when the curve
is subject to thermal motion. The present problem shows that this
correlation for wormlike chains vanishes exponentially with |s — s, with
the rate of decrease becoming slower for larger ¢q. This implies that the
persisting length ¢ is a measure of the stiffness of wormlike chains. The
chain with infinite ¢ represents a rigid straight rod, while the chain with

zero q is regarded as perfectly flexible.
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[Problem B21]

Consider two different points P and P’, on a wormlike chain. The
contour lengths of the chain measured from its one end 0 to P and P’
are denoted by s and s’. Take the cartesian system (z,y, z) in such a way
that the z-axis is parallel to the tangent to the chain at 0. The polar
angles reffering to this coordinate system of the tangent vectors, u(s)
and u(s’), at P and P’ are denoted by (6, ¢) and (6',¢), respectively.
According to Saito, et al., the probability density (or Green’s function)
G(s,0,¢;5',0',¢') for the condition that u(s) has an orientation specified
by (0,¢) and, at the same time, u(s’) has an orientation specified by

(0", ¢") is represented by

Gls,0,6:5,0,) =33 exp[—W

n=0m=0

if s > s’. Here q is the persistence length of the chain, and

2n+1
27T(1 + 5m,0)

—m)!
+m)!

1/2
Yom(0,0) = { EZ ] P (cosf) cos(m¢p)  (2.140)
2n+1 (n—m

Y! (0,¢) =

nm(0:9) {%(1 T+ omo) (n+m
with 6,0 = 1 (m = 0) and 6,0 = 0 (m > 1) and P.*(z) being the
associated Legendre polynomial of z.

Using Saito’s formula for G(s, 0, ¢;s’,6’,¢’), show that

) 1/2
)J P (cosf)sin(me)  (2.141)

(u(s) - u(0)) = exp (—S) (2.142)

q

w0 = (252 b 5]
(s>s)  (2143)

where (- --) designates the average over all possible configurations of the

chain.
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[Solution B21]

2
(u(s) -u(0)) = / / cos 0G(s,0,¢;0,0,0) sin 6dOd¢ (2.144)
o Jo
From Eq.(ZI39) one gets

+1
G(s,0,¢:0,0,0) Z Z [ )} Youm (0, 0)Ym (0,0)
n=0m=0
(2.145)
because Y, (0,0) = 0. With Eq.(2145), Eq.(2I144) can be written

(s) ) = 3 (2 Yep [T [ i o100

n=0
(2.146)

[ 11 2P (2) PO (1)de— [ L Py (@)P, (1)da

1

/_11 z P (x)PY(1)dx :/1 2P, (2) Py (1)da

—1

1
:/ xPp(x)dz =0
~1

(n=0 and n >1) (2.148)

where P,, denotes the Legendre polynomial of order n, Eq.(2.146) reduces

to

(u(s) - u(0)) =exp (—S> (2.149)

q

which is Eq.(2142).

Next one can write for ([u(s) - u(0)][u(s’) - u(0)])

() - wO)fuls) ) = [ " / v [ [ cosgeoss

xG(s',0',8";0,0,0)G(s,0,¢;5",0',¢") sin 0 sin 'd0d6’ dpd¢(2.150)
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Performing the integrations with respect to 6 and ¢, this becomes

27 T
(u(s) - u(0)][u(s') - u(0)]) = /0 /0 cos ' sin0'G(s', 0/, '+ 0,0,0)

xe~(5=)/4P (cos0)dO'dg'l  (2.151)

Substitution for G(s',6’,¢';0,0,0) from Eq.[2I43) gives

([a(s) - u(O)fuls' ) u)) = 3 (2 Yo 20 0

2q
o 1
xexp(—s s)/ 2P, (z)dx
q -1
/

2 2124\ 1 _
:3[exp<— +q S>+26Xp(—8 qsﬂ (2.152)

which is Eq.[2I43). For s’ = 0 this reduces to Eq.(Z149), as should be

expected.

[Comments]

Equation (ZI39) may also be written in a more compact form as

, 2n+1 m)! nn+1)(s—s')
G(s,0,¢;5',6', &) ZZ<1+6mo) n—i—m)!eXp[_ 2q
X P (cos )P (cos 0') cos[m(¢p — ¢')] (2.153)
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[Problem B22]

For a continuous chain with contour length L subjected to thermal
motion, let (u(s)-u(s’)) be the average correlation between unit tangent
vectors of the chain, u(s) and u(s’), at two points characterized by
contour lengths s and s’. Show that the mean-square end-to-end distance

of the chain, (R?), is given by

L
(R?) = 2/ (L — s)(u(s) - u(0))ds (2.154)
0

if (u(s) - u(s’)) depends only on |s — s’|. Apply Eq.2I53) to wormlike
chains. for which (u(s) - u(s’)) = exp(—|s — §'|/q) (see Eq.(ZI33) in
[Problem B20]).

[Solution B22)
The end-to-end distance, R, of the chain under consideration is rep-

resented by
L
R= / u(s)ds (2.155)
0
This may be derived by considering the limiting form of

R=>r; |rj|=b (2.156)
i=1

as b — 0 and n — oo but nb remains at a finite value L. With Eq.(2I59)

one gets

<R2>:/0 /0 (u(s) - u(s'))dsds’ (2.157)

Now if (u(s) - u(s’)) is dependent only on |s — ¢'|, Eq.(2I57) may be
written, with f(|s — s'|) = (u(s) - u(s)), as

(R?) =/0L /OLms ~ §/l)dsds’
-/ ’ [ / " flis- s/)ds} ds’
—I—/OL [/SIL f(s— s’|)ds] ds’ (2.158)
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Since

[ sts=snaaw = [*[[ sa-sas]as @

Eq.(2I58) becomes

(R?) —2/ [/ f(s—¢| ds]ds (2.160)
which is in turn written, with the substitution s’ — s = &, as
(R2)= / [/ ehag]as
L L
=2 ds’ d
/ (/E ) el

L
—2 / (L — &) (i€))de (2.161)
0

Because f(|¢]) = (u(§) - u(0)), Eq.(2I6]) is equivalent to Eq.([ZI54).
Substituting f(]¢]) = exp(—|¢|/q) into Eq.@2I61), one obtains for

wormlike chains
L E)
2\ _ — Oexpl &
we)=2 [ (- gew( £ )ae

L
=242 ( —1+ e—L/q) (2.162)
q
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[Problem B23]
Show that the mean-square radius of gyration for a wormlike chain,

(S?), is expressed in terms of L and ¢ as

($2) = q;[é —3+6<Z)2(1 —e_L/q)] (2.163)

where L and ¢ sre the contoue length and persistence length of the chain,

respectively.

[Solution B23]

The general formula for discrete chains

2\ __ 1 . - 2
(5%) = CE ;;mm (2.164)

may be written for a continuous space curve as

(5%) = le / ’ ( / f([R(s/, s)]Q)ds) ds’ (2.165)

where R(s’, s) is the vector connecting two points on the curve which
are characterized by contour lengths s’ and s, respectively, with s’ < s.
For wormlike chains one may use for ([R(s’, 5)]?) Eq.(2I62) in [Problem
B22], with L replaced by s — s’. Thus the desired (S?) can be obtained

from
($2) = //[ (—5715/)}dsds' (2.166)

Performing the integration, one obtains Eq.(2.163).
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[Problem B24]

Show that the persistence length ¢ of s wormlike chain is the limit
of (Ry) for infinite L, where (R:) denotes the statistical average of the
projection of R, the end-to-end distance of the chain, on the direction
tangential to the chain at its end, and L is the contour length of the

chain.

[Solution B24]
R is represented by

L
R:/O u(s)ds (2.167)

where u(s) is the unit tangent to the chain at a point characterized by

contour length s. Ry = R-u(0). Hence

L
(Ry) = /0 (u(s) - u(0))ds (2.168)

For wormlike chains (u(s) - u(0)) = exp(—s/q). Therefore Eq.([2IG8)

becomes . /OL . (‘Z) _, [1 e (_5)] (2.169)

whence it follows that

lim (R:) = ¢ (2.170)

This gives an interpretation of q.
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[Problem B25]

For a wormlike chain with contour length L and persistence length ¢,

show that 02 (I ) 3L
Ry ="L)12 "1 exp(-2= 2.171
i) 3{61 3[ eXp( q)” 2.171)

where R; is the projection of the end-to-end distance R on the tangent

to the chain at its one end.
Hint: Use eq.(2I43) in [Problem B21].

[Solution B25]

L
R, =R-u(0) = /0 u(s) - u(0)ds (2.172)

where u(s) is the unit tangent vector of the chain at contour length s.

Hence
(R}) = /0 /0 {[u(s) - u(0)][u(s’) - u(0)])dsds’ (2.173)

Introducing Eq.(2I43)) in the Hint into Eq.(ZI73), one obtains

-4 [ (42 o s
4 () (5
ATl ) ()
o) oo
()22} 2
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[Problem B26]
Suppose a flexible polymer chain which undergoes excluded volume ef-
fects and assume that the potential, wy,,, of mean forces acting between

the k-th and m-th segments is expressed by
= BETS(Ry,) (2.175)

where Ry, is the distance between the two segments considered, ¢ is
the delta function, [ is the excluded volume per segment, and k7T has
the usual meaning. Show that the partition function of the chain with

its end-to-end vector R given, Z(R), is represented by

>3 / P(&; 04 R) df} (2.176)

Z(R) = Zy(R exp[
E>m

Here Zy(R) denotes the Z(R) for the unperturbed chain in which g =

0, and P(&;0xm|R) is the probability of contact of the k-th and m-th

segments in a hypothetical chain in which the end-to-end vector takes

the assigned value R and the excluded volume of each segment has a

value of €.

[Solution B26)
Let Z(R) for the hypothetical chain be denoted by Z(&;R). Then

26R) = [expl-¢ 3 SR xh AR (2177)
k>m
where {r} is a short-hand notation for representing the configuration of
the chain, and dR put in the denominator indicates that the integral
with respect to {r} should be made subject to the condition thet R is
fixed. Logarithmic differentiation of Eq.(2I717) with respect to £ gives

dInZ(&R) d
nd(§ - gR /Zzé ka eXp gzzéka {r}

k>m

==Y > P(50km|R) (2.178)

k>m




61

Integration yields

B
Z(B;R) = Z(0;R)exp [— >N / P(ﬁ;okmm)ds} (2.179)
k>m 0
Since Z(3; R) and Z(0;R) correspond to ZR) and Zp(R) in Eq.(2I70),
respectively, Eq.([2I79) is the required formula.

[Comments]

An equation in which R in Eq.([2I70) is replaced by S, the radius of
gyration of the chain, also holds. These equations for Z(R) and Z(S)
serve as the convenient bases for working out various approximations to

the linear expansion factors, ar and «g, of perturbed chains.
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[Problem B27]

Apply the Wang-Uhlenbeck-Fixman theorem to derive the bivariate
distribution function P(0;;, R) of a flexible chain composed of n (n > 1)
identical units of bond length b. Here R is the end-to-end vector of the
chain and 0;; means that the distance R;; between ¢ and j is zero. Thus,
P(0,;,R) is the probability density of finding that the end-to-end vector

is R and at the same time units ¢ and j are in contact.

[Solution B27]
Consider the case of s = 2 in the Wang-Uhlenbeck-Fixman theorem
and equate R;;(j > 1) to ®; and R to ®5. Then

P, =R = er (2.180)
=1
and .
(131 = Rij = Ziﬁgkrk (2181)
k=1
with

Yo, =1  for i<k <y
=0 otherwise (2.182)

Hence, the elements of the 2 x 2 matrix C are found to be

cCi1 =nNn (2183)
n
Cl2 = C21 = Z%k =j—i (2.184)
k=1
Cor =Y (thar)? =j —i (2.185)
k=1

kl

and the determinant |C| and the cofactors ¢™ are given by

ICl=(j —i)(n—j+1) (2.186)
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M =j—i (2.187)
=ct=i—j (2.188)
A =n (2.189)

Eqs.(2.180) — [2.I89) yields

P(Ri;, R) :(251;2) [(j - z‘)(rj—j + i)r/zeXp{_%?(j - i)?n —J+i)

<[(j — )R® —2(j — )RRy + njo]} (2.190)

When R;; = 0, this reduces to

POs 1) = (2:,72)3[(3- —z‘)(nl—j+z'>r/zexp[_2b2(j—fi+i>]
(2.191)

which is the desired expression.

[Comments]
The distribution function P(0;;) can be obtained by integrating P(0;;, R)
over R;
P(0;;) = /P((),;j,R)dR (2.192)

Substitution of Eq.(ZI91) gives
3
P(0;;) = 3 (j—i)=3/? (2.193)
Y 27h?

which, as expected, agrees with the expression obtained by putting R;; =

0 in the Gaussian distribution function for P(R;;):

PR;j) = {%1)2(3‘7—2)} 3/2<exp [—25}_{%)[)2] (2.194)
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[Problem B28]
Show that the expansion factor ar [= <R2>1/2/<R2<(1)/2] of a flexible
linear chain with a very small excluded volume is expressed by
4
a%=1+§z+-~- (2.195)
where z is the excluded-volume parameter.
Hint: Use Eq.(2I73) in [Problem B26] for the potential of mean forces.

[Solution B28|

From the definition
(R?) = / R?P(R)dR (2.196)

where P(R) denotes the distribution function for the end-to-end vector
R of the chain in the perturbed state. With Eq.[2I77) in [Problem
B26], one finds that P(R) is represented by

C/5R er exp| ﬁZcS ii) ﬁ i(rj)]dry -« -dry,

i<j J=1
(2.197)
with the normalization constant C' and the bond probability 7;(r;) for
bond j. Expanding exp[—/ ZKj d(R;j)] in powers of 3, one gets

n

P(R) C’/é(Rilrj H (r;)]dry - - -dr,,

n

762/ er) H (rj)]dry - 1y + -

1<J 7=1 j=1
=C[Py(R) = B Py(0;5,R) + -] (2.198)
1<j

where the subscript zero refers to the unperturbed state. The constant
C can be determined from the normalization condition [ P(R)dR =1,
yielding

T=1-8> Py(0i;)+ - (2.199)

i<j
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where use has been made of Eq.(2192)) in [Problem B27].
Substitution of Eq.([2198) with Eq.(2I99) and the expressions for
Py(R), Po(0;5), and Py(R,0;5) (see [Problem B27]) into Eq.(2ZI98), fol-

lowed by integration, gives

3 3/2
(R?) = (R?*)o + 6(2%2) B> (G —i) P (2.200)
with
(R?) = nb? (2.201)

In terms of % and z, Eq.(Z200) may be written

ap =142 (j—i) 4 (2.202)
1<J
Approximating the sums by integrals,
P S Y2
S G—i)y M= 37 (2.203)
1<J

Introduction of this into Eq.(2:202)) leads to Eq.([2195).
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[Problem B29]

The partition function Z(R) of a perturbed flexible chain with a given
end-to-end distance R is represented by Eq.(ZI70) in [Problem B26].
Show that the expansion factor ag satisfies the relation

o0 1/2
ay—ad = (3) z (2.204)

if the following approximations are used: (1) £ in the equation (2I76])
is replaced by the maximum value § and (2) P(0;0|R) is replaced by
the unperturbed Py(0g;|R) with the bond length expanded by a factor
aR.

Hint: Evaluate the integral

JS ate f@da

r=2%*° %
Jo a?e=f@)da

(2.205)

by use of the Hermans-Overbeek approximation in which I is equated

to the value of z at which 23e~7(®) becomes maximum.

[Solution B29]
Under the assumption stated in Problem, Z(R) is given by

Z(R) = Zo(R)eXp[—ﬂZ P(0;|R)] (2.206)
with
P(01R) =t
3 3/2 n 3/2
(%aﬁb?) [(j —i)(n—j+ 1>}
3(j —i)R2
X exp { S l)a%{bQ} (2.207)

[see Eq.(2I9]) in [Problem B27] for P(0,;, R)]. Hence

_ [R*Z(R)dR

() = [ZR)dR
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fooo R4PO (R)GXP[_ﬂ Zz’(j P(Oij |R)]dR

= 2.208
e PR Repl Ay, PO, R
with 3/2
3 3R?2

Therefore, a% [= (R?)/(R?)¢] is given by
3/2 oo
3 nz 1 3x i
Jo” “Xp{_“Q_ ok z‘<a‘[<jz‘><nj+1>] GXP{ o7 (njﬁz)HdQC

3/2
3 nz 1 3x2(j—1)
Jy eXp{‘xz o 2oi< {o—xn—m)] exp[ a(n’ﬁ)} }dl‘
(2.210)
By applying the Hermans-Overbeek approximation to Eq.(2210), one

0% =

can derive

1 3(j — 1) ]
5 _—ad = = | (2.211
ok m; J—z)l/Q(n—yH)Wep[ 2(n—j+1) (2210)

If the double sum in this equation is approximated by integrals,

1 39
2 G En T i>5/2“p[ 2(n—j+ i)]

1<j
N/”; wol——3t |4
~Jo B2 —1)32"P| T2t —1)
0o /2
1 1 s 127\
== = de === 2.212
n/o VE a3 (2.212)

which is inserted into Eq.(Z210) to give the desired expression, Eq.([2:204).

[Comments]
(1) For small values of z, Eq.([Z204) is expanded to give

1/2
2
aR—l—F(;T) PRI (2.213)

The coefficient (27/2)'/? is slightly larger than the corresponding value
of 4/3 in Eq.(2195]) in [Problem B28]. This difference may be ascribed to
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the Hermans-Overbeek approximation employed. Thus one may replace
(27/3) in Eq.@2204) by 4/3. The resulting equation is referred to as
the modified Flory equation. On the other hand, the equation originally
derived by Flory with a mean-molecular field approximation has the
value of 2.60 for this coefficient.

(2) Equation (Z:204) indicates that o becomes proportional to z as
z increases and hence that in an extremely good solvent (R?) is pro-
portional to M2 (M: molecular weight of the chain). For this reason
Eq.(2204)) is referred to as of the fifth-power type.
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[Problem30]
Show that N(n), the number of observationally distinguishable n(ads)
(types of sequence containing n monomer units), is represented by 272+

2m=1 where m = n/2 if n is even and m = (n — 1)/2 if n is odd.

[Solution B30]

The total number of n(ads) is n”~!, because there are n — 1 pairs of
adjacent monomer units in a succession of » monomer units and each pair
can be of either meso type or racemic type. However, not all of these
n(ads) are observationally distinguishable. For example, the pentads
mmrm and mrmm (m: designates a meso diad and r a racemic diad)

are observationally equivalent. A simple consideration indicates that
2N(n) = 2" + S(n) (2.214)

where S(n) is the number of n(ads) which are symmetric in the distri-
bution of m and r, such as mmrmm, mrrrm, rmmmsr in the case of
hexads. One finds that S(n) is given by 2™ if m = n/2 for even n and
m = (n—1)/2 for odd n. Thus

N(n) =2""2% 4 2m-1 (2.215)

which is the required expression for N(n).
For exmple, when n = 5 (pentads), m = 2 and N(n) = 23 + 2 = 10.
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[Problem B31]

Suppose a stereoregular polymer chain long enough for the end effects

to be ignored. Define P, (z,y = i, s)as the probanility that a monomer

adds in the y form to the chain with a monomer of the x form as its

active end unit. Show that if the penultimate effect is not taken into

consideration, the number-average and weight-average sequence lengths,

(i), and (i),,, are represented by

[Solution B31]

_ 2ok + Dpsi (pii)"pis
Z;;“;o Psi (pii)kpis

~ Yoneo (b + 1)?pai(pis) *pis

(@)n

D = )
< > oneo(k + 1)psi(pia) *pis
The calculation of the sums gives

1
1 = pis
2
1 pii

<i>n =

(i)w

(2.216)

(2.217)

(2.218)

(2.219)

(2.220)

Since p;; + pis = 1, Egs.(2219) and ([2.220) give the desired formulas.
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[Problem B32]
Show that the average fraction (f(¢)) of bonds of trans conformation

in an infinitely long polyethylene chain is given by

O ——

(2.221)
Here Ay and Ao (A1 > A2) are the eigenvalue of the matrix U given by

1 o o
U=]|1 o¢ ow (2.222)
1 ow oy

with w ~ 0 and ¢ ~ 1.

[Solution B32]

The average fraction of bonds of trans conformation is given by

n—1

() = Jim S () (2.223)
=2
with
1 0 0 1
(fit)y=2Z* 100U 1 0 0 |U"]| 1 (2.224)
1 0 0 1

where (f;(t)) denotes the probability that the i-th bond is in trans con-

formation regardless of the state of other bonds. Since

10 0 1
100 |=|11]@ao0 (2.225)
100 1

Eq.([2224) may be rewritten

(fi)) = Z, ZiZpn—i1 (2.226)
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by use of the expression of Z,, given by
/\1 — 0 g — )\2
7, = A (222 2.227
(M—)\z) 1+<)\1_)\2> 2 ( )
Substituting this into Eq.(2220), (f;(t)) becomes
1A M1\ T e\
(1)) = 1 22 2
il Al—AQ{ * 1—>\2K>\1> 5N
A =1V A\ A -1\
— 1 — 2.22
+(1)\2) ()\1 + )\2 )\1 ( 8)
Substitution of this equation into Eq.([2223), followed by summation,
gives the desired expression (Z221]). Note that

M= 21+ o +6) +[(1-o(1+)) +80]7) (2:229)
Yo = {1+ o(L+w) ~ [(1-o(1+w))? +80]%) (2:230)
A3 =o0(l —w) (2.231)

when ¢ = 1.
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[Problem B33]

Compute (f(t)) at 413.16 K with E, = 500 cal/mol and E +E,- =
2500 cal/mol, and then compare it with (f(¢)) for the corresponding
independent rotation chain. Note that o = exp(—E,/RT) and ow =
exp(—Ey+ E,- /RT) and assume that ) = 1.

[Solution B33]

1987 x 413.16
—0.544 (2.232)

_ 2500
1.987 x 413.16

oY =0 =eXp< 500)

ow = exp( > = 0.0476 (2.233)

Hence,
A1 =1.86, Ay =—0.267 (2.234)

(see Egs.([2229) and (Z230) in [Problem B32] for the expression of A
andAz). Introducing these values of A\; and Ay into Eq.(Z221]) in [Prob-
lem B32], one obtains

(f(t)) =0.596 (2.235)

If all the bonds undergo independent rotation, the statistical weight

matrix is written

1 o o
Uy = 1 o o (2.236)
1 o o

since all the elements are determined by statistical weights of a paticular
bond considered, regardless of the conformational state of the preceding

bond. The eigenvalues of the Uy are easily found to be
A =14 20, A=X3=0 (2.237)

Hence, (f(t))o for independent rotation is given by

SO = 5

=0.479 (2.238)
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which is about 20 % smaller than the (f(¢)).



(0]

[Problem B34]
Show that the average fraction (f(3t)) of ttt triads in an infinitely long
polyethylene chain is given by

t
(f(31)) = <fA(2)> (2.239)
1
where (f(t)) is defined in [Problem B32].
[Solution B34]
One can express (f(3t)) in terms of U as
3
o 10 0 1
. i—3 n—i—2
(F(3t)) = lim_ Dz, Z(lOO)U 1 00| U 1
=3 1 0 0 1
(2.240)
Since
3
1 0 0 1 00 1
1o00|=l100]|=[1]0o0 (2.241)
1 0 0 1 0 0 1
Eq.([2240)) is written
1 n—2
(f(3t)) = nlinéom ; Zi1 s (2.242)

Substituting Eq.([2227) in [Problem B32] and evaluating the sum, one
arrives at the desired expression, Eq.(2.239]).
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[Problem B35]
Write down all possible conformations of a polypeptide chain of N = 6
and confirm Eq.(2Z227) in [Problem B32] for the partition function Zy.

[Solution B35)

The possible conformations for this chain may be enumerated as

Conformation Statistical weight
chhhhc s>
cchhhe s
chhhce s

ceeeec 1

Here the above statistical weight for each conformation is expressed
by the product of the respective statistical weights defined for the joint
conformations. For example, the conformation chhhhe gives 1-+/c - s -
s+ 4/0 - 1. Since the partition function Zg is the sum of the indicated
statistical weights,

Zs =1+20s+ 05> (2.243)

On the other hand,

S »

0
Vo

o

Zg=(0001001) (2.244)

Jo
0
0

oooooo%

O O = O O O O
= =0 O O O O
O O = O O O O
_ = 0 O O O O
_ = e O O O

O O O O w»

0

Carrying out the multiplication of the matrices, one actually finds that

Eq.([2244)) agrees with Eq.([2243]).
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[Problem B36]
In the simplified model of Zimm and Bragg, the partition function Zy
for an a-helix-forming polypeptide composed of IV residues is represented

by

Zy = (1 1)MN3 ( ; ) (2.245)

with the transition probability matrix M given by

M = ( bl ) (2.246)

Here the statistical weight os is assigned to every residue of h which
follows a coiled residue (c¢). Express the Zx in terms of the eigenvlues
A1 and Ay for the matrix M.

[Solution B36)
The M may be diagonalized by an appropriate matrix A such that

A 0
A"'MA=A=[ " (2.247)
0 Ao
The eigenvalues A; and Aa (A1 > Ag) satisfy
M- ME[ =0 (k=1,2) (2.248)

where E is 2 X 2 unit matrix and |---| denotes the determinant. Thus

one finds that A\; and Ay are the roots of the characteristic equation
M —s) (M —1)=o0s (2.249)
Now, one has from Eq.([2.247)
MA = AA (2.250)

M= AAA! (2.251)
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Introduction of Eq.(Z25])) into Eq.([2245]) yields

1
Zy =(1 1)AAA'AAA™ ..  AAA™! ( . )

Negp—1[ 1
(1)

=A5 (A + A21)>\i\[73 + Ay (Ao + Azz))\é\]*g (2.252)

The (1, k) element, Ajp, of A can be determined from

A ) Atk B
M( - ) — A\ < - ) (k=1,2) (2.253)

which is rewritten
Agg + Agg = A Arg (2.254)

08A1g + 245, = N\ Aoy, (2255)

One may put A = 1, since the value of either Ay, or Asx may be
assigned arbitrarily. Thus, solving either Eq.([2254) or Eq.([2255]) with

respect to Aoy, one gets

Aoy =M — 1
os
2.256
or py— ( )

Note that A\, — 1 = os/(Ax — 2) on account of Eq.[2249). Eq.([2256)
allows A to be written

1 1
A= (2.257)
A—1 X —1
The inverse of A is given by
All A21
-1 _
A7 = < 412 422 >/|A| (2.258)

with A* being the cofactors of A. Since |A| = Ay — A1, A~! is found to

be
1 A—1 —1
Al = 2.259
A2 — M ( 1—X\ 1 ) ( )
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Substituting the values of necessary elements of A and A~! into Eq.(Z251),

one obtaines

- 1
Yy

Zy (A2 = DAY+ (1= A)AY ) (2.260)

If the relation A; + A2 = 1+ s, which follows from Eq.([2:249]), is inserted
into Eq.([2:260), Eq.([2260) becomes

_ )\1—8
VDY

8—)\2
A1 — A2

Zn AN—2

A2 (2.261)

[Comments]

The present model (by B. H. Zimm and J. K. Bragg) does not precisely
take into account the features of actual a-helix-forming polypeptides.
However, various results derived from Eq.([2.261]) are of practical values,
because this equation is a very good approximation to Zy derived on

the basis of more accurate models.
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[Problem B37]

With use of the expression for Zn and M, show that the average

fraction Ay of intact hydrogen bonds formed in a polypeptide chain
consisting of IV residues is represented by

1 O0lnZy

" N—-4 9lns

On (2.262)

[Solution B37]

Form the definition of s it follows that 6y is equal to the average
number of residues in the state specified by s relative to the total number
of residues N — 4 capable of forming a hydrogen bond. Thus 6y may be

expressed by
N-—2

1
On =3 > (0 (2.263)

i=3
where (0;) denotes the average probability that residue ¢ is in the state
specified by s regardless of the state of other residues. This definition of
(0;) gives
1 , .
(0;) = Z—[elMQM“SPiMN*HMN_leN] (2.264)
N
with
Zn = etMoMY "My _jen (2.265)

Here the matrix P; is given by
S
0

(2.266)

SO O O O w»

o O O O o o O©
O O O O o o o
o O O O O o O
o O O O o o O
o O O O o o O©
o O O O O o Oo
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because residue i is in the state of s. Since

10 00 0 0O
0 000 O0O0OTP O
SM 10 00 0 00
s = 00 0 0 0 0 O (2.267)
0 000 O0O0OTP O
0000 O0O0OTO O
00 0 0 0 0 O
the P; is rewritten 5
M
P,=5—— 2.268
5 Os ( )
Introduction of Eq.([2:264]) together with Eq.([Z268) into Eq. ([Z263) yields
s ., OM )
Oy = ———— et MM 3 ——MN"1"2My _ 2.269
NS N 0Zy e M, s N—1eN ( )
Sinee oMM OM' oM
=M — ™M 2.2
s s + 0s (2.270)

and since e, Mo, My_;, and ey are independent of s, Eq.(Z269) may

be rewritten

N-—2
2 . OM ,
Oy =———— e M, [ § (MZ3MN’2)] Mny_ien
(N —4)Zy P ds
B s o(M)N—4
_7(N—4)ZN |:61M288 MNfleN
s 0
:m%(elMgMN_‘lMN,leN) (2.271)

Substitution of Eq.(Z265]) into the last equation (Z27T]) leads to Eq.([2:262).
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[Problem B38]
On the simplified Zimm-Bragg model, show that the average fraction
of hydrogen bonds formed in an infinitely long polypeptide is one half

at the mid point of the helix-coil transition.

[Solution B38|
The average fraction of hydrogen bonds, 6., in an infinitely long chain
may be calculated with use of Eq.(2.262]) in [Problem B37]. Introducing
Eq.Z261)) for Zy in [Problem B36] into this equation and going to
N = oo, one obtains o
S 1
Oo = 3 5 (2.272)
The OA1/0s can be calculated from the characteristic equation (2:249)
in [Problem B36]

M —=5)(\—1)=o0s (2.273)
to give
8)\1 )\1 —1 +o
_—= 2.274
88 2)\1 —1—s ( 7 )
Substitution of this equation into Eq.([Z272) gives
2 )\1 — ]. + g
Oog = ——— —— 2.275
/\1 2)\1 —1—s ( )

At the transition point at which s = 1, the larger root of Eq.([2273) is

given by ( smaller one corresponds to Ay)
M =140 (2.276)

Introducing Eq.(2276) together with s = 1 into Eq.([2275), one finds
that

1
= 2.2
oo = 5 (2.277)

[Comments]
Strictly speaking, 6y is slightly different from the average fraction of
a-helical conformations fy when N is finite. However, the difference is

so small that one may equate Oy to fy unless N is too small.
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[Problem B39]
With the simplified Zimm-Bragg model, show (1) that the average
number of helical sections (g) in an infinitely long polypeptide chain is

given by
Nos

<g> - 2)\1 —1-—s
and(2) that at the transition point the average number of residues in one

(2.278)

helical section is equal to 1/4/0.
Hint: (g) equals the average number of residues which have the sta-

tistical weight os.

[Solution B39]
(1) With the aid of the hint and by analogy with Eq.([2262)) for 0y in
[Problem B37], one may express (g) as
dlnZy
o) = Olno
Introduction of Eq.[2261)) in [Problem B36] into Eq.(2279) gives for
infinitely large N

(2.279)

NO' 8/\1
= —— 2.2
(9 = 5325 (2:280)
The O\1 /00 is calculated to give
M _ s (2.281)

90 20 -s—1
Substitution of this into Eq.([2.280) gives Eq.([2.277).

(2) Since at the mid point of the transition, s =1 and A\ = 1+ /o (see
[Problem B38]), Eq.([2278) reduces to

lg) = 3NVT (2.282)

The solution to [Problem B38] indicates that the average number of
residues in the a-helical conformation is equal to N/2 at the transition

point. Thus the corresponding average number of residues in one helical

section is (N/2)/(g) (= 1/+/0).
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30 Polymer Solutions

[Problem C1]

In most cases of practical interest, especially in dealing with polyelec-
trolytes or biopolymers, the components of macromolecular solutions are
didided into two groups, depending on whether they are diffusible or not
through an appropriate semi-permeable membrane. For a thermody-
namic treatment of such solutions it is very useful to choose as the state
variables the temperature 7', the volume V', the chemical potentials of
the diffusible components, g, p1, -+, pg, and the moles of the non-
diffusible, i.e., macromolecular components ng4y1, ng+2, -, Ndg4r. Show
that the appropriate characteristic function B for this choice of variables

is
B(Ta‘/nuf()a;ufla"'nudvndJrlvndJer"'anT)

d
:A(T?‘/anOanla"'anT) 72“1#1 (31)
=0

where r + 1 denotes the total number of components in the system, and

A is the Helmholtz free energy of the system.

[Solution C1]
The task is to show that the equilibrium condition for the system is
given by
(OB) 1,V prasnagsne =0 (3.2)

where § denotes small virtual displacements.
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From the definition of B it follows that

d d
0B =0A—=Y pdn; — > nidu; (3.3)

i=0 i=0
If this is combined with the familiar relation
§A = —=SdT —pdV + Y pidn; (3.4)
i=0
where S andp are the entropy and pressure of the system, we obtain
T d
0B =—8dT —pdV + > pidn; =Y nidpu; (3.5)
i=d+1 1=0

Equation (2] immediately follows from this equation.
Equation (B3] may be used to derive the following relations:

0B
Vo0 s 415 s hd s Ted 41,1 d 425" T
0B
T 0,115 d s d 41, d 42,5 T
(52)
n; =—
a‘ui T,V 0, s i — 15 it 157 5 Hd s Ted 15775 T
(0<i<d) (3.8)
0B
i =— o
i T, V10, d sThd 415" i — 1,155 T
(d+1§i§r) (3.9)
The Gibbs-Duhem relation gives
Vdp — Z nidp; =0 (T, po, b1, - - -, tg = const) (3.10)

i=d+1
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[Comments]

The word dyalysis is given to the procedure by which the chemical
potentials of all diffusible components in a given solution are fixed at
desired values. This can be done by bringing the solution to osmotic
equilibrium against a solution (dialyzate) which consists of all of the
diffusible components at a desired composition and is held at a desired

pressure.
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[Problem C2]
Find the relationship between the practical activity coefficient v ap-
propriate for the molality scale and the one y{* appropriate for the mass

concentration scale.

[Solution C2]
The chemical potential of component ¢ may be written

e = 1%, + RT ny™m, (3.11)
or
i = fie + RT Iny c¢; (3.12)
Hence
o oo yicci
Vi Mms
One has the relation M
¢ = (3.14)
v

where M; is the molecular weight of component i and vy, denotes the
volume of the solution per one kilogram of the principal solvent chosen
here as component 0. With Eq.([314), Eq.(3I3) becomes

%\ /M,
U — S = RTln(z;J (w) (3.15)

Now let all concentrations of the components other than component 0

approach zero. Then y® — 1 and v — 1, and vy tends to 1000/,
where p? is the density of component 0 in the pure state at given tem-

perature and pressure. Thus

[eS) [eS) Mlpg
Him — Hic = BT ln( 1000 ) (3.16)

This is substituted back into Eq.3I3) to give

Y Mp)
y*m; 1000

(3.17)
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This is the required relation between ¥ and v°. Note that vy; may be
expressed
q
var = 100000 + > m; Myv; (3.18)
i=1
where ¢ + 1 is the number of components in the solution and v; is the

partial specific volume of component 4.
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[Problem C3]
Show that the partial specific volume, v;, of component i (i = 1,2, -+, q)

in a ¢ + 1 component solution is represented by

1 <81}M>
Mi 8mi T,p, M

where v); is the volume of the solution per one kilogram of component 0

chosen as the principal solvent, and M; and m; are the molecular weight

and molality of component 1.

[Solution C3]

1 ( oV )
Vi = — (320)
Mi 8nl T\p,npats

where V is the total volume of the solution and n; is the moles of com-
ponent i. By definition V(1000/n¢My) — vy and m,; = n;(1000/noMp).
Hence Eq.([3.20) becomes for i > 1

1 <81}M>
v = — (3.21)
Mi 8mi T,p, M

which is Eq.(319).
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[Problem C4]

Prove that the partial specific volume v; of any component in an in-
compressible solution consisting of a single solvent (component 0) and
q different solutes (component 1,2, ---,q) becomes independent of the
composition if the practical activity coeflicient y$° of that component

does not vary with pressure.

[Solution C4]

When the solution is incompressible, one can write for v;

o/ 1.(e)

where {c} stands for the set of ¢1,¢2,- -+, c,. This equation is written,
because the composition of an incompressible system is determined in

terms of {c}. The chemical potential p; is expressed in the form
s = 1° (T, p) + RT Wy (T, p, {c})e (3.23)

with y?° defined as lim.) o y° = 1.
Introducing Eq.([3:23)) into Eq.([322]), one obtains

8,u<?°>
e 3.24
v < o ), (3.24)

if y° is independent of p. Thus, under the imposed conditions, v; be-

comes independent of {c}, and actually takes the value at infinite dilution
of the solution (i.e., at the limit of {¢} — 0), because ug® represents p;
at this limit. (0u$°/0p)r is denoted by the symbol v9.
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[Problem C5]

For a solution of ¢ + 1 components, show that

1 (Opi _ 1 [ Ou
M, 8cj T1N07Ck7éj_Mj 362, Tt

(iak7j:152,"'aQ)

Apply Eq.(839) in [Problem C1].

[Solution C5]
Equation (39) cited gives

(6 L )TV
=
i s Va0, M

(kai:172a"'7Q>

Hence

ou; o
( Uz) :< :uj) (j:172’...7q)
anj T,V.pi0, Mkt on; T,V.po,mpi

<8Mi) _ M (f’mi)
6n] T,V.,U.(),nk;gj V ac‘j Tvl‘Ouck#j

Thus, Eq.[327) yields

1(3/~w) _1<5‘M>
M; 8Cj T, 10 ,Ch£5 Mj 6Ci T,po,Crzi

which is the required equation.

But

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)
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[Problem C6]

Derive

0
<ap> :1—U?p0 (iakzlvza"'vq) (330)
Ci T, p0,Cr5i

for an incompressible solution of ¢+ 1 components in which the practical
activity coefficient y° of all components are independent of pressure p.
Here p is the density of the solution, v is the partial specific volume of
the i-th component at the limit of {c¢}[= (¢1,¢2,- -, ¢q)] — 0, and py is

the density of the 0-th component in the pure state, i.e., 1/v].

[Solution C6]
The density, an intensive quantity, can be described in terms of the

set of state variables T, p, {c}. Hence one may write the relation
0 0
(dp) T, :<8P) de; + <8p> dp
Cj T,p,crz; P T.{c}

whence

<3P> _<3P> +<3P> <3p) (3.32)
8(3]‘ T,1e0,Crsj acj T,p,crj 8]) T.{c} acj T,pe0,Crsj

For incompressible solutions (0p/dp)r,¢c; = 0. Hence

<3P> :(3”) (3.33)
8Cj T\ p0,Crsj acj T,p,cr;

Eliminating ¢y from the two relations p = Y7 ¢; and > ¢ vic; = 1,

one gets
—1+2q:<1—”i>o (3.34)
p v L A .

Under the incompressibility of the solution and the imposed condition

on ¥, v; (i =1,2,---,q) becomes independent of {c} and equal to vJ.
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(See [Problem C4]). Therefore, in this case,
0
(52)  =i-dtm (w=1/f) (3.35)
Cj T,p,ck¢j

This is substituted into Eq.([333]) to give the required relation ([330).
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[Problem C7]

The practical activity coefficient y{° of the i-th component in a ¢+ 1
component solution may be treated as a function of the variables T,
to, and {c}, where {c} denotes a set of ci,co,---,cq and pg is the

chemical potential of the 0-th component. For dilute solutions in which

¢1,Cz,- -, ¢q are all small, Iny° (T, po, {c}) may be expanded in a Taylor
series as
14N
lny°(T, po, {c}) = (Z Ajjej + 3 Z Z Aijrejcr + - ) (3.36)
j=1k=1

where M; is the molecular weight of the i-th component. The coefficients

Aij, Aijk, - -+ are functions of T' and po. Show that A;j, Aiji,--- are

invariant for the exchange of their subscripts. Thus

Aije = Ajik = Ajri = Aikj = -+ (3.38)
[Solution C7]
From
i = p(T, o) + RT In ¢;y° (T, 1o, {c}) (3.39)
and the relation (see [Problem C5])
1 (8/“) 1 (8,uj>
— = (3.40)
M; acj T,po,crs#; Mj e T,po,Chs#i
one obtains
1<6lnyf°> _1<61ny3?°) (3.41)
Mi (“)cj T, 10,Chit5 Mj [“)cz- T, 110,Crri

Substituting Eq.(336) for Iny® and the correaponding expression for

Iny;° and then letting all of ¢1, ¢z, - -+, ¢ tend to zero, one finds
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Partial diggerentiation of Eq.([3:41) with respect to ¢y gives

1 &y 1 azhly}?o

- A A 4
M1 Ocy0c; M; Ocy0c; (3.43)

where, for simplicity, the subscripts to be fixed in each differentiation
has not been indicated. Again, introducing the Taylor series for Inyg®

and Iny7° and taking the limit ¢1,c2,- -+, ¢4 — 0, one obtains
Aiji + Aiky = Ajir + Ajis (3.44)

Since j and k in Eq.([3.36]) are dummy indices, it is obvious that A;;, =
Aikj~ Similarly, Ajik = Ajki- Thus

which indicates that the first two indices of A;;, are interchangeable.
The fact that A;ji = A;; implies that the last two indices of A;j; are
also interchangeable. From these results it follows that A;;; is invarient

for the exchange of its subscripts.

The above-mentioned properties of A;j;, A;jk, -+ play an important
role in solving various subsequent problems in which the Taylor expan-
sion for Iny£° (T, o, {c}) appears, but they will not be specifically men-

tioned in those problems.
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[Problem C8]

The practical activity coefficient y7° of the i-th component in a so-
lution of ¢ + 1 components may be considered a function of either a
set of variables (T, g, {c}) or a set of variables (T,p,{c}). Here {c} =

(c1,c2,- -+, ¢q). For dilute solutions one may expand Iny5°
Iny° (T, po, {c}) = (Z Ajje; + = ZZA”kcjck + - ) (3.46)
_7 1k=1

Iny(T,p,{c}) = <Z Bijc; + = Z ZBwkcjck +- ) (3.47)

] 1 k=1
where M; is the molecular weight of the i-th component. Show that if

the pressure dependence of Iny® is negligible, there are relations

0
Yi
Aij = Bij + Mj (348)
O’UO
Aijk = Bz]k + v; B Mk (349)

where 1! is the partial specific volume of the i-th component at the limit
of {c¢} — 0.

[Solution C8]
If p; us treated as a function of T, p, and {c}, one can write the

relation

@ =>(2) aea (%) a
i - J
; 8Cj T,p,crj 8p T,{c}

which gives

(), (), (), ), oo
6Cj T, 110,Ch 5 aC] T,p,Crzj 8p T.{c} 86.7 Tpo,Cr#j
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Using j1; = 15°(T, p)+-RT Iny2=(T, p, {c})e, and assuming that y2< (T, p, {c})

does not depend on p, one finds
(3/“) - <W)T = M? (3.52)
dp T{c} dp

From the Gibbs-Duhem relation (dp)r,, = Yoo, (ci/M;)(dpi) T pu it
follows that

8p> Ch (3%)
9p N Gk (OB (3.53)
((%j T',10,Crost; Z M. \ Oc; T',10,Ck#;

Thus, Eq.X&I) can be written, subject to the assumption made above
for y°(T' p, {c}),

<5ui> N <6ui> MO %(8;%)
= i, —_—
8Cj T,10,Crj acj T,p,Crj k=1 Mk 8Cj T,pe0,Crsj

(3.54)

From Eqs.([346) and (47) one gets

1 8/12 (52'3' 1
sH05Ch£j k=1

1 ([ Op 8 d
— (2= =RT( L +B;; +Y By 3.56
Mi (80) ) <M101 + J + JkCh + ) ( )
J T,p,ck¢J k=1

where 0;; is Kronecker’s delta. In deriving Eqgs.(3.50]) and (B.50), one has
considered tha fact that A;;, and B are invariant for the exchange of

j and k, because these subscripts are dummy indices. Introduction of

Eqgs.(353) and (350) into Eq.([3.54) gives

q q
Aij+ Y Aijrer + - =By + > _ Bijrcr + -+

k=1 k=1
1 q
k=1
Therefore,
o0
Aij = B;; + ! (358)

M;
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Ajjx = Bijr + v Ax; (3.59)

Equation ([B58) agrees with Eq.([3:48). Because A;; = A;; (see [Problem
C7]), Eq.(359) may be written, with insertion of Eq.(B.58]),
0,,0

v; U
Aiji = Bijr +v) By + £ (3.60)
M;

which is equivalent to Eq.([349).
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[Problem C9]

For a solution of ¢ + 1 components, show that, in general,

1<3Mz‘) 7&1<8ﬂj)
M; acj T,p,Cr; dci T,p,crsi

(i7jak:1727"'7q) (361)

[Solution C9]
Since u; is regarded as a function of T, p, and {c}(= c1,¢2," -, ¢q),

one can write the expression

q
i Op;
(dpi)r = de; d 62
M Z<ac.7 >T,p,ck¢j Cj " ( 8p )T,{C} ! (3 6 )

=1

whence

1<6m) _1<3m> _1<5m> (6p>
Mi acj T.p,Crzj MZ 86.7 T, 110,Chj Ml 8p T.{c} 6Cj T,100,Crj

(3.63)
A similar expression for Mj_l(auj/aci)n%%# may be obtained by ex-

changing the subscripts ¢ and j. Subtracting it from Eq.(B.6G3]) and using
the relation ([B25) in [Problem C5], one obtains

(o)., (5)

M; \ Oc; Toprcnss M; \ Oc; Toprcnss

1(5),0 o)y 2 (5), (6, 000
M; \ 9p T {c} dc; T\ 110, Choti M; \ op T{c} dc; T\ 1h0,Chot

The Gibbs-Duhem relation gives (dp)7., ., = o, (¢i/M;)(dpi) 1,1 - Hence

9p _ (3.65)
(aci T, 1o,Chzi Z ac’ T, po0,Chzi

Using this and the relation (eq.([3.25) quated above, one can write Eq.([3.64)

as
1 < 8/11' ) 1 ( 8uj )
Mi aCj T,p,ck;¢j Mj 601' T,pyck¢¢
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w7 (5, 2o (i)
= — —_— cm —_—
MiMj Ip Tv{C}w; dem T',110,Ch#m

—(8‘”) zq: ¢ (8’”) } (3.66)
9p T.{c} m=1 dem, T,10,Clzm

The right-hand side of this equation does not vanish identically. To show

it one may consider a certain special case, for example, the solution
which is incompressible and in which the practical activity coefficient

Yy (i=1,2,---,q) regarded as a function of T, ug, and {c} is unity. For
O

( a > = My (3.67)
Op /1.1c)

( O ) RT (m=1)
Cm, = ]
Iem T, 140,Ch#m 0 (m 7é Z)
where v{ is the partial specific volume of the i-th component, and hence

Eq.([350) becomes

; (aul) ; (auj> ( i i )
- = RT( L — (3.68)
Mi aCj T\p,crs; Mj 601' T,p,crsi M1 Mj

The right-hand side vanishes only when v;M; = v;M;, i.e., the partial

such a solution

molar volumes of the i-th and j-th components are equal. Thus one may
state that, as the in equality ([B.61]) indicates, the subscripts ¢ and j in

M (0pi/0¢;) T p,cr,; are not exchangeable in general.
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[Problem C10]

A solution which contains a protein (component 2) and a simple elec-
trolyte (component 1) in water (component 0) is brought to osmotic
equilibrium against a large volume of a dyalyzate (component 0 + com-
ponent 1) held at constant pressure p’. Find the expression for the

osmotic pressure 7w set up in the protein solution.

[Solution C10]

Regardless of the protein concentration, the chemical potentials, g
and pg, of the components 0 and 1 in the protein solution are held
constant at osmotic equilibrium, because this equilibrium is established
when po and p; become equal to uf, and pf, respectively. (the prime
indicates the quantity of the dialyzate), and both pf, and p} are fixed
under the experimental conditions specified in the problem. Thus the

Gibbs-Duhem relation at constant temperature gives
Vdp - ng/lg =0 (369)

When applied to the protein solution. Here V' and p are the volume
and pressure of the protein solution, respectively, and C5 is the molar
concentration of the protein component. It should be noted that dus in
Eq.[59) is concerned with constant T, ug, and py. Since p = 7 + p’
with constant p’, dp = dw. Thus Eq.[3.69) gives

Cy
= / Cy <8“2> dCy (3.70)
0 802 T,po,pm1

where the integration constant has been determined from the condition
that 7 — 0 as Cy — 0.

For practical purposes it is convenient to write Eq.([320) as

1 ez 6;@)
™T=— co| =— de 3.71
My /0 2 ( Oco T e, 2 ( )

by considering tha fact that pg and p; depend on p’ and ¢, under the

present condition of osmotic equilibrium. Here ¢ and Ms are the mass
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concentration and molecular weight of the protein component, respec-
tively. Thus, by use of Eq.([3.1) we can, in principle, determine us as a
function of ¢z, p’, and ¢} from experiments in which 7 is measured as a
function of ¢y for a variety of combination of p’ and ¢f.

We may write pua (7T, ca;p’,¢}) in the form
pa(Tye;p ) = p (Thp &) + RT Iny3® (T, casp', ch)er (3.72)

where the activity coeflicient y5° is defined in such a way that it tends

to unity as ca — 0. The Iny5° may be expanded in powers of ¢y as
1
mys® = My | Ao(T5 0/, ch)es + S As(Tip' )5 + - (3.73)

Introduction of Eq.[3X12) with Eq.B03) into Eq.@X1) yields

T c

RT — MZ + A (T3 9 ) + A5(Tsp' ey)es + -+ (3.74)
where A} = (1/2)As, A5 = (1/3)As, ---. It is to be observed that the
virial coefficients A}, A%, - - here refer to the variables T, p’, and ¢} and

that plots of 7/coRT versus ¢y at fixed p’ and ¢ allow Ms to be eval-
uated when exprapolated to infinite dilution of the protein component,
no matter what interactions may be involved between the protein and
the supporting electrolyte.

[Comments]

The present problem is concerned with experiments done with a classic
osmometer of the U-tube type. In modern high-speed osmometers, the
pressure p’ ia varied so that the pressure p of the protein solution is kept

constant, regardless of the osmotic pressure set up.
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[Problem C11]
Suppose a polymer solute (component 2) dissolved in a mixture of two
solvents (component 0 and 1). Show that the molecular weight My of

the polymer component can be evaluated by the van’t Hoff relation

1
lim il

C2—— CQRT - E (375)

where 7 is the osmotic pressure of the solution against the mixed solvent

(component 0+1) and ¢y is the mass concentration of the polymer.

[Solution C11]

The terms “inner phase”and “outer phase”are used to describe the
phase containing no polymer, respectively, which are separated by a
semipermeable membrane. It is asumed that the entire system is held
at constant temperature and that the outer phase id held at constant
pressure p’. Osmotic pressure is reached when the following conditions

are satisfied:
1o = Ho (3.76)

W= (3.77)

where ;1 denotes the chemical potential and the prime refers to the outer
phase. Since p’ is held constant, it follows from Eqgs.([876) and B271)
that

dpo =dp; =0 (3.78)

for any small change dcsin the mass concentration of component 2. Small
changes in p in p (pressure in the inner phase) and us which accompany
the change dcy are denoted by dp and d]ue. When Eq. (B8] holds, these
are related to one another by

C2
(dp)Tnu‘Ovp‘l = E(d:u’Q)T,#mm (3'79)
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which follows from the Gibbs-Duhem relation for constant temperature.
Integarating Eq.([3.09) one gets

co
r=p—p = / L2 (8“2) des (3.80)
0 M2 802 T\po,p1

which follows from the Gibbs-Duhem relation for constant temperature.
Integrating Eq.([3380) one gets

C2 d
T=p—p = / 2 <'u2) dey (3.81)
0 M2 dCQ T, 1o, 01

where the integration constant has been determined from the condition
that when ¢y = 0, the inner and outer phases are equalized in pressure.

Now, one may write for po

po = usS (T, po, 1) + RT Inys (T, po, p1)c2 (3.82)

where the activity coefficient y- is defined in such a way that it tends to
unity as co goes to zero. Introduction of Eq.([3.:82)) into Eq.([(3.81]) gives

T ez ol
oo BT [62 + / 62( ny2> dC2] (3.83)
M2 0 862 T, po,p1

For dilute solutions one may write

Inys (T, po, pa, c2) = Ao(T, pig, pu1)ea + O(c3) (3.84)

Hence Eq.([3.83) becomes

RT
7= 2o 1 2 Aa(T o, ) + O(3) (3.85)
2
Therefore )
7T
li = — 3.86
(1219[’ CQRT M2 ( )
[Comments]

(1) For a polydisperse maclomolecular solute the My in Eq.([375) may

be replaced by the number-average molecular weight M,,.
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(2) This problem tells an important fact that the conventional osmotic
pressure method allows correct M, of macromolecular solute to be de-
termined even if a mixed solvent is used. This feature is contrasted to
the light-scattering method in which the use of s mixed solvent gener-
ally gives only an apparent (weight-average) molecular weight involving
the effect of preferential adsorption of one particular solvent onto the

macromolecule.
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[Problem C12]

A solution which consists of ¢ different macromolecular solutes (desig-
nated components 1, 2, - -+, ¢) and a solvent (component 0) is separated
from the solvent by a semi-permeable membrane and brought to os-
motic equilibrium under either of the following two conditions: (i) the
“outer”solvent phase is held at a constant pressure and (ii) the “in-
ner” solution phase is held at a constant pressure. Derive the expressions
for the osmotic pressures, 7* and 7, which are set up in cases (i) and

(ii), assuming that the solution is dilute.

[Solution C12]

[Case (1)]
The condition for osmotic equilibrium of the system under considera-
tion is
1o for the inner phase = pg for the outer phase

where 1o denotes the chemical potential of component 0. In case (i),
the pressure of the outer phase is held constant, so that p for the outer

phase = constant. Thus
dlu’O(Tapaclac27"'va) =0 (387)

for any changes which occur in the mass concentrations ci,ca, - -, ¢4 of
the inner solution phase. With eq.(387) one gets from the Gibbs-Duhem

relation
q

s
(dp) 1o = Z ﬁ(dui>T> Ho (3.88)

i=1 """
for a smalll change in p which accompanies a small variation of the com-
position in the inner solution phase. Since the pressure of the outer
phase is held constant, the pressure increment in inner phase, dp, be-

comes equal to dn*. Therefore Eq.([3.88)) gives

= ii/m G <5’“> de (3.89)
= — § .
i=1 {0} M; 8Cj T110,Chj
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where {c} stands for a set of ¢1,¢a,---, ¢, and {0} = (0,0,---,0). One
should not confuse ¢; in {¢} with ¢; in the integrand, the latter being
the variable of integration.

Now, according to [Problem C8], one has for dilute solutions of ¢ + 1

components

7 (acj >T = RT(QM + Ay + ZA”kck +- > (3.90)
sHO,Ck#j k=1

where §;; is Kronecker’s delta, and A;;, A;ji,--- are the coeflicients in

the Taylor expansion for Inyf° (7T, po, {c}):

In Yi (T Hos {C} (Z Aljcj + = Z Z A”kCJCk + - ) (391)

jlk:l

Introducing Eq.(390) into Eq.(3:89), one obtains the desired expression

for 7* in the form

q
" :RT(Z + - ZZAUCICJ éZZZAijkCiCjCk + )
i=1 j=1 1=1 j=1 k=1
(3.92)

Note that, in deriving this, one has used the relations

q 9 q9 g
ZZAijCide = % ZZAijd(CiCj) (393)

i=1 j=1 i=1 j=1
q q q 1 q q q
Z Z Z AijkCideCj = g Z Z Z Aijkd(cicjck) (3'94)
=1 j=1 k=1 =1 j=1 k=1

which follow from the invariance of A;; and A;j, for the exchange of
indices.
Equation ([392) is called the virial expansion for 7*. It shoud be

observed that its derivation contains no approximation.

[Case (ii)]
In this case, Eq.(387) does not apply, and one must resort to
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1o for the inner phase = pg for the outer phase

to find the desired expression for w. Since m = p — p’ (p = pressure of

the outer solvent phase), the starting equation is written

MO(Tvpa {C}) = /.Lg(T,p - 7T') (395)

where the superacript 0 indicates the pure solvent, i.e., the liquid in the
outer phase. In Eq.(395]), T and p are treated as given constants, and
one must try to express 7 in terms of a Taylor series of {c}. For this
to be done two approximations need to be introduced. One is that the
solution is incompressible and the other is that the pressure dependence
of y>°(T,p,{c}) is negligible. Here y>° (T, p, {c}) is the practical activity
coeflicient of the i-th macromolecular component appropriate for T', p,
and {c} chosen as the set of state variables.

One can write the expression
P
WD) - T -m =My [ fT.de (390
p—m

where v)(T, ) is the specific volume of the pure solvent at temperature
T and pressure &. If, as assumed above, the solution is incompressible,

v§ is independent of pressure. Hence Eq.(3.90)) gives
uS(T,yp — ) = pS(T, p) — Movm (3.97)

in which v3 may be evaluated at the atmospheric pressure. Introduction

of Eq.(397) into Eq.([393) gives

= —@[uo@,p, {c}) = k3(T, p)] (3.98)

which is the well-known formula in thermodynamics.
To proceed further one differentiates Eq.([308]) at constant T and p,
giving

(A} = = g duo(Tp. €D,y (3.99)
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Using the Gibbs-Duhem relation at constant 7" and p, this equation may

be transformed to

Q

1

dr)rp= — s
(TF)TW CO ZlMZ( Iu)

_ :1 1 (CZ/M )(aﬂi/acj)ﬂp,%#jdcj (3.100)

1 —Zz 1 Cil;

where the relation covg + c1v1 + - - - + ¢4vy = 1 (v; is the partial specific

volume of the i-th component) has been inserted.
As has been shown in [Problem C8], one has for dilute solutions in

which all of ¢1,¢g, -+, ¢4 are small

1 (O 8y -
— =RT By BiinCp 4 - - - 3.101
M; <8Cj> Pt (CiMi TR ; et (3100

where B;j, Bjjk, - - - are the coefficients in the Taylor expansion for In y°:
14U
Iny? (T, p,{c}) = (Z Bij + 5 Zl kZlB”kcjck +- > (3.102)
J

Introducing Eq.(3I0I) into Eq.([3I00) and expanding (1—Y"7_, ¢;v;) !
in powers of ¢;, one obtains

d : q q q q q
1075 DI ILETIED 3) y) y WA AEty
' =1 j=1 i=1 j=1k=1
q a q v\ °
><{1+ch?+22[v?v?+ (a ) }+}
i=1 i=1 j=1 €
q dCl q U-O q q
{305+ SN (B g ey + 50 Y B
i=1" '  i=1j=1 J i=1 j=1 k=1
000 1 (0v;\’
+U]Zwvjk + E (a:k> + B}q’U?il cicpdej + - } (3.103)

where the superscript 0 indicates the limit of infinite dilution, i.e., the

state in which all of ¢1,¢g,- - -, ¢4 are reduced to zero.
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Integrating Eq. (B103) from infinite dilution to a given composition,

)
— c;de;
M’L ] 0 J
q 0 0
vV dv;

Bi; L Byjv?
33 o S 5 () ]

{c}
></ cickdcj+~-} (3.104)

To step further one must introduce the approximation that y° (7, p, {c})

one gets

does not depend on p. Then, as has been shown in [Problem C8], there
are relations

(3.105)

Uy Ug 0
Bijie + =7 + Brjvi = Aiji (3.106)
J

and also (9v;/dcy)? vanishes. Hence Eq.(3.104) becomes

E Aijcicj

1j=1

+

MQ

1
24

)3

Jj=1

-
I
—

M= &l
M= &

Agjrcicicr + -+ - (3.107)

W
~.
I
—

=
—

where the invariance of A;; and A;j;, for the interchange of dummy in-
dices has been used. Equation B.J07) is the virial expansion for ,
subject to the two approximations made, and it is seen that this expres-
sion agrees with the virial expansion for 7* at least up to the third power

of solute concentrations.

[Comments]

(1) Classical U-tube osmometers measure 7*

, while modern automatic
osmometers are designed so as to measure w. It is important to no-

tice from the above developed analysis that, strictly speaking, 7* is not
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equal to w. However, the approximations made above, i.e., pressure-
independence of p (solution density) and of y2° (T, p,{c}), apply almost
rigorously under usual experimental conditions for osmotic pressure mea-
surements on macromolecular solutions.

(2) When the solution is quasi-binary, i.e., is consists of a solvent and a

polymer solute polydisperse in molecular weight, one can write
¢ = cg; (3.108)

where c¢ is the total solute concentration and g; is the weight fraction
of the i-th polymer solute of molecular weight M;. With Eq.(3I08),

Eq.[92) for 7* (or Eq.(@I01) for ) may be written

1
7 (or m) = cRT(M + Agc+ Azc® + - ) (3.109)

n

where M, is the number-average molecular weight of the dissolved poly-
mer (=1/%% | g;/M;), and As, As, - - - are the second, third, - - - osmotic

virial coeflicients of the system, defined by

1
Ay = 3 Zzgingij (3.110)
=1 j=1
1 q q q
Ag = §;j:1’;gigjgkAijk (3111)

Equation ([3I09) indicates that plots of 7/cRT versus c give M, ! and
Ay from their ordinate intercept and initial slope. For flexible poly-
mers in good solvent it is often advantageous to use a graph in which
(7* /eRT)"/? is plotted against ¢, because by so doing one can take the
effect of the Asc? term approximately into account. On this graph, the
ordinate intercept and initial slope are equal to Mn_l/2 and Mi/2A2/27

respectively.



113

[Problem C13]
For a solution which contains a macromolecular solute (component 2)

in a mixture of two solvents (components 0 and 1), show that

(), (), (), e
6m1 T,p,p1 8’/712 T,p,m1 8m1 T,p,mo

(5, (o), (o)
87712 Ty pio 87712 T,p,m1 8m1 T,p,ma

My (22 /(2 (3.113)
Ima T,p1 M1/ 7pms

where M7, vy, p1, and my are the molecular weight, partial specific

volume, chemical potential, and molality of component 1 (a secondary
solvent), and mq is tha molality of component 2. These molalities are
defined as the moles of the respective components per one kilogram of

component 0 (a principal solvent).

[Solution C13]
Since 1 may be regarded as a function of T, p, m1, and ms, one can

write at constant T’

dpy = <3u1 ) dm; + (6#1 ) dms + <8u1> dp
aml T,p,ma 8m2 T,p,m1 ap T,m1,mz

(3.114)
Hence
0 0 0, 0
R CT N €y I ¢ I €
dmy T,p,ma dmy T<po,1 M2/ 7pm, dmy (7?;,#101,/51)

where the relation (Op1/0p) 7T m, m, = v1 M1 has been inserted. Equation

BII8) may be rearranged to give Eq.(3113).
It also follows from Eq.([BIT4]) that

() ), () @110
Imq T,p,ma dmy T,p,p1 dmy T,p,m1
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which can be put in the form of Eq.(3I12).

[Comments]
The quantity (0mi/0ma)rp, ., often appears in thermodynamic anal-
yses of a macromolecular solute in a binary mixed solvent (principal

solvent + secondary solvent), and usually it is designated by:

I = (aml) (3.117)
8m2 T,p,p1

If there is no thermodynamic interaction between components 1 and 2,
(Op1/0ma) 7 pm, should vanish. Then, according to Eq.(3112), I' may

vanish, because (Op1/0m1)r pm, generally remains at a nonzero value.

Thus I' may be regarded as ameasure for the thermodynamic interaction
between components 1 and 2, at constant T', p, and .

On the other hand, from the form of Eq.[BII7) one may consider
I" to be the moles of component 1 that must be added to the solution
containing one kilogram of component 0 in order to keep p; constant
when the content of component 2 is increased by one mole at given
temperature and pressure. It is misleading to interpret I' as the moles of
component 1 bound on one mole of component 2 at constant T', p, and
w1 in the solution containing one kilogram of component 0. Therefore,
the term “binding coefficient” or “preferential adsorption coefficient” of
component 2 for component 1 that is often assigned to I' is conceptually
incorrect. One may properly refer to I' as the thermodynamic interaction
parameter for a pair of components 1 and 2 st constant T, p, and ;.
Similarly, the quantity I'* defined by

I = (a"“) (3.118)
amQ T,p1,p1

may be called the thermodynamic interaction parameter for the same

pair of components at constant T, pg, and p1.
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[Problem C14]

According to the classic Flory-Huggins theory of polymer solutions,
the entropy of mixing, AjysS, of binary solutions consisting of a slovent
(component 0) and a monodisperse polymer of P degrees of polymeriza-

tion (component 1) is given by
AyS = —R(’no In¢g + nqln ¢1) (3119)
where n; and ¢; (i = 0,1) are moles and the apparent volume fraction

of component i, with ¢; defined by

Pn1

$o=1—¢1. 1= m (3-120)

If this solution is regarded as ideal, its entropy of mixing, A},S is

Ay S =—R(nolnzg +nylnaxy) (3.121)

where z; is the mole fraction of component i; thus

ni

o = 1— 1, T = (3122)

no +mn1

Evaluate the ratios Ay S/A%,S at ¢ = 0.1 and 0.5 for the case of P =
1000.

[Solution C14]
From Eqs.(@120) and (3122)

_ $1

U B P (3.123)
ni o1
" S (3.124)

Hence ApS/A%,S may be written

1
AyS {ln(l - ¢1) + Pli-o1) 1n¢1}

AyS P(1-¢1) 6 o
{m P—(P-1jar t Pli-g0) 1} =P

(3.125)
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For P = 1000 and ¢; = 0.1,

Ay S
—— =94.1 126
ALS J 3 )
For P = 1000 and ¢; = 0.5,
Ay S
= 87. 12
ALS 87.7 (3.127)

These values illustrate how anomalously the mixing entropy of polymer
solutions deviates from the ideal solution value. This deviation comes

from a greater internal freedom of flexible polymer chains.
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[Problem C15]

By use of the Flory-Huggins expression of the Gibbs free energy of
mixing, A,,G, for polydisperse solution, obtain the chemical potential,
wi, of the i-th component (i = 1,2,---,¢) in the undiluted polymer
mixture. Assume that the interaction parameter x is independent of

composition.

[Solution C15]

The relevant expression for A,,G is

a q
AmG = RT[ngIngo + > _nilng; + (no+ Y _ Pini)xdod]  (3.128)
i=1 i=1
where ng and ¢y are the moles and apparent volume fraction of the
solvent (component 0), n; and ¢; are the corresponding quantities of the
i-th polymer component, and ¢ is equal to 1 — ¢g, i.e., the total apparent
volume fraction of the solute components. The definition of ¢; is
Pi’l’Li

(b- = -
"ono+ 0, Piny

(3.129)

with P; being the degree of polymerization of the j-th polymer compo-
nent. From Eq.[BI28), with consideration of Eq.[3129), we get

o [OALG
i T,p,mj+i
1

:RT|:IH¢Z'—(P2'_1)+R(1_P>¢

n

P10 (3130)
where P, is the number-average degree of polymerization defined by

q
P = 2z it n" (3.131)
i=1 T

and 1Y is the value of ; in the pure state of the i-th polymer component.
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For the undiluted polymer, ¢ = 1 and ¢; = Pin;/ Z?Zl Pinj = w;,
where w; is the weight fraction of the i-th component in the polymer
mixture, so that Eq.([I30) reduces to

P; P;

0 7 7
c= 0+ RT|lnw; +In( =2 ) +1- 2% 3.132
Wi = p; + [nw n( n)—i— J ( )

The second term on the right-hand side of Eq.[8I32) represents the

effect arisen from the mixing of polymers of different chain length.

[Comments]
Note that the A,,,G of the Flory-Huggins theory is not for the process

a solvent + a polymer solid

but for the process

a solvent + mutually isolated polymer components of different P
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[Problem C16]
According to Gibbs, the spinodal of a system consisting of ¢ + 1 com-

ponents is given by the equation

H11 Mi12 0 Hig
21 H22 ot M2
W= . =0 (3.133)
Hq1  Hq2 " Hqq
where 5
fij = ( ’””) (3.134)
8m] T, p,mg

with p; and m; being the chemical potential and molality of the i-th
component, respectively. Show that Eq.([8I33]) is equivalent to

Gi1 Gi2 - G
Ga1 Gaa2 -+ G
|G| = _ =0 (3.135)
qu Gq? e qu
where 920
Gy = ( n ) (3.136)
61‘7an T,p,ar
with .
Go = (3.137)
i=0

and z; being the mole fraction of the i-th component. Note that G,, is

the mean molar Gibbs free energy of the system.

[Solution C16]

Using the relation z; = m;/ Z?:o m;, one finds that

q
_ Op; Oxy,
g =2 (&Tk ) . <5mj ) -
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where the subscripts T, p have been omitted for simplicity. Equation
BI310) can be rewritten
q

q
Gn= (1= z)po+ Y it (3.139)
=1

i=1
Differentiation with respect to x; gives

oG,

=G =puj — 3.140
axj J Hj — Ho ( )
where the Gibbs-Duhem relation Y 7, 2;(dpi/0x;)7,p 2, = 0 has been

used. Thus Eq.(3I39) may be written

q
wi =Gy +G; — Zkak (3.141)
k=1

This is differentiated with respect to z; to give

i 1
(811%) :Gj +Gij *Gj *ZIka]’
:EJ T

k=1

q
=G;j — Zkakj (3.142)
k=1

Substitution of Eq.([3I42)) into Eq.([3138) gives
_ Gy — 31 ®kGrj — iy Gk + k1 2y TTnGn

His = > ko Mk
(3.143)
If one defines ¢ x ¢ matrices, g, G,,, x, and E as
H11 M1z - Hig
M1 H22 o 2
p=| o T (3.144)
Hql  Hg2 ° Hgq
Gii G2 -+ Gy
Ga1 G -+ Gaq
G, = ] ] ] (3.145)

Gp Gg -+ Gy
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X1 xr1 e 1
To Zo e Zo
x = (3.146)
wq l‘q PR :I:q
1 0 0
0 1 0
E= (3.147)
00 --- 1
Eq.I43) may be put in a compact form as
q
m :(Z mk)*l(Gn —xT'G, — G,x + XTan)
k=0
q
= mx) M E - x")GL(E —x) (3.148)
k=0
where x7 is the transposed matrix of x. Thus
q
= (O mi) M E = xT||G|[E — x| =0 (3.149)

k=0

Since [E—x|#0 and [E—x|#0, (E—-xT|=|E—-x|=1->7"

as one may easily show.) it follows that
|GL| =0 (3.150)
which is the required result.

[Comments]

In theoretical treatments of polymer solutions,the more appropriate
composition variables are not the mole fractions but the apparent vol-
ume fractions of the components. For quasi-binary solutions which con-
tain a single solvent (component 0) and a polydisperse polymer solute

that consists of component 1,2,---,¢q of the degrees of polymerization
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Py, Py, -, Py, respectively, the apparent volume fraction ¢; is defined
by
Pin;
b= ————— 3.151)
no + 23:1 Pin; (
One may define a mean Gibbs free energy of the system by
G
Gy = (3.152)

no + 23:1 Pin;

and may regard this as a function of ¢1, @2, - -, ¢ (note that ¢1 + ¢ +
---4+ ¢4 = 1). By the same operation as above, it can be shown that the

spinodal of the system is given by

Gi1 Gz qu
Ga1 Gaa - G2q

Gol=| © . =0 (3.153)
qu Gq2 qu

where G;; is defined as

092G, )
Gii = 3.154
! <a¢za¢j T,p,br ( )
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[Problem C17]

For quasi-binary solutions which consist of a solvent (component 0)
and a polydisperse polymer solute (component 1,2, ---, ¢ depending on
the degrees of polymerization of the constituting polymer chains) one

may define a mean Gibbs free energy G by

G

Gp=———=7—— 3.155
¢ n() + Z?Zl Pﬂ% ( )

Here G is the Gibbs free energy of the system, n; is the mole of the
i-th component, and P; is the degree of polymerization of the same
component. Accorging to the Flory-Huggins formalism, the function G

is expressed by
¢
Gy=GY+RT|(1-¢)In(l—¢ Zﬁn¢z+x1—¢)¢ (3.156)

where ¢; is the apparent volume fraction of the i-th component defined

by
Pn;

S L — 3.157
no +>1_; Pin; (3.157)

¢i =
¢ is defined by
6= ¢ (3.158)

X is the parameter assumed to depend on ¢, T (temperature), and p
(pressure), and Gg is a reference value of G4 depending only on 7" and
.

Show that the spinodal of the Flory-Huggins quasi-binary system is

given by
1 1 8X

where P, is the weight-average degree of polymerization of the polymer
solute, and X is defined by

X=x— (17¢)% (3.160)
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[Solution C17]

As shown in [Problem C16], the spinodal is calculated from the equa-

tion:
G Gz - Gy
Ga1 Gaa -+ Gy
) ) . |=0
qu Gq2 e qu
where

092G, )
Gij =
! <a¢za¢j T,p,bs

Substitution of Eq.(3I50) into Eq.(3I62) yields

1 0X .,
GZJZRT|:1_¢_2X_¢8¢:| (17&])
1 0X 1

Thus Eq.(3I61) assumes the form

L+ 1L, L L
L  L+Ly, - L
|Ln| = . =0
L L - L+1I,
with ) ax
L=— 92X - 2=
1—9¢ ¢
1
Li =
Pio;

One may expand the determinant |L| by use of the formula:

A+a1 B+b1 ay bl
A+ay B+by --- as by

A+aq B+b, - aqg by

(3.161)

(3.162)

(3.163)

(3.164)

(3.165)

(3.166)

(3.167)
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1 b1 aq 1
1 by --- 1 .-
+ 2 +B @ N (3.168)
aqg by ag 1
Then

q q

L= [Z)@> Ly +1)=0 (3.169)
i=1 =1

Inserting Eqs.(3I66) and (BI67), one gets the desired equation for the

spinodal,
1 1 0X
1—¢+Pw¢ ¢6¢ 0 (3.170)

where . 5
P, = =1 Pz L
w

=111
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[Problem C18]

A polypeptide is supposed to take only two conformations, a-helix and
random coil, depending on the conditions of surrouding temperature and
solvent. Define AH and AS as the enthalpy and entropy of the system
in which the polypeptide assumes the helical conformation, relative to
those of the same system in which the polypeptide helix is disrupted to
random coil. The AH and AS thus defined are called the transition
enthalpy and transition entropy, respectively. Show that if AH > 0 and
AS > 0 in a given solvent, the polypeptide undergoes a conformational

change from random coil to a-helix as the temperature is raised.

[Solution C18]
The transition free energy AG defined by

AG = AH — TAS (3.172)

with T being the absolute temperature, is positive below and negative

above the temperature T, determined by the relation:

AH
T.=| — 1
< AS )T_TC (3.173)

provided that, as assumed in the problem, AH > 9 and AS > 0. This
means that for T" < T, the polypeptide chain favors random coil confor-
mation, and for T, < T it tends to assume the a-helix. Note that AH
and AS are, in general, functions of temperature. The T is usually re-
ferred to as the transition temperature of the system. When AH < 0 and
AS < 0, the polypeptide conformation changes from a-helix to random

coil as T increases.
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[Problem C19]
Consider a dumbell-type molecule in a simple shear flow of solvent,

which is represented by (see the figure above)

0
qx
0

=)
|
g 2 g

0
T
0
Y
0
z

with the origin of (z,y,z) coordinates fixed at the center of gravity of
the molecule. Show that if the shear rate g relative to the rotational
diffusion coefficient, ©, of the dumbell is sufficiently small, the molecule
rotates, on time average, at an angular speed equal to ¢/2 about the

z-axis.

[Solution]

The dumbell is subject to two forces at each of its two beads A;
and Ay. One is the hydrodynamic drag due to applied shear flow, and
the other is the fluctuating forcs due to irregular collision of the sol-
vent molecules. Thus the motion of the dumbell must be described
according to the theory of Brownian motion. Clearly, it is convenient to
use the polar coordinates (0, ¢) for the description of this motion. Let

the probability that the orientation of the dumbell at a given time ¢ is
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found in the angular regions (6,6 + df) and (¢, ¢ + d¢) be denoted by
(1/4m)p(0, ¢,t) sin 8ddd¢. According to the theory of Brownian motion,

p satisfies the differential equation

op .. .
5 = div(jp) (3.174)

where j is the flux of probability density for the bead A;. In terms of
polar coordinates, Eq.[3I74) may be written

ap 2 9 2 9

o0~ bsmd 00000~ g g Uer) (3.175)

where b is the distance between the two beads A; and As, and jy and

Jjo are the 6 and ¢ components of j, respectively, so that

. b(do dlnp

Jo = 3 (dt -0 a0 ) (3.176)
b dgb © Jdlnp
Je = (Sl At sind 0¢ > (3.177)

In these equations, df/dt and d¢/dt have such meaning that (b/2)(d6/dt
and (b/2) sin #(d¢/dt are the valocities in the § and ¢ directions that the
bead A; would aquire from applied shear flow of solvent if the Brownian
fluctuating force were absent.

To calculate df/dt and d¢/dt it is assumed for simplicity that the
hydrodynamic disturbance caused by the bead A, at the position of the
bead A is negligible and also that the moment of inertia of the molecule

is negligibly small. Then, one finds that

do d
i % sin 20 sin 24, d—f =qcos’ ¢ (3.178)

Substitution of Eqgs.(BI76) and BI77), with Eq.([8I78)), into Eq.(3I75)

yields
op 1 0(. 0p 1 9%
ot @LiHO ae( sin 9@9) T nZo a¢2

—qusin2ﬁsin2¢ag+ ¢% 32p sin2981n2¢} (3.179)
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For the present problem one may be interested only in the steady-
state solution to this partial differential equation. For the steady state
Op/0t = 0, so that Eq.(IT9) reduces to

2
8<sin98p> + L o

o0 90 ) " sinf 0¢2
L e 2s?? + angeos? 622
6[451n€s1n20s1r12<;589—|—s1nt9cos ¢8¢

3 .
—?p sin® 0 sin 24 =0 (3.180)
One must solve this with the auxiliary conditions that

1 ™ 2
—/ / psinfdfde =1 (3.181)
47 0 0

and that p(0, ¢) = p(r — 0, 6) and p(0,6) = (6,6 + 7).
The derivation of the appropriate solution to Eq.(3I80) is left for
[Problem C21], which gives

2
p= 1+ésin298m2¢+0<ég> (3.182)
Substituting this, together with Eq.(3I7])), into Eqs.(3I70) and BI77),
one gets
o _ba gL q
Jjo = 12<@> {51n200052¢+0<@>} (3.183)
. bq q .
Jo =7 {1+O<@>} sin 0 (3.184)

Therefore, one sees that when ¢/© < 1, jgp >~ 0 and jy =~ (bg/4)sinf. In
other words, the dumbell rotates at a constant angular speed ¢/2 about
the z-axis (the axis perpendicular to the plane of applied shear flow),
keeping the angle relative to the z-axis at a certain value. From this
conclusion it follows that when ¢/© < 1, the z, y, z components, v,

vy, Uz, of the average valocity of the bead A; are

— q
Um__§y

= — 4
vV = ’Uy—2.’L'

v, =0
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[Comments]
It can be shown that the conclusions derived above hold even when

there are hydrodynamic interactions between the two beads of the dumb-

ell.
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[Problem C20]
Derive Eq.(3I78)) in [Problem C19], i.e.,

deo d
T % sin 20 sin 24, £ =qcos® ¢ (3.185)

[Solution C20]
Referring to the figure given in [Problem C19], one sees that the 6 and

¢ components (v1g,v14) of the velocity of the bead A; are written

0 do b . do
= 5% V1p = = sinfd— (3.186)

1o 9 SV

and that the § and ¢ components (ufy,ul,) of the fluid valocity at the

position A; are represented by
0 bg . . 0 bq . 2
Ujg = ?smﬁcosesmcécos ¢,  ujy = 5 sin 6 cos® ¢ (3.187)

if hydrodynamic disturbances caused by the bead A, are ignored. Then,
in the absence of Brownian motion, the 6 and ¢ components (Fig, Fi)
of the force that the fluid flow excerts on the bead A; are given by

b(dd q . .
Fig = —((vig —uly) = —(3 (dt — 7 sin20sin 2¢> (3.188)

Fig = —C(vig — u(l)¢) = —Cg sin@(flﬁ5
where ( is the friction factor of the bead Aj.

In a similar way, one can write the 8 and ¢ components (Fag, Fa,) of
the force that the fluid flow excerts on the bead Ao, and one finds that
Fgg = Fw and F2¢ = F1¢.

To the approximation that the moment of inertia of the molecule may

— g cos® ng) (3.189)

be neglected, the moment of the dumbell about any axis that passes
through the center of gravity 0 can be set equal to zero. From this it

follows that ; .
§F19 + §F29 =0 (3.190)
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b b
3 sin0F14 + 3 sin6Fs4 =0 (3.191)
Since Fig = Fyg and Fi4 = Fhy, one gets
Fip=0, Fip=0 (3.192)

Substitution of these conditions into Eqs.([3I88) and ([B.I89)) leads to the
desired equation (BI85).
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[Problem C21]
Solve the differential equation for p(f, ¢)
9] ap 1 0%
o0 (Sl 680) + smeaTs2

1
_4 [ sin @ sin 26 sin 2¢ —|— sin 6 cos? d)—

o4 ¢

—%’) sin30sin2¢} =0
0<6<m; 0<¢<2m) (3.193)

with the conditions that
1 T 27
—/ / psinfdfde =1 (3.194)
T Jo Jo

and that p(m —0,¢) = p(0, ¢) and p(0, ¢ + 1) = p(0, ¢).
Hint: Expand p in powers of 6 and ¢.

[Solution C21]
Assume for p(f, ¢) the series in ¢/O such that

p(0.6) = m(0.0)+ Em(0.0)+ (&) mOo) 4 )

and substitute this into Eq.([3I93). After collecting terms of the same

power of ¢/©, one obtains a set of equations:

0
0\ D (g0, L0
(@) : 30(51n969>+08¢2 =0 (3.196)

1
q 9 Ip1 1 9%p 1 . . . Opo
() o9 (51 0— 90 )+sin9 962 = Zsmesm2951n2¢%

0 3
4 sin 6 cos? (bﬂ — 2P0 n3 hsin 2¢(3.197)

0¢ 2
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? 2
(q) : 88(51 9892>+ .1 0° p2 :}Sinesin2951n2¢%

S} 00 sinf 9¢2 4
+ sin 6 cos? ¢8—€; - 3% sin® 0 sin 2¢/(3.198)

Also from the auxiliary conditions given above and Eq.([3I95) one ob-

tains

1 /2 pm
- / / posin 0dfd¢ = 1 (3.199)
™ Jo 0

/2 pm
/ / pisin0d0dg =0 (i > 1) (3.200)
0 0

It is a simple matter to see that
po = 1 (3.201)
satisfies Egs.(3.190) and ([3.199). Thus Eq.(3197) becomes

8 . Opl 1 82,01 o 3 .. 3 .
aa(smH%) + Snf 992 ~ 2 sin® 0 sin 2¢ (3.202)

By inspection one finds that this equation has a solution of the form p; =
f(0)sin2¢ and that this particular form satisfies the required condition
p1(0, 0+ 7)) = p1(0,¢) and Eq.(3200). The equation to be satisfied by
f(0) is

af R
sm9@ (sm9d0> —4f = 5 sin 0 (3.203)
If one puts f = f1 + (1/4) sin? 0, Eq.(3203) yields
sin 0L (sing —4f; =0 (3.204)
de de

which may be transformed to

d?fy
dz?

—4f,=0 (3.205)



135

by the substitution

SR P (3.206)

7/ do 1. 1+ cosf
= sinf 2 a—cosf

The genaral solution to Eq.([3200) is f; = Crexp(2z) + Cyexp(—2z), or

1—cosf 1+ cosf

h= 11+cos0+ 21 " cosh

(3.207)

This solution diverges at § = 0 or m. Hence one must discard it. Thus

the desired expression for pp is

1
p1 = — sin® O sin 2¢ (3.208)
4
In a similar way, one can show that the desired expression for p, is
given by
1 2 1 2 1
P2= 15 (—3 sin? 6 cos 2¢ + 1 sint 6 — =1 sin 6 cos 4(;5) (3.209)

The derivation is left for the reader.

Thus, correct to the order of (¢/©)?, p(6, ¢) is expressed as

p(0,6) =1 + L sin? 9 sin 2¢

40
2
42 g Lantg_ 2 Ly
—|—<4@> < 3sm 9(:052(15—1—45111 0 15 7 Sin 0 cos 4¢
P
+O(®3> (3.210)

This result tells that when there is a bunch of dumbell molecules in a sim-
ple shear flow of solvent, the distribution of orientation of the molecules
becomes maximum in the direction § = 7/2 and ¢ = 7/4, provided
q/0 < 1.
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[Problem C22]

Average the Oseen tensor for hydrodynamic interactions

1 Ri;Rij
Ti’: E 1))
I 87T’I70Rij< * R?J

) (Rij = |Ryj) (3.211)

when the distribution of R;; is Gaussian, i.e.,

p - () () ey

2mb2|i - 202]i —

[Solution C22]

1 1 R;:R;;
T;:) = E Y 3.213
) = o (B + (™) (3213
where
1 (oo}
< ,,>:47T/ RZJP(R”)dR” (3214)
R;; 0
(Rt
ij
zi—x;)? xi—x5)(Yi—Y; zi—x;)(2i—24
<( R?jg)> <( JR)éy yJ)> <( ;2)13(J J)>
(mwgfrn)y - (lapl) (Logen)y (3015
P — 2 7/Jx._ . PR . Zj._ . _1‘7 2
<(Z@ JI)QE:':Z 33])> <(Zz Z]I%gjyl y])> <(21jo) >

It is easily found that all the cross-terms in this matrix are zero, while

((zs — ;) /RY;) = ((ys —y;)*/RY;) = ((zi — %)/ R;)

= (s — 23+ (s — 3 + (i~ %))/ R
= S (RY/RY) = (RS (3.216)

Hence

—)E (3.217)
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Thus

1 1 1 1 1
T,)=—|(1+= E— E 91
L) 87T770< +3><Rij> 67mo<Rij> (3.218)

Substitution of Eq.([3212) into Eq.[214) gives

1 V6

<RTj> = Rl — |2 (3.219)

Therefore

1 E
<Tij> - <61/27T3/2b770) |’L _j|1/2 (3220)
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[Problem C23]
Show that from the series expansion of 7,/c in powers of the solute

concentration ¢

sz =[] + K e+ k' + k") + - (3.221)
one obtains
2(nsp — lrclnrel)]l/Q ]+ K] 2+ K" + - - (3.222)
where
K o— % (3.223)
7
K' =k - fk:’ + 36 (3.224)

[Solution C23]

Since nye; = Nsp + 1, one obtains
M nper =In[1 + [rle + K *c® + K e® + &[] e + -]
=[nle + KM + K + ") e + -
P+ W e + (K[ + 28 ) + )
SIS + 3K e+ ) - il +O()  (3.225)
Thus
2(1sp — I nper) =[]’ + (%' - g) []*c?

+(k’2 + 2K -2k + ;) ]! + O(c%) (3.226)

[2(nsp — Innpet)] { <2k:’ - i) e

1/2
<2k// + k/2 le > }

= [n] + (k’—é)[n] +<k”— K+ 376>[77]362+(’)(c4) (3.227)

Hence
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which is the desired formula.

[Comments]

In manu cases with good solvents, k' is close to 1/3, and hence one
can expect that plots of [2(ns, — Inn.e;)]*/?/c versus ¢ should exhibit a
small inclination at low concentrations, the behavior which makes the
extrapolation of the plots to infinite dilution easier. If ¥’ = 1/3, the
coefficient K" vanishes for k" = 1/36.
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[Problem C24]
Show that the intrinsic viscosity, [n], of a flexible macromolecule may
be calculated from
Na <

=~ ;(Fiym (3.228)

where N4 is Avogadro’s number, M is the molecular weight of the
molecule, 7 is the viscosity coefficient of the solvent, Fj, is the y-
component of the force F; which the i-th segment (i = 1,2,---,n) of
the molecule excerts on the surrouding fluid when the molecule is placed

in a simple shear flow of solvent that is represented by

NORO 8O

0
qr
0

<
I
g =2 g

with the center of gravity of the molecule taken at the origin of (x,y, z)
coordinates, and z; is the z-coordinate of the i-th segment. The sym-
bol (---) means to take average over all possible configurations of the

macromolecular chain.

[Solution C24]

As is illustrated in the figure, one suppose two parallel plates between
which the solvent is filled. In order to produce the simple shear flow
mentioned, one must shear them with the valocities gh/2 and —qh/2,
where h is the distance between the plates. The work done in unit time
is

wo = nog’hA (3.229)
where A is the area of one plate.

When the macromolecule is placed in the solvent, with its center of
gravity (more correctly, its center of fluid resistence) at the midway be-
tween the two plates, the molecule tends to rotate about the center of

gravity, and this dissipates part of the energy supplied to the fluid by
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- | x=-h/2
h D y
x=h/2 —
X

shearing the plates in opposite direction, because the molecular rotation
experiences frictional resistence from the solvent. Consequently, an ad-
ditional energy must be supplied on plates in order for the original shear
rate to be maintained by the fluid. The work to be done in unit time in

the presence of the macromolecule is
w = ng*hA (3.230)

where 7 is the viscosity of the solution. The additional energy is therefore
expressed by w — wo = (n — 19)¢*hA. Tt can be equated to the sum of
—F,; -u? over all segments of the macromolecular solute, where u? is the

value of u® at the position of the i-th segment. Thus one gets

n—"o
= anQhA ZF u) (3.231)

which may be rewritten

.-
=1 = F;,x; 3.232
2 e noc¢ quM Z vl ( )

where ¢ = M/(N4hA) is the mass concentration of the macromolecular
solute. This equation refers to a particular instantaneous configuration
of the molecule. The actual [n] is given by Eq.([B.232]) averaged over all
possible configurations of the molecular chain. In this way, Eq.([3228)) is

derived.
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[Comments]
Equation (3:228) may also apply for rigid macromolecules. In this

case, (---) means an orientational average.
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[Problem C25]
Derive the Kirkwood-Riseman equation basic to the calculation of the

friction coefficient of macromolecules.

[Solution C25]

Let the segments (or beads) of a macromolecular chain be numbered
1,2,---,n, and let the center of gravity of the chain be moved at a
constant velocity u® in a solvent at rest. Neglecting the inertia of each
segment, the force F; that the i-th segment exerts on its surrounding
liquid is expressed by

F, = ((u® — v)) (3.233)

Here ( is the frictional factor of a segment, and v} is the fluid velocity
which is produced at the position of the i-th segments by the forces

acting on all other segments. The v} is given by

n
1 E R.R..
/ i AV
i 3 (G ) R (=R 23)
=i S0 N By B
where 79 is the viscosity coefficient of the solvent, E is the 3 x 3 unit
matrix, R;; is the distance vector between the i-th and j-th segments.
The term multiplied by F; in the sum is usually called Oseen’s tensor for
hydrodynamic interactions. Substitution of Eq.[3234]) into Eq.[3233)),

followed by averaging over all possible configurations of the chain, yields

" E R,R;
By == 5 S (G B )

1

The Kirkwood-Riseman formalism approximates (- --) in the sum by

E  RyRy
+ JS J

T )(F)) (3.236)

T
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Then Eq.([B235]) becomes

F)=cul— o S ) (L2 (3290)

(See [Problem C22]) This gives a set of linear simultaneous equations
for n average forces (F1), (Fa), --+, (F,,). The average total force (F)

required to drag the chain with a given velocity u® is given by

n

(F)=> (F;) (3.238)

i=1

The friction coefficient of the chain, =, is then calculated from

= _ (F)
It is convenient to define 1; buy
(Fi) = ¢y’ (3.240)
Then, Eq.([3237) may be written
i =1 =1,2,---, 3.241
" 67% | Z R G n) (3.241)
=1,j#
and = may be expressed as
E=() W (3.242)
i=1

[Comments]
For linear chains in which the distribution of R;; is Gaussian, one gets
(see [Problem C22])

1 6!/2

=)= 75 3.243
<R”> 7Tl/2b|i—j|1/2 ( )



Hence Eq.([3241]) becomes

* - wj .
Yi=1-h Z e (i=1,2,---,n)
J=1A1
where

¢

| S—
(67%)1/2bng
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(3.244)

(3.245)
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[Problem C26]

According to Einstein, the intrinsic viscosity [n] of a spherical particle
is proportional to the specific volume of the particle. Flory and Fox as-
sumed that this proportionality would hold for polymer molecules if the
essentially spherical domain occupied by the molecule is to be imperme-
able to solvent flow. Derive from this assumption that [5] of homologous
polymers increase lineraly with M'/2 at the theta point, where M is the

molecular weight of the polymer.

[Solution C26]

Because the radius of the spherical polymer coil may be assumed to

be proportional to <52>1/ 2, we may write, according to Flory and Fox,
(52)3/2
=K .24
(] A (3.246)

with K being constant. At the theta point, (S?) varies linearly with M

for a series of homologous polymers. Thus [n] o< M 1/2,

[Comments]
If (S?) at the theta point is denoted by (S%)o, Eq.([3240) may be
rewritten
(SH N2
= K’( ) M 3.247
[n] T (3.247)
or
[n] = K'adM*/? (3.248)

with ag being defined by

ag = <g2)”2 (3.249)

The dimension-less quantity ag is called the linear expansion factor of
the polymer coil referring to the radius of gyration. The new constant
K’ is often expressed in terms of the Flory viscosity constant ® as

K = (fj}o)g/z@ (3.250)
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It has been predicted theoretically and verified experimentally that, in
actual systems, ® is not a constant but decreases with increasing asg.
However, no exact information is as yet available about the dependence

of ® on ag.
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[Problem C27]
Compute the Flory-Mandelkern-Scheraga parameter /3 for rigid spher-

ical particles.

[Solution C27]
If [n] is expressed in dl/g, ( is defined by

_ Namo[so] [n]'/*

B= 00T (3.251)

where sq is the sedimentation coefficient. For rigid spheres

M M

= FoNa T GmmNac (3252)
47TNACL3

=25 —— 3.253

= 25( T ) (3.253)

where a is the radius of the sphere. Introduction of Eqgs.([3.252)) and

(3:253) into Eq.(325I) yields § = 2.11 x 10°.
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[Problem C28]
For the spring-bead model for a polymer chain confirm the relations:

n

Z(iﬁz —z1)? =x' Ax (3.254)
i=1
> (@i —zia)(yi — yio1) =x" Ay (3.255)
i=1
where
T
Z1
X = . (3.256)
Ty
Yo
n
y= } (3.257)
Yn
1 -1 0 0 0 0
-1 2 -1 0O 0 O
0o -1 2 -1 0O 0 O
A = 0 0o -1 2 0 0 0 (3.258)
o 0 0 0 - -1 2 -1
o o o o -~ 0 -1 1

and xT designates the transpose of x. The A is a (n + 1) x (n + 1)
matrix, with n + 1 being the number of beads (hence n is the number of
springs) in the chain.

Hint: It is not easy to go from the left-hand to the right-hand side in
either Eq.([3.254) and(B3:253]), but the reverse is a simple matter.

[Solution C28]
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xTA =(zo 21 -+ zn)A
=(xo— w1 — a0+ 22, — T3 —x1 + 229 — T3 -

—Tp_1+ Tp) (3.259)
Hence

xT Ax :a:(z) — T1To — Tor1 + 23:? — Xox1 — T1To + 2x§ — X3X9 — Tol3
2
+"'*$n—ixn+xn
2 2 2 2
:(xo — 2wox1 + 'Tl) + (.’L'l — 2x129 + ,’EZ) —+ .-

+(xi—i —2Tp 1Ty + xi)

:Z(a:i —xi1)? (3.260)

Try a similar operation to confirm Eq.([3255).
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[Problem C29]
The (n+ 1) x (n+ 1) matrix A defined below plays a central role in

the Rouse-Zimm theory for the dynamics of linear polymer chains:

1 -1 0 0 0 0
1 2 -1 0 0 0 0
0 -1 2 -1 0 0 0

A=| 0 0o -1 2 0 0 0 (3.261)
1 2 -1
0 -1 1

Show that the k-th eigenvalue A; (k=1,2,---,n+ 1) of A is given by

A = 4sin2 [2(:11)} (3.262)

[Solution C29]
The eigenvector for A is designated by p. Then

Ap—-)p=0 (3.263)

where A is the eigenvalue. If n 4 1 elements of p are denoted by pi, ps,
-+, Pnt1, Bq.([3263) may be written

(L=MNp1—p2=0 (3.264)

1+ (2-A)p2—ps =0 (3.265)

—Pj-1+ (2—- A)pj —pji+1 =0 (3.266)
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—Ppn—1+ (2 - )‘)pn —Pnt1 =0 (3267)
=0+ (1= A)ppp1 =0 (3.268)

To solve this set of difference equations one sets p; = C27~! and substi-

tutes it into Eqs.([32658]) —(3267)). Then one gets
—1+2-Nz—-22=0 (3.269)

The roots of this quadratic equation are denoted by z; and z5. Then

21+ 29 =2— A, 2129 =1 (3270)
and
b = Crad =l 4 Cyaf ) (3.271)
where C; and Cy are constants. If Eq.([3.27T]) is put into Egs.([3:264]) and
3.268),
(I—A—zl)C’l +(1—/\—22)02 =0 (3272)
[(1 =Nz — 27N+ [(1 = N)2d — 250710y =0 (3.273)

For these two equations to have nonzero roots of C; and Cj it is necessary
that the condition

(T=A—21)(1 =X =251z — (1= A —29)(1 = A — 27120 =0 (3.274)

is satisfied. Using the relations 1 — A — 23 = 25 — 1 = (1 — 21)/2; and
1—X—25 = z1 — 1 which follow from Eqs.(3210), one may rewrite

Eq.3274) as

1 2
< Zl) 27" = (2 — 1)%2) (3.275)

21
whence

z21=1 or "2 =1 (3.276)

Thus

zlexp<n7j:1k> (k=0,1,---,n+1) (3.277)



153
This is substituted into Eq.(270) to give

™ )
A =2 — —k | - — k
) exp(nH ) exp( s )

km km
=2(1— = 4gin? ——— )
< COSn+1> sin ST 2) (3.278)

The case k£ = 0 should be discarded, because, in this case, A = 0 and

hence one obtains the trivial eigenvector p = 0 from Eq.([8263]). In this
way one finds that the eigenvalues of A are given by Eq.([3262).

[Comments] Equations (3.264) and (3:268) are the boundary conditions
for the set of n — 1 difference equations given by Egs.([3.268) — (3:267).
The constants C; and Cy in Eq.([3271]), the the general solutions to this
set of equations, must be determined in such a way that these boundary
conditions are satisfied. Equations (B272) and ([B273) are the expres-

sions for this requirement.
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[Problem C30]

Calculate the intrinsic viscosity of a dumbell-type molecule consisting
ot two beads 1 and 2 connected by a rigid bond of length b, by using
the Kirkwood-Riseman formalism with the preaveraged Oseen tensor for

hydrodynamic interactions.

[Solution C30]
Let the molecule be placed in a simple shear flow of shear rate ¢ which

is represented by

0
qr
=0

NORO 8O

u
u = U
u

with the origin of (z,y,z) taken at the center of the bond connecting
the two beads. According to the Kirkwood-Riseman theory, the fluid
valocity u(1) at the position of the bead 1 is represented by

u(l) =u’(1) + 8;770 (f + 2‘;) -F(2) (3.279)

where u°(1) is the value of u® at the bead 1, g is the viscosity coefficient
of the fluid, E is the 3 x 3 unit tensor, bb is the dyadic of the vector b
which represents the direction from the bead 2 to the bead 1, and F(2)
is the force that the bead 2 exerts on the fluid. It is physically obvious
that

F(2) = —-F(1) (3.280)
where F(1) is the force that the bead 1 exerts on the fluid. If the friction
coefficient of either bead is denoted by ¢, F(1) is expressed by

F(1) = V(1) — u(L)] (3.281)

with v(1) being the velocity of the bead 1. Substitution of Eq.([3279),
with consideration of Eq.([3280), gives

875770 <f + <]z]3°>> F(1) (3.282)
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where (---) indicates the averaging over all orientations of the molecule.

Since
2wy wxz
bb=4| yz > yz (3.283)
zx 2y 22
and since (zy) = (yx) = (xz) = (z2) = (yz) = (zy) = 0 and (2?) =

(y?) = (2%) = b2 /12, we have

i 0 0
(bb)=5| 0 » 0 (3.284)
0 0 b
Thus, with
v, (1) F,.(1
vil)=| v,(1) |, FQQ)=]| F,(1) (3.285)
Vy 1 Fz(l
we obtain from Eq[3:282)
F,.(1) v (1) F.(1
F,(1) ¢l v,(1)—qz | + 67r< A F,(1) (3.286)
F.(1) v.(1) 7\ Fa
which gives
F,(1) = ¢foy (1) = g2] (3.287)

<
<]‘ - 671'7]0b>

The required intrinsic viscosity [n] is calculated from

(J)N4a

[ = —m

(3.288)

where N4 is Avogadro’s number, M is the molecular weight of the dumb-

ell, and (J) is given by

(J) = (Fy (D (1)) + (Fy (2)z(2)) (3.289)
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Since, by Eq.@280), F,(2) = —E,(1), and also since z(2) = —xz(1),
Eq.([3289) may be written, after introduction of Eq.([3.281),

gy = vy (1) — a(a)] (3.290)

<
(1 - 67r770b>

As has been shown in [Problem C19],

(zoy(1)) = %<x2> (3.291)

Hence, with (z2?) = b?/12, we have

(g ¢
() =—"5 (1 - 67”70b> (3.292)

Thus,

_ (Nab? ¢
= o/ (1= s (3.209)
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[Problem C31]

Apply the Kirkwood-Riseman formalism to derive the expression for
the translational friction coefficient =, of a flexible Gaussian ring com-
posed of n(>> 1) segments of length b.

Hint: Replace the equation for ¢; [Eq.([3.241) in [Problem C25]] by an

integral equation for ¢ (y), and then expand ¥(y) in a Fourier series.

[Solution C31]

The statistical average (R
j) for Gaussian rings may be obtained by using Eq.(ZIT1)) in [Problem
B16] as

Y (R;;: distance between segments i and

= () [l e

Substituting this equation into Eq.([241]) in [Problem C25] and approx-

imating the sum by an integral, one obtains the integral equation

' Y(y)
=1=h d 3.29
ve) /—1 lly — z|(1 — |y — =])]}/2 Yy ( 5)
with C\/~
n
= (67%) 2y (3.296)
and ‘ ‘
p=2o1 y=T o (3.297)
n n

where ¢ and 79 have the same meaning as given in [Problem C25]. Then,
Eq.[3242)) for Z in [Problem C25] is expressed by

1
== /_ (o)a (3.298)

Now, one may expand ¢ (y) in a Fourier series as

oo

V) = 5+ Yl cos(rhy) + B sin(rky)] (3.299)
k=1
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Introduction of this equation into Eq.([3:295) gives

%JFZ[Q,C cos(mkz) + B sin(mkz)]
k=1

=1- h{[ )+ Z aply(x) + ﬁka(x)]} (3.300)
k=1

with .
1
1 = d 3.301
o= [ e (3301
! cos(mky)
1 = d 3.302
0= [ e (3:302)
! sin(mky)
H = d 3.303
K / Iy =2l —Ty— a7 (3:30%
These integrals are then evaluated to give
1 d§
I = — = .304
0(.1') . m (3 30 )
1
L) =(—1)F [ -2,
k(x) ( 1) . \/@ g
=(—1)*r cos(kmz)Jo(km) (k> 1) (3.305)
Hy(x) = (—1)*sin(krz)Jo(kn) (k> 1) (3.306)
where Jy is the Bessel function of zeroth order defined by
_2 L cos(z€)
Jo(z2) = 7\/@d£ (3.307)

Substitution of Egs.([3304)— B.306]), followed by comparison of both

sides for each k, gives
2

1+7h
ar=0r=0 (fork>1) (3.309)

ap = (3.308)
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With these values, Eq.([3299) for ¢ (y) becomes

1
T 14 7h

¥(y) (3.310)

Introduction of this equation into Eq.(3.298)), followed by integration,

yields the desired equation for =,

_ n
5 =10 (3.311)
[Comments]
If h > 1, Eq.(3311) becomes
_ nl/2

which indicates that the translational friction coefficient is proportional

to the square root of molecular weight of the sample.
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[Problem C32]
Show that the Kirkwood-Riseman approach gives the intrinsic viscos-

ity [n], of a flexible Gaussian ring

CNan2b? & 1
= . 1
[77]7" 127T2M770 Pt k2[1 + ﬂ'h(fl)k(]o(lﬁr)] (3 3 3)
with 1/2
(n
he —>" 3.314
(673)1/2brq ( )

Here N, is Avogadro’s number, ( is the friction constant of a segment,
n is the number of segments in the ring, b is the bond length, M is the
molecular weight, ng is the viscosity of solvent, and Jy denotes the Bessel
function of zeroth order.

Hint: Follow a procedure similar to that employed for evaluating the
translational friction coefficient of a flexible ring (see [Problem C31]).
One may find the expressions for (S; - S;), and (Ri_jl) from [Problem
B17] and [Problem C31].

[Solution C32]
Substitution of the expressions for (S;-S;), and (R;) into the Kirkwood-
Riseman rquation, followed by replacement of the sum by an integral,

leads to the integral equation

o(z,y) = —Af(z,y) — h/l1 oo t|(;b(_t’|i)_ RE dt  (3.315)

" 4= St (3.316)
18

fley) =3 — e —yl@— o - y) (3317)

T (3.318)

n n
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and h defined by Eq.(314). At the same time, one finds that Eq.([3228)

in [Problem C24] is rewritten

] = —2M%q/_ o(x, x)dx (3.319)

Let ¢(t,y) be expanded in a Fourier series as
S+ [ak(y) cos(kt) + Bi(y) sin(krt)] (3.320)
k=1

Introduction of this equation into Eq.([33I5), followed by integration,

gives

ao(y

(1+7h) i 14 wh(—=1)*Jo(km)]
k=1

x[an(y) cos(kmz) + Br(y) sin(krz)]
= —Af(q,‘7y) (3.321)

The coefficients a(y) and Bk (y) can be determined by

o (y) :l—i—wh(i ¥ o () / f(x,y) cos(krx)dx
(k=0,1,---,00) (3.322)
B (y) :1+7rh(_ % Jo (o) / f(x,y)sin(krz)dx

(k=0,1,--,00) (3.323)

with f(z,y) given by Eq.([83T7). These integrals are evaluated to give

ag(y) =0 (3.324)
_A 2 2
) = 1) do () (kn) cos(kry) (k=12,--,00)
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—A 2 \?
= =) sin(k k=1.2 ...
B W) = TR R g o) (m) sin(kmy) (k=1,2,---,00)
(3.326)
Substitution of these coefficients back into Eq.([3.320) gives
1A & 1
(3.327)

$z,2) =~— £ 12[1+ wh(—1)F Jo (k)]

Finally, introducing this into Eq.([3319), one arrives at Eq.(3313).
In the non-draining limit (h > 1), Eq.(3313) reduces to

_ Na@mb?)P (-1
- 2/6m3/2M = k2 Jo (k)

]y (3.328)

which indicates that [5)], is proportional to M'/2.
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[Problem C33]

Evaluate the sum Y~ | (—1)*/[k?Jo (k)] which appears in the expres-
sion for the intrinsic viscosity [n], of a flexible ring in the non-draining
limit, and estimate the ratio of 7], to the intrinsic viscosity [n]; of the cor-
responding linear chains. The [n]; derived from the Kirkwood-Riseman
equation is given by

(nb2)3/2

[n]; = 2.87 x 10% (3.329)

[Solution C33]

The sum may be evaluated with the aid of the tabulated values of
Jo(km) for small values of k and by use of the asymptotic form of
(=1)*/[k2Jo(km)] =~ 7 /k3/2 +1/(8Kk>/?) for large values of k.

For example

50 (_l)k
——F— =7.514 3.330
kZ:l k2 Jo(km) ( )
100 , 1
> <k3/2 + W) = 0.258 (3.331)
k=51
> T 1 < o
> (W + W) ~ / a7k = 0625 (3.332)
k=101 101
Hence,
o (-D)*
- =38.397 3.333
; k2 Jo(km) ( )
Introducing this value into Eq.([3321) in [Ptoblem C32], one gets
» = 1.854 x 1023@ 3.334
n
Thus, the ratio [n],./[n]; becomes
[l
= 0.646 3.335
()i ( )

which predicts a decrease of about 35 %.
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[Problem C34]
Show that the polarizability tensor e of a molecule whose principal
axes of polarization, denoted by 1, 2, and 3, have polarizabilities o, o,

and « is represented by

(o — al )l +ay () —ap)limy () —ai)lhing
a= () —ar)mily (o —a)m?+ay () —ar)ming
(a — ap)nily (o —ar)nimy (o) —ar)ni+ay
(3.336)

when the axis 1 has direction cosines 1, my, and n; relative to the

laboratory-fixed Cartesian coordinates x, y, and z.

[Solutions C34]

Denote the dipole moments induced in the direction of the axes 1,
2, and 3 by p1, p2, and ps, respectively, and denote the z, y, and z
components of the electric vector of incident light by E,, F,, and £,

respectively. Then one gets

p1 = (LE; + miEy +n1 B, )q (3.337)
P2 = (lgEx + mQEy + ’I’LQEZ)OLL (3338)
p3 = (l3Ex + ngy + ngEZ)Oél (3339)

where l;, m;, and ny (i = 1,2, 3) are direction cosines of the axis i relative
to the x, y, and z axes, respectively.
The z, y, and 2z components, p,, py, and p., of the induced dipole

moment are expressed in terms of py, po, and p3 as follows:
Pz = p1l1 + pala + p3l3 (3.340)

Dy = P1Mm1 + p2Mma + pams3 (3.341)

Pz = p1in1 + pang + pang (3.342)
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Introduction of Eqs.([3337) through B339) into these equations gives

Da z[aulf +ay (I3 + l%)]Ew + [olimy + a i (lamg + l3m3)] B,
+[a||lln1 + al(lzng + lgng)]Ez (3343)

py =lalimy + ay (lama + I3ms3)|E, + [aHm% + al(mg + m%)]Ey

+Hoyming + oy (mang + mans)|E. (3.344)

Pz z[aHllnl + O[J_(ZQTLQ + l3n3)]Ez + [Oanlml + ou_(ngmg + ngmg)]Ey

Hoynt + oy (n3 +nd)]E. (3.345)

Hence if one write

p=a-E (3.346)
or
Pz Ogy  Qgzy Qg E,
Py | = | e oy oy E, (3.347)
Dz Qzg  Qzy Oy Ez
it follows that
e = )l +ay (13 +13) (3.348)
Qyy = a”m% +ay (m3 +m3) (3.349)
Oy = a”nf +ay(n+ ng) (3.350)
Qpy = Qg = a”l1m1 + aL(lng + lgmg) (3351)
Qyz = Qzy = qnimy + i (nema + nzms) (3.352)
Qpy = Olpy = aHll’fh + aj (lang + I3ns) (3.353)

Since B+ +E=1mi+mi+mi=1n}+nd+n3=1 lL1m +
lomo +13mg = 0, ling +1ons +1I3nz = 0, nymy +nsms +ngms = 0, these

expressions reduce to

g = () —a )2 4+ a 3.354
I 1
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ayy = () —a)mi+ay
Qpz = (O‘H - OZL)”% +ay
Qpy = Qyg = (a\l —ay)limy
Qyz = 0y = (o — L )nimy
Qpz = Qe = () —aL)lim
which gives the desired expression (3.330]

[Comments]

Equation ([3.336) may be decomposed into two parts as
a=ar+aoy

where

o = O
—_ O O

1
a[:aLE:aL 0
0

2
ll l1m1 llnl
Qs = (O‘H — OU_) mlll m% ming

’Illll nim; Tl%

3.355

3.359

(3.360)

(3.361)

(3.362)

a; and a4 represents, respectively, the optical isotropy and anisotoropy

of the molecule considered. It is this latter part of & that is responsible

for birefringent behavior of the molecule in shear flow.
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principal
axis 1

sﬁea_r flow
profile

[Problem C35]
In the usual concentric cylinder apparatus for studying flow birefrin-

gence of dilute solutions, show that the extinction angle x is given by

(sin 2¢ sin? §)
(cos 2¢ sin? A)

when the principal polarizabilities of the solute molecule are o, oy, and

tan 2y = (3.363)

a for the principal axes of polarization 1, 2, and 3. In Eq.(3363), 6
and ¢ are the polar angles which define the orientation of the principal
axis 1 with respect to the x, y, z axes taken in such a way that the = axis
is in the direction of shear flow at the point considered and the z axis is
in the direction of incident light (see the figure), and (- --) designates an
appropriate average over all orientations of the solute subject to shear
flow.
Hint: Apply Eq.[3338) in [Problem C34].

[Solution C35]
Incident light is plane polarized. The z and y components of its electric
vector E are denoted by E, and E,, and the z, v, and z components of

the dipole moment p induced in the solute molecule are denoted by p,,
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Dy, and p,. Then

Da L,
p, | =al| E, (3.364)
Dz E,

Substituting Eq.([3336) in [Problem C34] for the polarizability tensor a
and considering the fact that 1 = cos¢sinf and m; = sin¢sinf, one

obtains, after orientational averaging,

Pz = 1 Ey + T12Ey (3.365)
py = T2 By + 12 Ey (3.366)
where
11 = (g — a1 ) {cos® psin® ) + oy (3.367)
Tog = (o — a1 ) (sin® $psin® 0) + oy (3.368)
Ti2 = (o — a1 )(sin ¢ cos ¢ sin? ) (3.369)

From Egs.([.365) and [B:363) together with E? + E? = E* (E = |E|), it
follows that

Bi1p2 — 2B12ppy + 5222712, = E? (3.370)
where 2 o
T2 T Ti2
= 3.371
ﬁu (T11722 *7122)2 ( )
2 2
Ti1 T Tia
= 3.372
= (T11722 — TH)? ( )
By, = 12T +722). (3.373)

(111722 — 715)?
Equation ([B:370) represents an ellipse described by the projection of the
orientation-averaged p on the x — y plane.

Now one takes a new (z’,y’) coordinate system, i.e., the 2’ and y’ axes
are chosen in the directions of the principal axes of this ellipse. Then,
one can write

Pa = Par COS X — Py SIN X (3.374)
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Dy = Par SIN X — Py COS X (3.375)

where x is taken to be the smaller one of the two angles that the y axis

makes with the principal axes of the ellipse. Introduction of Eqs.([3.374])

and 370) into Eq.@370) gives

(B11 cos? x + Baz sin? x — 20315 cos x sin ) (per)?

+(B11 8in® x + Pz cos® x + 2012 cos x sin x) (pyr)?

—2[(B11 — Baz) cos xsin x + Bia(cos® x — sin® X)]parpy

e (3.376)

The term multiplied by p,/p,s, must be vanish, because the z’ and v’

axes are the principal axes of the ellipse considered. Thus one obtains

2012
Bi1 — Pa2

Extinction occurs when the plane of polarization of incident light coin-

tan2y = — (3.377)

cides with the z —y’ plane, because then the transmitted light is stopped
by the analyzer. Thus the x defined by Eq.([B371) is equal to the extic-
tion angle. Substitution of Eqs.(8371]) through (B373)) into this equation
yields
tan 2y = _2m2 (3.378)
TiL — T22
which is found to be equivalent to Eq.([3363) when Eqs.([3367) through

B389) are inserted.
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[Problem C36]
In [Problem C35], show that Aa, the difference between the principal
polarizabilities of the ellipse that the orientation-average p describes on

the plane of shear flow (x — y plane), is given by

27'12
Ao = 3.379
@ sin 2y ( )

where x is the extinction angle and 712 is given by Eq.([3369) in the

same problem.

[Solution C36]
When Yy is the extinction angle, Eq.(B.370) in [Problem C35] becomes,
with p,r = ap E and py = ay E,

Cf; + O;?Z —1 (3.380)

where
a = (B11 cos® x + Boz sin? x — 2315 cos x sin X)_1/2 (3.381)
b= (P11 sin? y 4 fag cos? x + 2012 cos y sin X)*l/z (3.382)

Equation ([380) indicates that Ac is represented by
Aa=a—-b (3.383)

Substituting Eqs.(3371) through (B373) in [Problem C35] for (1,
B2, and (12 and considering that y is related to 711, 722, and 72 by
Eq.(3378)) in the same problem, one obtains

COs 2X(7‘11T22 - 7'122)

a= T2 (3.384)
Tog c0s2 y — 711 sin” x

cos 2x(T11722 — T5)

T11 cos2 Y — Tog sin? x

b= (3.385)



Therefore

—cos2x (111722 — Th) (111 — T22)

(T3,73,) cos? x sin? x — 711 722(cos? x + sin? x)

Ao =

But, using tan2x = 2715/(711 — T22),

2 2 2 qip2 2 4
(Ti1 + T3) cos” x sin” x — T11722(cos™ x + sin” x)

= (Tll - 7'22)2 cos? XSiD2 X — T11T22(C082 X — sin? X)2

= (T12 — T11T22) cOS® 2

Equation (B3.380) becomes

Ti1 — T22
Ay = — 22
cos 2y

or
27’12

sin 2y
which is the required formula (3379).
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(3.386)

(3.387)

(3.388)

(3.389)

One may eliminates x from Eq.(3389) by use of the relation tan 2y =

2712/ (T11 — Taa), yielding

A = (111 — T22)* + 47'122]1/2

(3.390)
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E

[Problem C37]

Suppose that a Gaussian chain of n equal bonds, each having polar-
izabilities oy and as in the directions parallel and perpendicular to its
axis, is fixed at its end, with R as the end-to-end distance. Show that the
polarizabilities of the chain in the directions paralle and perpendicular

to end-to-end distance vector R (R = |R|) are represented by

n(ag + 2as) 2R?

oy = "2 0y - ) 2 (3.391)
0, - M ~(on - OQ)% (3.392)

Hint: Apply Eq.(3330) in [Problem C34].

[Solution C37]

In the figure above, let E; and E; be the unit vectors parallel and
perpendicular to R. Denote the angle between b (the bond vector) and
E; by 6 and denote the angle between b and Es by 6’. Then Q| and o |

are represented by

o) =n{a; cos? 0 + a sin? 6)

=n{ag + (a1 — ay) cos? f) (3.393)
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oy =n{aj cos? 0 + aysin? @)

=n{ay + (a1 — az) cos® ') (3.394)

where (- --) designates the average taken over orientations of b which are
possible under the condition that the end-to-end distance of the chain is
fixed at R.

Equation (3393)) is derived as follows. Suppose that E; is an electric
field vector. Then there is induced a dipole moment of Fyaq cosf in
the direction of b and a dipole moment of Ejassinf in the direction
perpendicular to b. These give a dipole moment (o cos? 6+ ay sin® )
in the direction of E;. This moment averaged over orientations of the
bond is B (a cos? 0+ sin? ), which is the same for all n bonds of the
chain so that the chain as a whole has a dipole moment of E1n{a; cos? 0+
g sin? 0) in the direction of Ey, i.e., that of R. Thus ) is represented
by Eq.(8393). Equation (8:394) may be obtains in a similar way.

The orientation of b is characterized by a pair of angle 6 and ¢. Here
¢ is defined as the angle that @ in the figure makes with E,. O@ is the
line along which the plane formed by b and E; intersects with the plane
formed by E, and Ejs (the vector normal to both E; and Es). Since
cos @ = cos ¢sin 6, Eq.[3394) may be written

o) = nla; + (a; — ag) cos? ¢sin? 0) (3.395)

Now, let the probability that b assumes an orientation between (6, ¢)
and (0 + df, ¢ + d¢) subject to a given R be denoted by f(6,¢)d0de.

Then Egs.([3393) and (3:395) are expreaaed as

27 T
o = n[ag + (0g — a2)/ / cos? 0f(6, ¢) sin oded¢] (3.396)
0 0

27 T
aL=n {a2 + (a1 — az) / / sin® @ cos® ¢ f (6, qS)d@dng] (3.397)
0 0
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According to Eq.([3330) in [Problem C34], f(0, ¢) for Gaussian chains is
represented by

3R 3R cost
1(0,9) = 47nbsinh(3R/nb) exp( nb ) (3.398)
Hence
27 e
/ / cos? 0sin O£ (6, ¢)d0dep = 1 + w (3.399)
0 0
2 T
/0 /0 sin® 0 cos? ¢ f (0, $)dOdg = _2(1%2&%11@ (3.400)
where
0= 3E Ral (3.401)

T b Vn(R2)1/2
Note that (R?) = nb? for Gaussian chains consisting of n equal bond of
length b.

One may impose the condition R < nb or § < 1 for Gaussian chains.
For <« 1

1(1 — BeothB) 2 B B
126 4
=3+ +0@) (3.402)
1(1 — fBeothB) 1 B B
—52_—52(1—1—3+45+-~->
— 1 ° 4
=5~ 5 T oEY (3.403)
Therefore
2
o) =n [ag + (1 — az) (; + 2465)}
+2 2 R2
:M + (o~ a) g (3.404)
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0l —n [ag + (a1 — 0‘2)@ B f;)}

n(ag +2a3) 1 R?
=BT (g - ) 3.405
3 5 (041 042) <R2> ( )
where terms higher than (/3?) have been neglected in comparison to unity.
Equations ([3.404]) and (3.405]) are the required expressions.

[Comments]

From Egs.([3404) and (3:405) one gets

2

o —ay = g(al - a2)<§2> (3.406)
which sows how the optical anisotropy of the chain as a whole, i.e.,
o) — a, is related to the optical anisotropy of its constituent bonds,
i.e., a3 — ag, when the end-to-end distance of the chain is fixed at a
given value R. When the chain ends are not fixed but allowed to move
freely, Eq.(3408) no longer holds, because Eq.([3398) for Gaussian chains

is not always obeyed.
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[Problem C38]
A dilute solution of flexible polymers represented by a Gaussian spring
model is subjected to a flow birefringence experiment in a conventional
concentric cylinder apparatus. Show that the extinction angle, y, for
the solution is expressed by
2(xT Ax)
(x"Ax) — (y" Ay)

tan2y = (3.407)

when the = — y plane is taken perpendicular to the incident beam of
plane-polarized light, with the x axis in the direction of stream lines of
shear flow. Here xT Ax etc have the meaning found in [Problem C28],
and (---) designates an appropriate average over configurations of the
polymer solute subject to shear flow.

Hint: Apply Eq.(3360) in [Problem C34] to the individual Gaussian
springs, with a|; and a1 as given by Eqs.([8.391) and ([B.392)) in [Problem
C37].

[Solution C38]
If the equations stated in the Hint are applied to the i-th spring, one

obtains for its polarizability tensor «;

+2 2 oo 3( )
(65} (65 r; a1 — Qg
o; = |:n0 <3 ) - (011 - a2)5n0b2 01 0 5nob2
0 0 1
(@ — 961'—1)2 (@i —2io1) (Y —vi-1) (i —@io1)(2i — 2i-1)
X (yi - yi—1)(£i - xi—l) (Z/z‘ - %—1)2 (yi - yi—l)(zi - Zi—l)
(zi — zim1) (@i —wim1) (20 — 2i1)(Yi — Yi1) (2 — zi-1)?

It is assumed here that each Gaussian spring consists of ng equal bonds,
each having length b and polarizxabilities a; and as in the directions
parallel and perpendicular to its axis. r; is the end-to-end distanxe
vector of the i-th Gaussian spring, and x; —x;_1, ¥; —¥i—1, and z; — 2;_1

are the x, y, and z components of r;.



177

Summing up the above equation over n springs constituting the chain
and averaging the sum over configurations of the chain possible in a
given shear flow, one gets for the average plarizability tensor (@) of the

polymer solute

4o I 00
a a a —«
a:n[n0< ! 3 2)— 15 2] 0 1 0
0 0 1
xTAx) (xTAy) xTAz)
3(a1 — a9) T T T
(v Ax) (v Ay) y Az (3.408)
57’Lob2 > >

where
(xTAx) = Z((a:l — 2 1)) (3.409)
i=1

n

(x"Ay) = (y'Ax) = Z<(9Cz —2i-1)(Yi — Yi-1)) (3.410)
i=1

etc and (---) denote the above-mentioned average.

Up to this point the Gaussian coordinate system (z,y, z) can be taken
arbitrarily. Now, let the x — y plane be chosen perpendicularily to the
direction of incident plane-polarized light, with the z-axis parallel to the
stream lines of applied shear flow. Then by proceeding in exactly the

same way as in [Problem C35], with (@) substituted for @, one can obtain

2
tan 2y = —— 12— (3.411)
T11 — T22

where
1 =P+ Q(x" Ax) (3.412)
Too = P+ Q(y’ Ay) (3.413)
T2 = Q(x" Ay) (3.414)

with

2 _
P:n[n()(alz 0‘2) _— - 0‘2] (3.415)
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Substitution of Eqs.412) through B4I4) into Eq.B4II) gives the
required expression (3.407).

(3.416)

[Comments]
(1) Equation (B390) in [Problem C36] holds for the present case with

T11, To2, and 719 given by Eqs.([3412) through [3414). Thus,
Aa = Q[((x"Ax) — (y" Ay))* + 4(x" Ay)*]'/? (3.417)

The magnitude pf birefringence of the solution, An, is defined as the
product of Aa and the number of solute molecules per cm? of the solu-

tion. Thus
_ Ngc

M

where c is the mass concentration of the solute, M is its molecular weight,

An Aa (3.418)

and N, is Avogadro’s number.

(2) In order to evaluate the averages x’ Ax, etc, one must know the
probability density p that the chain assumes a given configuration when

it is placed in a simple shear flow.
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[Problem C39]
The orientation distribution function p(6, ¢) for a dumbell-type molecule

in a simple shear flow is given by

1 2702
p(0,0) = = 1+@sm fsin2¢ + <4zg> <3Sin290052¢

1 2 1 I
+Zsm 971—5718111 90054@5) +O<@3)] (3.419)

where ¢ is the rate of shear, © is the rotary diffusion coefficient of the
molecule, and 6 and ¢ are the polar angles of the molecular axis which
are defined as shown in the figure above. Deduce that the extinction

angle y for the solution is represented by

oo 1 q

[Solution C39]
One may apply Eq.363) in [Problem C35], because the molecule
under consideration is supposed to be optically symmetric about its axis.

The task is to evaluate
I; =(sin 2¢ sin 20)

27 s
= / / sin® 0 sin 2¢p(6, #)d0d e (3.421)
0 0
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I, =(cos 2¢ sin 26)

2 T
= / / sin® 0 cos 2pp (6, $)dde (3.422)
o Jo
Substitution of Eq.([3419) gives
f— qf PR
L=gp+ (3.423)
1 /¢q 2
Lh=—|—= - 3.424
790 (@) * (3424)
Hence one gets
6
tan 2y = [1 + (’)( >} 3.425
wer'*\e (3425)

Thus it follows that x tends to 7/4 (45°) for vanishing shear rates. Hence

one may assume the expansion

2
_r a4 g
x4+A1<@)+A2(®) + (3.426)

With this, one obtains
) o]
+

.

tan 2y :tan[2 —|—2A1( >—|—2A (

cot{2A1(®> ”AQ(@)

1

D=

[

_ .. 3.427

241(4/0) (3.420)
where one has used tha formula
22

xeotx =1— 3 (for |z| <) (3.428)

From Eqgs.([3.425) and (3427

soleo(@)-deo®)] o
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which gives
1
Ay =—— 3.430
1= (3.430)

This is introduced into Eq.([3428) to give the required equation (3.420).

[Comments]

The series (3.420) ought to consist only of terms which are odd powers
of ¢/O, as can be argued from a simple physical consideration, which is
left for the reader. In fact, for rigid molecules represented by an ellipsoid

of revolution

T 1/(q 1 [(q)° 24 (p? —1
=———[| X [ 14 = el 4.0 (3.431
X7 12<@>+1296<@> tosl\prgr) o] T B4
where p is the axial ratio of the ellopsoid. Note that the coefficient for

q/© is the same as that for dumbell-type molecules. Equation (3431

may be used to evaluate © from the initial slope of x plotted against

g. In this case, the theoretical requirement that x approach to 7/4 as ¢

tends to zero will help determine the initial slope of the plot.
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4 Polymer Characterization

[Problem D1]

Light scattering measurements on a monodisperse polystyrene sample
of molecular weight 43.3x10% in cyclohexane at the theta temperature
(34.5 °C) gave 180 A for (S2)1/2.

(1) Compute the conformation factor o for polystyrene. C' — C = 1.54
A, and ZCCC = 109.5°.
(2) How much is (R2) for a monodisperse polystyrene of molecular weight

10% in the same solvent at the same temperature?

[Solution D1]

(1)
1 —cosé
2y — Zpl2 ——=22
(s >f 6” 1+ cosf
1433 x10* 1+ (1/3) 9
=6 01 <oy <Y
= 6.58 x 10° (4.1)
o =222 (4.2)
(2)
(R?)= 6(3‘;) x 2.222 x 6.58 x 10°
=4.49 x 10* (4.3)
Hence

(RHY? =212 x 107 (cm) (4.4)
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[Problem D2]
Osmotic pressure measurements on a polyisobutylene fraction in toluene
at 30 °C gave the data below. Determine M,, and As.

Polymer concentration (c) Osmotic head (h)
g/dl cm
1.046 5.120
0.893 3.448
0.652 2.195
0.389 0.930

The density of toluene at 30 °C is 0.8577 g/cm?.

[Solution D2]

In order to take the effect of the third virial coefficient approximately
into account it is convenient to analyze the given data in terms of
(1m/cRT)'? versus ¢, where 7 is the osmotic pressure and RT has the
usual meaning. The intercept and slope of the plot may be equated to
M, */? and (1/2)M71/2A2, respectively, and yield

M, =220 x 10°, Ay = 7.54 x 10~*(mol cm®/g?) (4.5)

This value of A, indicates that toluene at 30 °C is a good solvent for
polyisobutylene. It is instructive that benzene is a poor solvent for this
polymer and that, in fact, the polyisobutylene-benzene system has the

theta temperature at about 24 °C.
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Two samples, A and B, of a given polymer were mixed at the ratio

1:1 by weight, and a number-average molecular weight of 20 x 10* was

obtained osmotically for the mixed sample. Next, the two samples were

mixed at the weight ratio 1 : 3, and the resulting mixture was found to

have a number-average molecular weight of 16.2 x 10%. Use these data to

find the number-average molecular weights, M,,(A) and M, (B), of the

samples A and B.

[Solution D3]

We can write the equations:

1 0.5 0.5

20 x 104 M, (A) * M,,(B)

1 0.25 0.75

16.2 x 104 M, (A) + M,,(B)

From these equations we obtain

M,(A) =37.7x 10*,  M,(B) =13.6 x 10*
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[Problem D4]

Consider a small region of fixed volume V in a large volume of one-
component liquid equilibriated at temperature T° and chemical potential
p°. Derive the expression for the density fluctuation ((Ap)2)'/2. Here
Ap denotes the deviation of the density p in this region from the average

(thermodynamic equilibrium) balue {p).

[Solution D4]
According to statistical mechanics, the probability w that the region

considered has an energy FE, an entropy S, and n moles of the liquid

molecules ia given by

E—ST° — nuo)

w = Cexp <— 0 (4.9)

where C' is a normalization constant. This expression may be readily
written down if one considers that the states realizable in the region

form a grand canonical ensemble. Define AE, AS, and An by
AE=FE—(E), AS=S5-(S), An=n—(n) (4.10)

with (E), (S), and (n) being the average (equilibrium) values of E, S,
and n, respectively, Then, Eq.([@3) may be put in the form

AE — T°AS — MOM)

— (4.11)

w = C'exp (—
where C’ is a new constant independent of AF, AS, and An.

Now, one may choose S, V', and n as independent variables to descirbe
the state of the region. Then AFE may be expanded in powers of AS,
AV, and An. Since AV = 0 in the present case, the expansion is

dE\" dE\"

AE=(—=] AS — ] A

(5) as+(5) an

1[/0*E\° ”2E \° ”EN"

— (== ] (AS)?+2( ==—) ASA — ] (An)?
+2K852> (A8)"+ (asan> " (W) ( ”)]

N (4.12)
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where the superscript 0 indicates that the derivatives are to be eval-
uated at the equilibrium state, and the variables to be fixed in these
differenciations have been omitted for simplicity. Introducing Eq.[#I2])
into Eq.(@I1)) and using the relations 0F/9S = T and OE/dn = u, one

obtains
or or
— _ 0
w=C exp{ {(65) AS + <5)n> An] AS/2kT

Kgg> AS+ (gﬂ> An} AS/%TO} (4.13)

where terms higher than the second power in AS and An have benn
ignored in order to limit oneself to the leading terms. In a similar ap-
proximation, Eq.[@I3) may be written

ATAS + AuAn)

5170 (4.14)

w = C'exp <

with AT and Ap being the fluctuations of temperature and chemical

potential of the small region considered, i.e.,
AT =T-T° Ap=p—u° (4.15)

Note that except for V', all other thermodynamic quantities of the region
fluctuate from time to time about the average (equilibrium) values which
are determined by 79, V, and .

One may change the set of independent variables from (S,V,n) to
(T,V,n). Then, since AV =0,

a8 95\
AS:(W) st (2 "
= (28 ar (%) an+ ... (4.17)
F=\oar on) =" '

Introducing Eqs.((@I6]) and (@I7) into Eq.([@I4]), neglecting terms higher
than the second power of AT and An, and using the relations than the

relations

oS A 19E Cv

T ~ oT: _ Tor T (4.18)
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052G _ o
on  onoT 0T
(all refering to constant V'), one gets

(4.19)

w = C’exp{— [(;%(AT)Q + (gZ)O(An)Q] /QkTO} (4.20)
Thus
Joo w(An)*d(An)

oo

fix;o wd(An)
0
ffooo exp [— <2Z) x2/2kT0} 22dx
= 0
[7 exp { <g’;> $2/2kT0} dz
ETO

=GR (4.21)

where, in the last equation, the variables to be fixed in differentiating

(An)?) =

with respect to n have been indicated for clarity. Since it can be shown
that

( au)O _ @u/op)ry V/(n) _ v (4.22)
on)py  Ou/op)yy  VIOn/V)/oplyy  K0(n)?
where £ is the isothermal compressibility of the liquid defined as
1 8p>
kK=—|—=— p=Mn/V 4.23
25e), =) (4.23)
with M being the molecular weight. Eq.(£21)) is written
0770 /,,\2
(An)?) = kw1 (n)* (4.24)
\%
which gives
00 \2\ 1/2
((An)3H)1/? = (lm V<p> ) (4.25)

or

<(Ap)2>1/2 k00 1/2
CENCE



189
Thus ((Ap)?)'/2 tends to vanish as V becomes large.

[Comments]
When the liquid is a multicomponent solution, it can be shown by a

similar analysis that w is given as follows:

cy 1 KL

i=0 j=0

Here ¢ + 1 is the number of components in the system, j;; stands for

W0 = Opi’)’ (4.28)
Y g )y, .

abd An; is defined by
Anj=n;—(n;) (j=0,1,---,q) (4.29)
Using Eq.([@27]), one finds that

ffooo wAn; An;d(An;)d(An;)
fix;o wd(An;)d(An;)

_ kT(Aa)i;

4]

<A’I7,iA’I’Lj>:
(4.30)
where |A| is the determinant of ¢ 4+ 1 order whose elements are M?j, and

(Aa)i; is the cofactor for the element (i.j) in this determinant. Thus

the An’s of different components are correlated with one another.
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[Problem D3]

Show that light scattering measurements on a binary copolymer (a+0)
in a single solvent yield, at infinite dilution, an apparent molecular weight
Mpp defined by

A¢ Ay

Mypp = My, [1 + 2@0 + (M) 252] (4.31)

when the sample is heterogeneous both in molecular weight and compo-

sition. In Eq.@3Tl), M,, is the weight-average molecular weight of the

sample,
A =1o —Yp (4.32)
() = Yalha) +Ps(hg) (4.33)
o= z\; > giM;Ah; (4.34)
6% = Miw Z giM;(Ah;)? (4.35)
and Z
Ah; = hai — (ha) (4.36)

where 1), and 13 are the specific refractive index increments of ho-
mopolymers « and 3 in the given solvent, respectively, g; is the weight
fraction of the i-th component of molecular weight M;, hai (=1 — hg;)
is the weight fraction of the monomer « in the i-th component, and (h,)

is the weight fraction of the monomer averaged over the sample, i.e.,

(he) = Z hevigs (4.37)

[Solution D5]
Let R;(0) and 1; be the Rayleigh ratio at zero scattering angle and
the specific refractive index of the i-th component in the given solvent.

Then at very low concentrations

RiT(O) = (vi)*cgiM; (4.38)
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where c is the total mass concentration of the copolymer. Summation of

Eq.([#38)) over all solute components gives

_ R(O) _ (va)*
Mapp - K<1/}>2C - ; <1/)>2 gzMz (439)

where R(0) = >, R;(0), ¥; may be written
%‘ = wah(xi + ¢ﬁh,6’z (440)

The right-hand side of Eq.(#£30]) may also be expressed by (hg) — hgs,
because hqi + hg; = 1, and hence Y . haigi + >, hgigi = >, 9: = 1, or
(ha) + (hg) = 1. Thus Eq.[@40) becomes

i = ApAh; + () (4.41)

where Eqs.([@32)) and ([@33]) have been used. With this, Eq.[@39) is

written
2A
Mepp :Z giM; + W;/) ZgiMiAhi
A\ 2
+(<Z;/>’> ZgiMi(Ahi)Q (4.42)

which may be brought to the form of Eq.(@31l) by noting M., = . g;M;
and the definition of o and 2.
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[Problem D8]
Find the intraparticle scattering function P; (@) for regid particles con-

taining n scattering points.

[Solution D6]
For rigid particles, P;;(r®?) = §(r*? — r;;), so that their P;(6) may

be written
1 n n '
T nz > D lexp(is - i))or (4.43)
i=1j=1

where (- - -)or denotes the average taken over all orientations of the par-

ticle.
) 1 /" . .
(exp(is - ri;))or= 3 exp(isr; cos ¢;;) sin ¢, ;de; ;
0
sin(sr;;)
= Tj (rij = [riz]) (4.44)
ij

Hence

Lyt e

=1 j=1
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[Problem D7]

Show for Gaussian polymer coils that Berry’s square-root method
is advantageous over the method of Zimm for evaluation of M,, and
(S?) from light scattering data. In Berry’s square-root plot, values of
(K*c/Rg)'/? | instead of K*c/Ry in the Zimm plot, are plotted against
sin?(0/2).

[Solution D7]
At infinite dilution, the intensity of light, Ry ;, scattered by polymer
species ¢ at a scattering angle 6, is represented by

where ¢;, M;, and P;() are the mass concentration, molecular weight,
and particle scattering function of the species ¢, respectively. The total
intensity Ry scattered from a polydisoerse polymer at infinite dilution is

the sum of Ry ; over all species. Thus
Rg =) Roi=Fk ) ciM;P0) (4.47)
i i
For Gaussian coils, P;() is rxpressed by Debye equation

Pi0) = 2 (e — 1 +2) (4.48)

x?
where
2 4 ? .2
T = (S%)u, u= - ) sin (0/2) (4.49)

and ) is the wavelength of the incident light in solution.
Expanding P;(6) in powers of x; and introducing the series into Eq.([£47]),

one obtains

Ry 1 1
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where ¢ = ), ¢; and w; = ¢;/c. Introducing Eqgs.(@49), Eq.([@50) may
be written

K*c 1 1 1
_ 1 L/Q2 2\2, 2 4.51
where )
2\ _ 2
(5%): = 71 > wii(5%); (4.52)

Taking the square-root of Eq.(£35]]),

(K*c)1/2 _ <1>1/2 [1+é<52>zu+0(u3) (4.53)

R9 Mw

Equation ([53) contains no term in u?, differing from Eq.(#51). Thus
plots of (K*c/Rg)/? versus sin?(#/2) exhibit a less curvature at small
scattering angles than do plots of K*c/ Ry versus sin®(6/2), and hence fa-
cilitate the determination of M,, and (S?), by extrapolating to sin?(6/2) =
0.

[Comments]

Experimentally, it is known that the Debye equation for P(8) is closely
obeyed by non-gaussian coils unless = exceeds about 4. Berry’s square-
root method is, therefore, widely used in the analysis of scattering data,

regardless of the non-ideality of given solutions.
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195

Evaluate M,, and (S2)'/2 from the following data for a polystyrene
sample in cyclohexane at 34.5 °C (©) by employing the Berry’s square-

root plot.

0/degree (K*c/Rg) x 108 6/degree

(K*c/Rg) x 108

g~ mol g~ tmol
15 7.14 45 11.9
17.5 7.35 60 16.1
20 7.60 75 21.2
22.5 7.90 90 26.7
25 8.17 105 32.4
27.5 8.50 120 37.6
30 8.91 135 42.0
33.5 9.49 142.5 44.3
37.5 10.2 150 46.0

Ao = 5.461 x 107! cm, ng = 1.5201.

[Solution D8]

M, = 1.50 x 107

(Y2 =116 x 107° cm

(4.54)
(4.55)
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[Problem D9]
Show for Gaussian polymer chains that the number-average molecular
weight M,, can be evaluated from the asymptote of K*c/Ry at large

values of the scattering vector u.

[Solution D9]
The Debye equation for P;(0) at large values of z; (say x; > 3) may
be approximated by
P;(0) = —% + = (4.56)

Li

Substituting Eq.([@56) into Eq.[47) in [Problem D8],
R9 1 wiMi wiM'L
— = —| - 4.57
Ko uz( Zi:<52>12+“2i:<52>i> (4.57)

where v is defined by Eq.[@49) in [Problem D8], and ¢ = . ¢; and

w; = ¢;/c.

For a monodisperse Gaussian coil, one may write
(8%); = KM; (4.58)

where K is a constant characteristic of a given polymer-solvent pair.

With Eq.[@5]), Eq.([@57) is rewritten

(o=t (&) o

which indicates that (Rg/K*c)u? (at infinite dilution) plotted against u

should follow a straight line at large values of u. Values of M,, and K

can be obtained from the intercept at u = 0 and the slope of the straight
line. It should be noted that K in Eq.([@359) is independent of molecular
weight distribution.
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[Problem D10]

Obtain the values of M,,, M, /M,, and K for a polystyrene sample
from the data given in [Problem D8], by using Eq.(@359) in [Problem
D).

[Solution D10]

M, = 1.32 x 107 (4.60)

M,
Y =114 4.61

n

K =83x10""® cm? (4.62)
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[Problem D11]
Show that the turbidity 7 of ideal gases for natural light is expressed
by .
= lzigazu (4.63)
where )\g is the wavelength of the incident beam in vacuum, « is the
polarizability of the gas molecule, and v is the number density of the
gas. With Eq.(#G3), compute 7 of air at 0 °C and 1 atm for Ag = 5890
A(Na-D line), knowing that the refractive index of air for this wavelength

is 1.000292.

[Solution D11]
The intensity i(r, #) of natural light scattered from a molecule of ideal
gas at a scattering angle 6 and at a distance r from the position of the

molecule is given by

r2

4 2
i(r,0) = &faz(lﬂosf’) 7 (4.64)

where [ is the intensity of the incident beam. Therefore when natural
light of intensity I travels a distance dz in an ideal gas, there occurs a

decrease —dI which is given by

2T T
—dI z/ / i(r, 0)r? sin 0d0d¢dr

2m
—V—Ia / / (1 + cos? ) sin fdfdpdx

1287r
30

o*vidx (4.65)

where v is the number density of molecules in the gas. By definition we

have for 7 Ldl
=—-— 4.66
T T de (4.66)

Subsitution of Eq.([@63]) gives the required formula ([£.63]).
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For air at 0 °C and at 1 atm, v= Avogadro’s number/22.4 x 103 =
2.69 x 10* ecm~3. Electromagnetic theory tells that n? (n= refractive

index) = 1 + 4wva. Using these, we obtain for the air in question
a=173x10"%* cm? (4.67)

7=087x10"" cm™! (4.68)

This value of 7 implies that the D-line of Na must run about 115 km in
air of 0 °C and 1 atm for its intensity to diminish to 1/e (=0.37) of the

initial value.
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[Problem D12]
Show that the Debye formula for P; () of Gaussian chains can be put

in the form:
1 252

o)~ 1+ ?<SQ>Z(w) (4.69)
where
Z(w) = W /O Py (0)wdw (4.70)
with
w = sin®(0/2) (4.71)

[Solution D12]
With u = s2(S?), the Debye formula for P;(6) may be written

PL(6) = %(u e (4.72)

This is multiplied by «? and then integrated from v = 0 to u = u. The

result is u 9
/ Py(0)udu = 1 (1 —u—e "4 u2> (4.73)
0
From Eqs.([@72) and (@73) we find that
L—H;/up(e)zﬁdu (4.74)
Po) T wrPi(0) Jy '
If w is defined by
w = sin®(0/2) (4.75)
u may be written
. 167'('2 2 2/3
U= (S*)w (4.76)

since s = (4w /\)sin(f/2). By the substitution (@70, Eq.[@74) is im-
mediately brought to the form asked in the problem.

[Comments]
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Both s and Z(w) can be evaluated for a series of  values from mea-
surements of P;(6). Thus one can determine (S?) as the slope of a plot of
1/P;(0) versus s>Z(w). It can be shown by an extension of the present
analysis that the initial tangent of this plot gives (S?), for polymer sam-

ples polydisperse in molecular weight.
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[Problem D13]

suppose a small particle whose principal polarizabilities are ai, as,
and a3 and whose orientation in space is such that the direction cosines
of the i-th principal axis of polarization (i = 1,2,3) with respect to the
laboratory-fixed Cartesian coordinates x, y, and z are [;, m;, and n;.
Light travelling in the z-direction impinges on this particle. Then there
are induced in the directions of the three principal axes of polarization

dipole moments whose strength p;, ps, and ps3 are given by

p1 = (lLlE, +miEy), p2 = as(lhEy +mokEy),
p3 = a3(l3Ey + maEy) (4.77)
where E, and E, are the x and y components of the electric vector of

incident light. Therefore, the z, y, and z components, p,, p,, and p,, of

the dipole moment p induced in the particle are represented by
Py = (Z%Oq + l%ag + l§a3)EI =+ (llmloq + lomoaig + lgmg()(g,)Ey (478)

py = (limion +lomoas +1lsmsas) B+ (miag+miay —l—mgag)Ey (4.79)
p. = (lin1oq + langag + I3nszas) By 4+ (nimyog + namaag + ngmsas) By
(4.80)

Show that (p2), (p2), and (p?), the orientation averages of p2, p;, and

p?, are given by

4
(P2 = <A2 + 5BQ>E§ + %BQEg (4.81)
(P2) = Spp2 <A2 + 4B2>E2 (4.82)
Y 5 z 5 Yy :
3
() = ng(Ei +E}) (4.83)
where
A= % (4.84)
polu= @)’ + (02— a3)" + (ag — n)” (4.85)

18
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A represents a mean polarizability of the particle, and B is a measure of

optical anisotropy of the particle.

[Solution D13]

(3) =ln)ad + (13)a3 + (I3)a3
+2(212) aras + 2(1212) aas + 2(1213) a0 | B2

[<l1m1>a1 <l2m2>a2 (l3m3)a§
+2<l1m112m2>a1042 + 2(12m2l3m3>o¢2()¢3 + 2<13m311m1>(){3(11]E;

+[(Ifm1)ad + (I3ma)a3 + (3ms)a3

+(([lama) + (Lilima))aras + ((3lams) + (lal3ma))asas
—|—(<l%l3m3> + <l§l1m1>)a1a3]EzEy (486)

One obtains 1
=) = i =5 (187

(313) =(i313) = (1313) = (1¥m3)
(13m3) = (Bm) = - (189)

1
<11m112m2> = (lgm213m3> = <l3m3l1m1> = —% (489)

and all the averages appearing in the expression multiplied by F, E, = 0.
Hence Eq.([#3R6]) becomes

B(alag + a3 + 013042):| Ei

1
02) =[5t et 4o +

1
+ 15(% +aj +a3) — 5

(0[10[2 + a3 + OZ30[1)1| E;

1 2
—{g(al + g + 013)2 -+ 7[(041 — 042)2 + (CYQ — 043)2 -+ (a3 — al)z}Ez

45

+ggllan =~ an + (a2 = aa)? + (s — ) 22 (1.90)
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which may be expressed in terms of A and B as

4 3
(p2) = (A2 + 532> E? + ngEj (4.91)

This is the required expression ([L81]). The derivation of Egs.([@82) and
([£3R3)) can be made in a similar way.
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[Problem D14]

Unpolarized light impinges on a small and optically anisotropic par-
ticle, and one observes the intensity of scattered light at a point which
sees the particle at 90° to the direction of the incident beam (see the
figure above). The component of the observed intensity in the direction
of incident light and that in the direction perpendicular to the plane
containing incident and scattered light are denoted by H, and V,, re-
spectively. Here the subscript w indicates that the incident beam is
unpolarized.

Show that if the particle can assume all orientation by thermal agita-

tion, the quantity p, defined by

H
= — 4.92
pu= (4.92)
is represented by
682
y = —e————= 4.
Pu= 542y 7B2 (4.93)
where )
A = 5(011 + (%)) —+ 043) (494)
1
B = E[(al —)? + (g — a3)* + (a3 — 1)) (4.95)

with a1, as, and a3 being the principal polarizabilities of the particle.

pu 1s called the degree of depolarization for unpolarized light.
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[Solution D14]
Using the general theory of light scattering by small particles, one can

write

Hy o (p2),  Vuox (p2) (4.96)

Here (p2) and (p2) are the orientation averages of the squares of the
and z components of the dipole moment induced in the particle by inci-
dent light, with the Cartesian coordinates x, y, z taken as indicated in
the figure, and the upper bar designates the time average. The propor-

tionality factors in the above expressions are identical. Thus

p?)
pu = <%> (4.97)

Substitution for (p?) and (p2) from [Problem D13] gives

~

(3/5)B2(E2 + E3)
{[42 + (4/5)B’|EZ + (3/5)B°EZ)

Pu = (4.98)

For unpolarized incident light E2 = Eig Hence Eq.(4.98]) becomes

682

=54, 1 7B? (4.99)

Pu

which is the required equation (£93).

From Eq.([#399) one finds that if the particle is optically isotropic, i.e.,
a1 = az = ag so that B =0, p, = 0, which means that scattered light is
vertically (i.e., in the direction od the x axis) polarized at 90° scattering

angle. Experimental values of p, for benzene are about 0.42.
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[Problem D15]

In [Problem D14], let one consider the case in which incident light
has unit intensity and is polarized vertically (in the direction of the y
axis). The subscript v or h is given to H and V, such as H, and Vy,
depending on wether incident light is polarized vertically or horizontally.
Then show that

P = ‘Ii—: =1 (4.100)
and
H,=V, (4.101)

The latter is called the Krishnan relationship.

[Solution D15]
Since F, = 0 for horizontally polarized incident light, one gets

Hy, o< (p2) = ng, Vi, o (p2) = 232 (4.102)

where the fact E; = 1 for this incident beam has been used. Hence
Ph = 1.
One also gets for vertically polarized incident light of unit intensity

— 3
H, « (p?) = gB2 (4.103)

which is compared with V3 in Eq.(I02) to give H, = V}, the Krishnan

relationship.
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[Problem D16]
Derive the intraparticle scattering factor P;(f) for a continuous spher-

ical shell of radius a and thickness b.

[Solution D16]
The general expression for P;(0) of rigid particle is

Pi(0) = % > explis 1)) (4.104)

i=1 j=1

where n is the total number of scattering points in the particle, r;; is
the distance between i-th and j-th scattering points, s is the scattering
vector, and (---) designates the average with respect to the orientation
of the particle. Let S; be the distance between the center of mass of

the particle and the ¢-th scattering point. Then r;; = S; — S;. Hence

Eq.([@I04)) becomes
1 n n ) )
Pi(0) = (— Zl Zl exp(is - S;)exp(—is - S;)) (4.105)
1=1 g=
For spherical particles this may be written
PLO) (2 S explis - 82 S explis-8,)
1 ni:lep 1S nj=1epZS 7

:[1Zn:m;(§g)]2 (s = Is|) (4.106)

i=1

If the distribution of scattering points is uniform and continuous, Eq. [I00) may
be replaced by

Py(0) = Ll% /O ’ @msms%s (4.107)

where a is the radius of the sphere, and p(S) is the number density of
scattering points at radius .S.
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For the present spherical shell

n

p(S) = (@ /3)[a® — (a = b)7] (a—b< S<a) (4.108)

p(S)=0 (0<S<a-—0) (4.109)
Hence Eq.([@I07) gives

(6) :{ 3 / b sin(s$) o S]

b3 — 3b%a + 3ba? sS
3 . .
—{ 5367 — 3b%a + 3ba?) [sin(as) — sin(a — b)s
2
—ascos(as) + (a — b)scos(a — b)s]} (4.110)

which is the desired result.
If the shell is infinitely thin, Eq.(@II0) reduces to

p1(6) = [Sin;zs)r (4.111)

If b = a, i.e., there is no hollow part inside the particle, Eq.[@II0)

becomes

Py(0) = {(az)g[sin(as) —as cos(as)}} (4.112)
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[Problem D17]
Show that the particle scattering function P (#) of a once broken rod
which consists of two thin rods of equal length L connected by a universal

joint is given by

: N2 . 2
Pu(6) = SliU) N % {Sliu)] Ly [5111(3/2)} (4.113)

where
u=sL (4.114)
Si(u) = /O ' SiIZlZdz (4.115)

with s being the magnitude of the scattering vector.

[Solution D17]

Equation ([@4H) in [Problem D6] can be applied to a broken rod av-
eraged over all orientation with the angle between the two rods fixed at
a constant vlue, say 6. In the limit of continuous scattering points, one

thus obtains 5

(2L)?

I = / / SInS(@ =) 4y (4.117)

1 L pL pmo_- 2 2_9 0
_7/ / / sin(sy/22 + y% — 2xy cos )Smededxdy (4.118)
2Jo Jo Jo e/t yP 2myeost

Pi(0) = = (I + 1) (4.116)

where

Here z (or y) is the distance from the universal joint to a given point on
either rod. Note that I; and I represent the contributions from pairs
of scattering points (characterized by z and y) which are located on the
same and different rods, respectively.

Since

L .
t
/ / SIS = Y) gy = 0 / (L—1) Sm: dt (4.119)
0

S
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I is readily evaluated as

n - P - [

. 2
: 2Lsm(u/2)] (4.120)

u

where Si(u) is the sine-integral function defined by Eq.([I15).

Next, Is may be rewritten

p _
I / dx/ / _sin(s +y2 — 2zyt )dt
Va2 +y? = 2zyt
r+y)
/ / / sin £d¢ (4.121)
0 (z—y)

I 2
I, = [Sl(u)} (4.122)

u
Introducing Eqs.(#120) and (@I22) into Eq.(@IIG), one comes to the

desired expression.

Hence one gets

[Comments]

Replacing 2/(2L)? in Eq.(@I16) by 1/L? and putting I equal to zero,
one obtains the expression for the particle scattering function of a thin
straight rod of length L:

u

PL(6) = %Si(2u) - (Sin“)2 (4.123)

with
s (4.124)
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[Problem D18]
Show that the particle scattering function Pj(#) for an infinitely thin

circular disc of redius a is represented by
2 2
Po) = = {1 - Jl(“)} (4.125)

where J; is the Bessel function of first order, and

dra . (0
u=as=—-— sm<2) (4.126)

Hint: The following series expansions of [J1(2)]? and J;(22) may be

used if necessary:

> (2m + 1)!! o2
E z<m (4.127)
— m!(m + 2)!(2m + 2)!!
s 2m+1
—_— 4.12
Z (m+1)! (4.128)

m=0

[Solution D18]
Application of Eq.(@4H) in [Problem D6] to the disc (the scattering

points distribute continuously and uniformly) yields

Py(0) = (W;)Q«Q’%r (4.129)
with
Q= /ei“dr (4.130)

where (---)o; denotes the average over all possible orientations of the
disc and the integration dr goes over all its surface. Let the direction
of s be chosen as tha z-axis in the laboratory-fixed coordinates (x,y, z)
and let coordinates (£, 7, () fixed in the disc be defined. In the (£,7,()
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coordinates, the &- and n-components of s are thus given by sin ¢ and 0,

respectively. Hence, @ is written in terms of the coordinates (£, 7, () as

a Vaz—¢2
Q= [ d¢ / lsEsineqpy (4.131)
—a —a2—¢2
which, upon integration over 7, gives
Q = 24> / cos(u sin ¢ cos ) sin? 3dS (4.132)
0

where use has been made of the definition of u (u = as). The integral
representation of J; allows Eq.(132) to be written

Q= Jl(usm ®) (4.133)

u sin qb
With this expression of @, the P;(#) is now written

Pi(0) = % /O i snll ¢[J1(u sin ¢)]?d¢ (4.134)

Introduction of EqILI2T) into Eq.([@I34), followed by integration, yields

9 o . u2m+2
e)zﬁé(‘l) m+2)m+ 1) (4.135)
Since
oo u2m+2 0 m u2m
mzzo(il) (m+2)(m+1)1 HZO—(*I) m
oo m 2m
— Z m—|—1 (4.136)
0

use of Eq.([£I28)) leads to the desired expression, Eq.([@I125).
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[Problem D19]
Show that the particle scattering function P;(6) for a randomly ori-

ented circular disc is represented by
2 Ji(2
Po) = = {1 - 1(“)} (4.137)

where J; is the Bessel function of first order, and

4
u= % sin(6/2) = sa (4.138)

with a being the radius of the disc.

[Solution D19]

One may apply Eq.([@4H) in [Problem D6] by going to the limit where
the scattering points distribute continuously and uniformly over an in-
finitely thin circular region of radius a. Such a limiting form of Eq.([#.45])

gives

T a R(¢p,x) :
Pi(0) = (4”)2/0 qu/O xdx/o Sms(;y)ydy (4.139)

Ta?

where ¢, x, y, and R(¢,x) have the meaning as seen from the figure. It

is easily shown that R is related to z and ¢ by
R*> 4+ 2Rxcosp + 22 —a? =0 (4.140)
Equation ([{I39) gives

P0) = —— <7m2 - F) (4.141)

mats? \ 2

where

F:/O d(b/o x cos(sR)dx (4.142)

Considering the fact that the upper and lower limits of z in Eq.([@I42]),

x = a and x = 0, correspond, respectively, to R = 0 and R = a for
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0<¢<m/2and to R =—2acos¢ and R = a for 7/2 < ¢ < 7, one may
transform Eq.([@I42) to

w/2 0
F :/0 d¢/a cos(sR)G1(R, ¢)dR

/2 2a cos ¢
—|—/ dgf)/ cos(sR)G2(R, ¢)dR (4.143)
0 a
where
a2
G1(R,9) = Rcos2¢ — cosgb[?w/a? — R?sin® ¢ — ]
1(£:9) a2 — R2sin? ¢
(4.144)
2
Ga(R, ) = Rcos2¢ + cosd)[?x/az — R?sin® ¢ — a]
Va2 — R2sin® ¢
(4.145)
Equation ({I43)) may be rewritten
w/2
F= / de / = 0?75 ?Gy (R, ¢) cos(sR)dR (4.146)
0
because
/2 0
/ dgb/ Rcos2¢cos(sR)dR =0 (4.147)
0 a

Now, by use of the formula

—1

/Oﬂ/z [/Ozacowf(gb,r)dr} :/Oza [/Ocos (r/2a) sl @it
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one finds that

/2 2a cos ¢ 1
/ qu/ Rcos2¢ cos(sR)dR = 4a* / €2/1 — €2 cos(2ug)d¢
— 0 0

(4.149)
/2 2a cos ¢ a2
/ d¢/ [2\/ a? — R?sin? ¢ — ] cos ¢ cos(sR)dR
0 0 Va2 — R2?sin? ¢
1
= 2a2/ (1 —2€%)\/1 — €2 cos(2u€)de (4.150)
0
Hnece .
F= 2a2/ V1 — €2 cos(2u€)d¢ (4.151)
0
Substitution of £ = cos 6 changes this to
/2
F =2d* / sin? 0 cos(2u cos 0)df
0
=a? / sin? § cos(2u cos 0)d6 (4.152)
0
Since
Ji(z) = _? /p i cos(z cos ) sin d6 (4.153)
' vTy(3/2) Jo '
Eq.([(@I52) becomes
2
TG
F=—J(2 4.154
" a(2u) (4154)

This is introduced into Eq.([@I42]) to give the desired formula ([EI37]).
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[Problem D20]

Suppose a solution which contains a (monodisperse) macromolecular
solute (component 2) in a mixture of two solvents (component 0 and 1).
Let component 0 be called the principal solvent. According to Stock-
mayer, the turbidity, 7, of this solution over that of the principal solvent

at given temperature T and pressure p is represented by

2 2
Dim1 2j=1 VilA;

7= RTHuvypy ]
ij

(4.155)

where vy is the volume of the solution containing one kilogram of the

principal solvent,

327372
== 4.156
AN, (4.156)
U, = < on ) (4.157)
omy T,p,Mpi
and 5
Hi
i = (52) (1.158)
ILLJ T,p,mk¢j

In these expressions, Aq is the wavelength of the incident light in vacuum,
1 is the refractive index of the solution, m; is the molality of component
i, p; is the chemical potential of the same component, and A;; is the
cofactor for the element p;; in the determinant |p;;| = p11 92 — piopor.

Derive the expression for Ar,, the difference between the turbidity
of the solution and that of the solvents (component 0 and 1) mixed in
the same proportion without polymer, valid for the case in which the

concentration of the polymer is very low.

[Solution D20]
The quantities associated with the “mixed” solvent containing no poly-

mer are distinguished by the superscript zero. Then Eq.([£I55]) gives

(w9)?
H11

70 = RTH"S, (4.159)
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Hence

(¥9)?
0
1

U2 -2, ¥ U2
122 1Wopie + Wi RTH,

AT = RTHuvy 5
Hi11p22 — (Mu) Hw

(4.160)
1

where the relationship p12 = po1 ( the proof is left to the reader) has
been used.

For solution very dilute in the polymer component one may replace H,
v, a1, and Uy by HO, 09, ud;, and U9, whist one may approximate
112, 22, and Yo by their limiting forms for vanishing small mg. Then
Eq.([4160) becomes for very low polymer concentrations

At {(®2)o — [(12)0/p3, 199} (4.161)

RTH%Y, (H22)0 — [(12)5/181]

where the subscript zero indicates the value for ms — 0.

If one expresses u; as

with 7° defined so that it tends to unity as both m; and ms simulta-

neously approaches zero, one gets

L+ Bim;
g = R i (4.163)
mg
pij = RTBi; (i #j) (4.164)
with S lnno
Bij = ( s ) (4.165)
am] T,p,mk¢j
Introducing Eqs.([£I63) and (@I64) into Eq.(@I61]), one obtains
AT, mi(Bi2)o 0] ?
—— = | (Uy)g — ————V 4.166
RTHW, [< 2)0 = T g0, V1| ™2 (4.166)
or )
At (112)o 1.0
———— = | (VU3)o — v 4.1
RTHO,UIOW {( 2)0 /‘(1)1 1| M2 (4.167)
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Since pf; = (p11)o,

(12)o0 (5u1/3m2)T,p,m1]0 _ [(3’”1)1%]0 (4.168)

pdy L (Op1/0ma) T pm, omy

where Eq.(3I12]) in [Problem C13] has been used. Hence Eq.([@I67) may

be written
AT,

— 072
RTHOW, ~ [(¥1)0 + ToWi] me (4.169)
where 5
[p= lim I'= lim ( ml) (4.170)
ma—0 ma—0\ Oma Topin

(see [Problem C13] for I').
Now one defines U\” and ¥{?) by

on on
oo = <an> R - (8"> (4.171)
91/ Tp.gs 92/ Tp,g:

where g7 and go are the grams of components 1 and 2 containing in
one kilogram of component 0. These refractive index increments are the
quantities that are measured by actual experimental procedures, and are
related to ¥, and ¥, by

U =M v, = MuY (4.172)
Introducing Eq.([#I72)) into (£I69) and using the relation m; = c;vpr /M;,
one obtains

]\41 (‘I,gg))O 2
— My(W)2 |1+ AT
Mz~ (wl),

AT
RTHO(v9,)?

Co (4173)

Thus if (\I,gg))o = 0 or 'y = 0, one can evaluate My, the molecular weight
of the polymer solute from the intercept of a plot of A7./RTH®(v8,)?
x(\Ilég))%CQ versus cz. Note that (\Ilgg))o = 0 means that the principal
and secondary solvents have an identical refractive index. Such solvents

are called isorefractive.
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[Problem D21]

Let A(t) be a quantity that fluctuates irregularly with time ¢. A typical
example of A(t) is a succession of small displacements that a particle in
liquid undergoes due to thermal collision of other particles. In general,
there will be a correlation between the values of A at two times ¢ and
t 4+ 7. As a measure of this correlation one may consider a function 0f 7
which is defined by

= lim —/ AWA(t+1)dt (7 >0) (4.174)

The C(7) thus defined is called the autocorrelation function for A. Show
that
C(0) > C(r) (4.175)

[Solution D21]

Suppose that the time axis is divied into discrete intervals At in such
a way that t = jAt, 7 = nAt, T = NAt, and t + 7 = (j + n)At and
suppose further that A varies very little over the time interval At. Then
Eq.[#IT4) is equivalent to

C(r) = lim Za] itn (4.176)
and
1 N
: 2
C(o):}&@mN;Aj (4.177)
j:

Now, according to Schwarz’s inequality,

N N N
O 4B’ <> AN B)) (4.178)
Jj=1 j=1 j=1

If one takes B; = Ajin, divides both sides by N2, goes to the limit
N — o0, and then refers to Eqs.([@I76) and (IZ]IZD one gets

[C(T)]? < C(0) x lim —ZAJM (4.179)

N—oco N
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But

J=1 i=1
1 N+n n
2 2
tim (2 -3 4D
i=N+1 i=1
1 X
— T 2 _
= lim ; A2 = C(0) (4.180)
Hence Eq.([IT9) becomes
[C(n)? < [C(0)? (4.181)

Since C(7) is real, this is equivalent to the desired result C'(7) < C(0).
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[Problem D22]

If the time dependent variation of a quantity A(t) is stationary and er-
godic, show that the autocorrelation function for A, C(7), is represented
by

C(r) = (A(0)A(7)) (4.182)

where (---) designates the ensemble average, i.e.,
o Jo

with Py(Aj, As) being the probability density for obtaining specified

value A; and A, for A from measurements at time 0 and 7, respectively.

[Solution D22]
The definition of C(7) is

T
C(r) = lim l/ A A(t+ 7)dt (4.184)
0
Since the process is ergodic,

T
lim %/0 A A(t + 7)dt = (AW A(t + 7))

T— o0

_ / / PHT(AL Ag) A AsdArdA;  (4.185)
0 0

where P/T7(A;, Ay) represents the probability density for obtaining val-
ues A; and As at times ¢ and ¢ 4+ 7, respectively. When the process is

stationary, the probability density Pf*™ does not change with ¢. hence

P17 (A1, A) = Py (A1, As) (4.186)

With Eqgs.([@I86) and [AIR83), Eq.(@I85) becomes
1 T
lim / A()A(t +7)dt = (A0)A(7)) (4.187)
0

This is substituted into Eq.[#I84) to give the desired expression ([AI82).
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[Comments]
From Eq.(I82) one gets

C(0) = (A(0)?) (4.188)

which means that C(0) is the ensemble average (mean value) of A(0)2.
Equation ({I82) also gives

O(00) = (A(0)A(00)) (4.189)

Physically, one can expect that A(0) and A(7) become uncorrelated as
7 increases indefinitely. This means that Py(A;, A2) may be represented
by

Py (Ar, A2) = Po(A1)Pr(A2) (4.190)

in the limit 7 — oo. Here P.(Az) denotes the probability density for
obtaining a value of A for A from measurement at time 7. When the
process is stationary, Py (A2) may be equated to Py(As). Thus for 7 — oo

one obtains

Py (A1, Az) = Py(A1)Po(Az) (4.191)
Hence
(A(0)A(o0)) = /O h /O " Po(A) Po(As) A Asd AydAs
_ </O°O PO(Al)AldA1>2 — (A(0))? (4.192)
Thus

C(c0) = (A(0))? (4.193)
From Egs.([@I88) and ([@I89) one finds that C(7) changes from (A(0)?)

to (A(0))? as 7 increases from zero to infinity. Details of this 7 de-
pendence of the autocorrelation function are a very important subject
of both theoretical and experimental studies, being a reflection of the
physical process which gives rise to fluctuations of the quantity A with

time.
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Often it is convenient to use the normalized autocorrelation function
g(7) which ia defined by

(A(0)A(7)) — (A(0))?
g(r) = TA(0)%) — (A(0))? (4.194)

This function varies from 1 to 0 as 7 increases from zero to infinity.
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[Problem D23]
According to the theory of dynamic scattering, the field (or first-order)
autocorrelation function Gi(7) for light scattered from a fixed volume

containing N identical spherical particles is represented by
N ‘ N ‘
Gl(T) _ <Z Ae—tar; (0) ZAe*iq-rk(T»e*lon (4195)
j=1 k=1

if the system is stationary. Here A is the time-independent scattering
amplitude of each particle, wy is the ferequency of the incident beam of
light, rg(7) is the position of the k-th particle at time 7, and q is the
scattering vector. The symbol (- - -) designates the ensemble average over
all particles in the volume considered.

Show that if the concentration of the particles is very low, G1(7) is

written

Gi(r) = NAZ%e™™07 / Cs(R, 7)e’"RdR (4.196)

where Cs(R, 7) is the conditional probability density that a particle lo-
cated at the origin at time 0 will be found at the position R at time

T.

[Solution D23]
For very dilute solutions the positions of the different scattering par-

ticles will be uncorrelated. Hence
(e71ami(O) elare(y =0 (j #£k) (4.197)

and Eq.(#I95) becomes

N
Gi(r) = A2 (et s ()= (O jgiwor (4.198)

j=1

Since the N particles are identical, Eq.([@I98) may be written (dropping

the now unnecessary subscript j)

Gi(r) = A’Ne ™" (exp{iq - [r(r) — r(0)]}) (4.199)
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r(7) — r(0) represents the displacement that a given particle suffers for

a time interval 7. The definition of Cs(R,7) is
exp{iq - [r(7) —r(0)]} = /CS(R, T)exp(iq - R)dR (4.200)

Substitution of Eq.([@200) into Eq.(@I99)) yields Eq.([Z196).

Cs(R, 7) is called the “self” part of the van Hove space-time correlation

function.
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[Problem D24]
Find the power spectrum S(w) of an autocorrelation function C(7)

which is represented by
c(r) = C(0)e I/ (4.201)

where 7, is a positive characteristic time constant or relaxation time.

[Solution D24]

1 o .
S(w) = —/ C(r)e“7dr (w=>0) (4.202)
21 J_ o
Substituting Eq.([@.201]), one gets

1 [e%s} ) [e%e} )
S(w)= %< /0 C(0)e /7T dr 4 /O C(o)e—T/Tc—Wdr)

(o)
= @/ e/ cos wrdr (4.203)
T Jo

Using the formula

> —axr a
Eq.([#203)) becomes
[C(0)/n]r!
S(w)= —%—<—
@) 7o % 4 w2
_ [¢(0)/~]r
= oy (4.205)
where )
— 4.2
v=o (4.206)

The S(w) represented by Eq.([@200)) is called single Lorentzian.
Let w9 be the value of w at which S(w) becomes one-half of its value
at w = 0. It follows from Eq.([@205]) that

wijp =T(=71") (4.207)

c

Hence one can determine 7, by knowing w /, if S(w) is a single Lorentzian.

In general, w /5 is called the half width of a power spectrum.
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[Problem D25]
The space-time correlation function Cs (R, 7) defined in [Problem D23]
or [Problem D24] satisfies the diffusion equation

oC,
or

and the initial condition Cs(R.,0) = §(R), where Dy is the translational
diffusion coefficient of the particle undergoing Brownian motion, and
is the delta function. The solution to Eq.[@208) subject to this initial

condition is given by

CuR7) = Y (- (4.209)
ST =\ 4rper ) TP\ TaDsr '

Derive the field autocorrelation function G1(7) and the power spectrum

= DyV2C, (4.208)

S(w) for very dilute solution of identical spherical particles.

[Solution D25]
G1(7) is obtained by substituting Eq.([@209)) into Eq.([@I96]) in [Prob-
lem D23]. Thus

) ) 1 3/2 21 T o) R2
Gr(r) =N e (47TDTT> /0 /0/0 {exp<_4DT7>

xelafcost p2 g 0d0d¢dR} (4.210)

///{---}:ZT/Ooo(eiqR—e—iqR)Rexp(—4g;T)dR

[e%s} R2
Rsin(gR)exp (— 4DTT> dR

_471'
q Jo

2 o
- ?ﬂ-/o sin(qﬁ)exp<—4gTT)dx
= 87%/2(Dp7)% 2exp(—¢* D7) (4.211)




where use has been made of the formula:

o) 2
/ e " sin(by/z)dr = \/7?/1)2 exp (—b>
0

2a3 4a

Thus
Gi(1) = N A2e—iwoTg=¢’ DT

The power spectrum S(w) is calculated from

1 [ ;
S@ =5 [ Gillrhear

Substituting Eq.([@213]), one gets

NA2 [
S(w)= 5 / exp(—quT|T\)exp(in — dwoT)dT
s

2 [ee}
_ 4 / exp(—q* D7) cos(w — wo)TdT
™ Jo
(NA?/7)(¢* Dr)
(w—wo)? + (¢*Dr)?

Since G1(0) = N A2, this may be written

[G1(0)/7](¢*Dr)
(W —wo)? + (¢*Dr)?

S(w) =

It folloows that

Sw) _  (¢*Dr)?
Slwo) (A + (¢*Dr)?

(Aw = w — wp)
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(4.212)

(4.213)

(4.214)

(4.215)

(4.216)

(4.217)

Hence Aw; /5. the value of Aw for which S(w)/S(wo) = 1/2, is given by

Awi o = ¢*Dr

(4.218)

which indicates that a plot of Aw;/; versus ¢? gives a straight line with

a slope Dr.
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[Problem D26]

For a stationary time variation of E(t), the electric field of scattered
light impinging the photomultiplier cathode as a detector one defines
the normalized first-order (or heterodyne) and second-order (homodyne)

autocorrelation functions g1 (7) and g2(7) by

_ (E7(0)E())
gi(7) = 0 (4.219)
() = <E*(0)E((<)3_€* (r)E(1)) (4.220)

where E* is the complex conjugate of E and (I) is the average field
intensity defined by
(I) = (E*(0)E(0)) (4.221)

(-~ ) designates an appropriate ensemble average.
Show that if E(t) obeys Gaussian statistics, g2(7) is related to gy (7)
by
g2(T) = g1 (T)]* + 1 (4.222)

This is called the Siegert relation.

[Solution D27]
Consider a quantity G(r) defined by

G(r) = E*(0)E(T)E(0)E" (1) — (E*(0)E(T))(E(0)E* (1)) (4.223)

which varies irregularly but stationarily with time 7. From the condition

of stationarity one can write the relation
(G(7)) = (G(0)) (4.224)
which is equivalent to

(1)2g2(7) = (I)?|g1 (7)* = (I)?g2(0) — (I)*91(0)* (4.225)
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92(7) = lgr(7)] = g2(0) — 1 (4.226)

Now
((E*(0)E(0)]*)
(E*(0)E(0))?

Let E(0) be expressed in terms of its real and imaginary parts as

92(0) = (4.227)

E(0) = E+(0) +iE_(0) (4.228)
Then
([E*(0)E(0)]*)= (E4(0)*) + 2(E4(0)*E_(0)*) + (E_(0)*)
= 2[(E4(0)") + (B (0)*E_(0)%)] (4.229)

(E*(0)E(0))* = 4(E.(0)*) (4.230)

where one has considered the fact that (F(0)?) = (E_(0)2) and (E, (0)*)
= (E_(0)*).
The condition that E(t) obeys Gaussian statistics means that F, (0)

has the probability of occurence given by

B 1 E.(0)2
P(E,(0)) = 2F<E+<0)2>exp[—2<£r(0)2>} (4.231)

and that the same expression can be written for P(F_(0)). Since E(0)
and F_(0) are statistically independent,

(0B = |

— 00

2P(x)dx K h y2P(y)dy (4.232)
with x = E4(0) and y = E_(0). With Eq.([@231)) for P, Eq.([@232)) gives
(E4(02E-(0)2) = (E+(0)%)? (4.233)

where the fact that (E,(0)?) = (E_(0)?) has been used. Next

8

/ 2)dz = 3(E. (0)2)2 (4.234)

8
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Hence
([E*(0)E(O)P) = 8(E(0)*)2 (4.235)

which, together with Eq.([#230)), is introduced into Eq.([@227) to give
92(0) =2 (4.236)
Thus Eq.([@226]) becomes
g2(7) = g1 (T)[* + 1 (4.237)
which is the Siegert relation.

[Comments]
In practice, the Siegert relation is often used to obtain |g1(7)| from
homodyne-beat light scattering experiments which allow g5 (7) to be eval-

uated.



233

[Problem D27]
Prove that the intrinsic viscosity [n] of a mixture of macromolecules

in a given solvent is expressed by

N

] = [nliws (4.238)

i=1
where [n]; ia the intrinsic viscosity of the i-th component in the given
solvent, w; is the weight fraction of the same component, and N is the

number of the components in the mixture.

[Solution D27]

At very low concentrations ¢ of the mixture, the rotations of solute
molecules in shear flow do not interfere with each other, and the energy
dissipations due to them are additive. Then the specific viscosity of the
mixture 7, becomes the sum of the intrinsic viscosities of the individual

components, i.e.,
N

Nep = D _(Msp)i (4.239)

i=1
because specific viscosity is a measure of the rate of energy dissipation
due to the viscous flow of a solute component. For very small ¢, and
hence for small concentrations ¢; of the individual components we may

write
(nsp)i = [’17]1‘(?1 (’L = 1, 2, ey N) (4240)

Substitution of Eq.[@240) into Eq.[#239), followed by division by ¢,
gives
n al Ci
P i— 4.241
2= (1.211)
If ¢ is allowed to approach zero, Eq.([@241]) tends to the required relation
#238), since 1s,/c — [n] and ¢;/c — w; as ¢ — 0.
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[Problem D28]
Evaluate the coefficient K and the exponent v of the Mark-Houwink-

Sakurada equation from the intrinsic viscosity [n] data given below for

polyisobutylene.
My x 108 nl/g nl/g
n-heptane 25.0°C benzene 25.0°C
0.160 0.712 0.451
0.252 0.945 0.555
0.391 1.30 0.705
0.815 2.14 1.03
1.46 3.27 1.34
3.19 5.75 2.01
4.70 7.48 2.40

[Solution D28]
In n-heptane at 25.0 °C,

7] = 1.63 x 1071 M%7 (4.242)
In benzene at 25.0 °C,

[n] = 1.12 x 1073 M50 (4.243)

where [n] is given in di/g.
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[Problem D29]

Evaluate the conformation factor ¢ and the binary cluster integral
[ for polyisobutylene in n-heptane at 25.0 °C from the data given in
[Problem D28]. The conformation factor o is defined by

()" -

where (S?)o¢ is the mean square redius of gyration for the unperturbed

freely rotating chain. Use the Stockmayer-Fixman plot and the equation

]\4[2]/2 = K +0.346®0(8/M3)M,*  ([n]/In]o < 1.6) (4.245)
6(5%)0 )"
K =% (M) (4.246)

where ®¢ is Flory’s viscosity constant and M is the molecular weight

of monomer. Assume 2.65 x 10?3 (cgs) for ®.

[Solution D29]
From the intercept at M&/ 2 = 0 of the Stockmayer-Fixman plot, one
gets )
%—% =9.39 x 107*% cm? (4.247)

w

With (52)¢/M = 2.79 x 10718 cm?,
o=183 (4.248)

The binary cluster integral § of s polyisobutylene monomer in n-
heptane at 25.0 °C is estimated as 14 x 1072% c¢cm?, from the initial

slope of the plot.
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[Problem D30]

Show that the radius a or the molecular weight M of rigid spher-
ical particles may be evaluated from a quantity similar to the Flory-
Mandelkern-Scheraga parameter 3, by using the translational diffusion
coefficient Dy at infinite dilution in place of the intrinsic sedimentation

coefficient [sq].

[Solution D30]
If [n] is expressed in di/g, § is defined by

5= Rl (w219)

For rigid spheres
[s0] = GwUZvAa = DROZJ% (4.250)
[n] = 2.5M (4.251)

M
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[Problem D31]
One-dimensional diffusion of a homogeneous solute in a single solvent

is governed by the differential equation

% = (%[D(c)%] (4.252)
where t is the time, x is the distance in the direction of diffusion, c is
the mass concentration of the solute, and D(c) is a function of ¢ called
the (mutual) diffusion coefficient for the binary solution considered. Ex-
perimentalists are interested in evaluating D(c) from measurement of
the distribution of ¢ or d¢/dx (concentration gradient) in a diffusion cell
as a function of time. The experiment for this purpose is usually done
by allowing solute molecules to diffuse from the initial inhomogeneous

distribution represented by
c=c (oo < x<0,t=0) (4.253)

c=0 (0<z<oo,t=0) (4.254)

where ¥ is the mass concentration of the solute in the given solution.

(1) Show that Eq.[@252) and condition (253)) and ([£.254) are trans-

formed to d d d
c c
— 22— = —[D(¢c)— 4.2
7, = PO (4.255)
c=c"  (z=-00) (4.256)
c=0 (z2=00) (4.257)
where
oz

(Boltzmann’s transformation)
(2) Show that if D is independent of ¢, Eq.([#255]) subject to condition

#256) and (£257) can be solved to give

dc o 22
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(3) Show that plots of (A/H)? versus t give a straight line whose slope
is equal to 47D, where A is the area under the dc/Ox versus x curve,

and H is the maximum height of the curve.

[Solution D31]

W 0 0z d d
z x
9 Grd: . Wl dz (4.260)
0 1 d 0 0 1d d
~ il —[D(c¢)=—] = ——[D(c)— 4.261
Ox 2t1/2dz’ 8x[ (c) &r] 4t dz[ (c) dz] (4.261)
Hence Eq.([#252) becomes
r dec 1d de
o de d,_ d
c c

which is Eq.@255). For z > 0, z — oo as ¢ — 0, while for z < 0,
z — —oo as t — 0. Therefore condition (£.253]) and ([£.254) is equivalent

to condition ([@256]) and ([{257).

(2) If D is independent of ¢, Eq.(Z263) is written

dc d2c
—2z—=D— 4.264
A&z dz? (4.264)
or
d?c/dz? d de
—2z=D =D—|In— 4.265
: de/dz dz ( . dz) ( )
Integration gives
de
— 22 +a=Dn(— 4.266
2 +a n{ = ( )
or q
€€ _ ge=#*/D (4.267)
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where « and 3 are integration constants. Equation (£267) is integrated

to give

z
c:ﬂ/ e_ZZ/Ddz—l—'y

(4.268)

where v is a constant. Applying condition (£:256]) and (£257)), Eq. (£26])

yields

ol

where one has used the formula

/ e Vdy = /7

— 00

From Eq.([4.269) one gets

de & _epdz_ 2y
Ox VD oz 2V Dt

which is Eq.([#259).

(3) One finds from Eq.[@27I) that

CO > 2
A=| / dz| / e~ @ /APty
7Dt J_

= (=)

Hence

A 2

(4.269)

(4.270)

(4.271)

(4.272)

(4.273)

(4.274)

which indicates that (A/H)? plotted against ¢ gives a straight line with a

slope equal to 47 D. This theoretical consequence provides a convenient

way of evaluating D, when D is independent of ¢. One usually calls it

the height-area ratio method for D.
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[Problem D32]

When the solute is heterogeneous, consisting of ¢ different components,
the height-area ratio method yields a certain average diffusion coefficient
(D). Obtain the expression for (D) in terms of the diffusion coefficients

of individual solute components.

[Solution D32]
If the mass concentration and diffusion coefficient (assumed to be
concentration-independent) are denoted by ¢; and D, respectively, one

obtains

oc; 0 x?

—_— = — 4.275

Bz 2«/7piDiteXp< 4D-t> (4.275)
(See Eq.[#2T]) in [Problem D31]). Here ¢? is the mass concentration
of component ¢ in the initial given solution. From Eq.[#275) it follows

that .
=D A
i=1

H=3 H

i=1 i=1

(4.276)

s
I
M ”.MQ

— 4.277
2 7TDit ( )

where A; and H; denote the area and maximum height of the concen-

tration gradient curve (dc¢;/0x versus x) for component i. Hence

(2):{ i <5/53%>]2

- 47Tt< zzfgf /gzr> i (4.278)

where g; is the weight fraction of component ¢ in the given solution, i.e.,
gi = /(A + 4+ ). If Bq.(@2TR) is equated to 47t(D) and if

7, gi = 1 is considered, one finds

(D) = @

gi -2
\/E) (4.279)
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which is the desired expression for (D).

[Comments]
When the solute is a homologous series of flexible linear polymers, one

may empirically assume the form
D, =KM * (4.280)

where M; is the molecular weight of component ¢, and K and « are
empirical constants depending on the polymer species, the solvent, and
temperature. In this case, the measurement of (D) allows evaluation of

an average molecular weight Mp

q 2/
Mp = (Z gl-Mf‘“) (4.281)
=1

For example, when the solvent is a theta solvent for the polymer, o =
1/2, so that

q 4
Mp = (Z giM} 4) (4.282)
=1
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[Problem D33]

The average number density of molecules in a small volume V of a
one-component liquid equilibriated at temperature T and pressure p is
denoted by (v). Then

W)kt — 1 = (v [ // (i, j)d )} (4.283)

where & is the isothermal compressibility of the liquid, and g2(4, ) is the

pair-correlation function. Derive this Ornstein-Zernike relation.

[Solution D33]

Let thew total molecules in the entire system be numbered 1,2, ---, N;
and let the instantaneous position of the i-th molecule be denoted by r;.
Then the number of molecules, N, in the small volume V is expressed

by
Ny

N=> m(r) (4.284)

i=1
if one uses a position function m(r;) defined as

m(r)=1 (rinV) (4.285)

m(r) =0 (otherwise) (4.286)

Noting the property [m(r)]? = m(r), one gets

Zm r;) +2 Z (4.287)

i=1 j=1,i#j
In terms of Eq.(£284)) and the one-body distribution function F (i),

the statistical average of N, (N), is expressed as

= (4.288)
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where V; is the volume of the entire system.
Next, using Eq.([#281) and the two-body distribution function F» (i, j),

(N?) may be expressed as

I S o R e

t i=1,i#j j=1

+V—tt2//vF2(i,j)d(i)d(j) (4.289)

where N; — 1 is approximated by N;. In terms of (v) (= (N)/V) and
(v?) (= (N?)/V?), this equation is transformed to

(v?) = (v)? = @{1 + % [/V Fyi, /)d(i)d(j) — V2| }  (4.290)

where Eq.([4.288) has been used. Since

v / Fi(i (4.291)
and since (Av)2) = (v — ()2 = () — (1), one obtains from
Fq. (@290)

(o= (1+ Y [ 1) - R R G600 })
~ B0+ [ [ wtpaan) (1.292)
If this is compared to the known expression
((avyy = LT (4.299)

one finds that

(W)RET — 1 = (v { // (i, j)d )} (4.204)

which is the Ornstein-Zernike relation.
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[Problem D34]
Let (21,22, --,2p) be a set of p non-negative variable subjected to

the constraint

> ai=n (4.295)

It is assumed that all of these sets appear at equal probability. Show

that if oy, 09, -+, 0p > —1,
(@122 a0 )y = I(og +1)T(az+ 1) - -T(ap + 1)y(p) artaztetay

MNar+as+---+ap+p)
(4.296)

where (- --) denotes the average under fixed n and p.

[Solution D34]
For simplicity the average to be evaluated is designated by A. Then

one can write

A Jo dapy [ Ao - [ S wi P wy? - (n— 22;1 z)*rdzy
B n n—=Tp— 1.’71
fO dl'p,1 fO L d.’Ep,Q e fO iz dx;
porteetotap /g (4.297)
where
1 1—&p -0, & p—1
1= [ag [ dga | e (1- Y &) de,
0 0 0 —
(4.298)
1 1-8p—1 1—25;11 &i
1= [ [ aga | e, (4.299)
0 0 0
Since J is equal to I for a3 = ag = -+ = oy, = 0, one may calculate I
only.
Now

I—/ €, 1/1 T eeag, . / €00 (1 — &) dy
(4.300)
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with to =1 — f;; &. Since if aq and o, > —1
ta

EM 8ty — &) d&y = (t2)' T ™1 B(ay + 1,0, + 1) (4.301)

where B denotes the beta function, I becomes

t3
= / &7 de, - 52(ts — &) T T B(ar + 1,0 + 1)d&2
0
(4.302)
with t5 = 1 — P70 & = to + €. Applying Eq.(@301), Eq.(@302) be-

comes

{/ &1 dgp1- / €57 (ty — &) tortart2qey

xB(oqg +1,ap +1)Blag + 1,1 + o + 2) (4.303)
Proceeding in a similar way, one finally gets

I=B(on+1,ap+1)Blag+ 1,01 +ap+2)Bag + 1,00 +as + o + 3)

X Blap_1+1lar+a+-+apot+ap,+p—1)
Tl + )z +1)---T(ap + 1)

_ (4.304)
MNar+as+---+ap_1+ap+p)
Hence rra)---ra) 1
J = e 4.305
I'(p) I'(p) (4305)
Therefore, Eq.([#297), with Eqs.([@304) and ([£305), gives
A= n(x1+a2+"'+ap F(p)r(al + 1)F(042 + 1) = ~F(Oép * 1) (4306)

[ + a2+ +ap+p)

which is the desired formula. This formula finds its useful applications

in the statistics of branched chains.
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[Problem D35]
When ¥(z1, 29, -, x,) defined by

n

Z Z Aij TiXj (az] = a/]z) (4307)

is positive definite, i.e., greater than zero for any set of real x1, x2, - - -, T,
evaluate - -
I= / - / e P24z day - - - day, (4.308)
/ / zizje PV 2de day - - day, (4.309)

where 8 =1/(kT) >

[Solution D35]
Define Matrices x and A by

T

aipr @12 - Gin
x=| N (4.310)
T apl  Ap2 *°° Opp
Then ¥ may be written
U =xTAx (4.311)

where xT' is the transpose of x, i.e.,
T _
x' =(x1 T2 - my) (4.312)

Because A is symmetric (a;; = aj;) it can be transformed into a diagonal
matrix A by an appropriate orthogonal matrix L [which is a matrix such
that LTL = LLT = E (unit matrix)]. Thus

0 X -+ 0

LTAL=A= (4.313)
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Let a new column vector €

&
£= 5.2 (4.314)
&n
be introduced by the transformation
€=LTx (4.315)
Since L is orthgonal, this gives

x =L¢ (4.316)

This is introduced into Eq.([#311]) to give

U= (LETALE) — E'LTALE = €AE= 5 Ne2  (4317)

i=1
where Eq.([£313) has been inserted. The Jacobian J for the transforma-
tion ([316) is

Ozy 9wy . Omy
afl 652 agn
dxy  dzy . Oza
J=| % 9 % | = L] (4.318)
oz, Oxzy .. Ozy
0&1 0&2 9n

Since |[LT| = |L| and |E| = 1, it follows from LTL = E that |L| = 1.
Thus J = 1. Hence, with Eq.[@3T4), I is written

/ / —B/D XN Qg dey - - - dE,

_ H/ —PEN/2qe,

()
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Now, A1, Ao, - -+, A\, are the roots of the characteristic equation
a;1— A a2 o a1
A DB —| @ emA e am | (4.320)
an1 Gn2 Ce Gy — A

One of the root-coefficient relations for algebric equations yields
AA A, = A (4.321)

Thus Eq.(@319) may be written

o n/2
I= <> |A|~Y/2 (4.322)
B
From Eq.(4310) one gets
T = Z Lk (4.323)
k=1

where L;;, denotes the (i, k) element of L. With Eqs.([@317) and (@323),

I’ may be written

/ / Z L& Z Ljnén)

Oolcl

><exp< B/2 Z Am§m> d&1dés - - - d&,

/ / Z LinLjr€})
k=1
<exp <—6/2 >, )ty

1 /or\™2 " 1\ /2
fZszij 5 () (5

m=1

1 2 LiL
:5IA|1/2<57T> Z v sz
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where Eq.([@32]]) has been used.
It follows from Eq.([@3T3]) that

LAT'LTALL"A"! =LA 'ALTA? (4.325)
or
LAT'LT = A7! (4.326)
Because
Moo 0
0 At 0
A= 2 (4.327)
0 0 At
Eq.([@324]) is written
n
LjpLiy, Ay
L L 4.328
; Ak Al ( :

where A;; is the cofactor for the (i,j) element of A. By virtue of

Eq.([#32]), one can put Eq.[@324) in the form:

A 2 n/2
I = kY = 4.329
BlAJ3/2 ( ﬁ) ( )

Equations ([£.322) and (£329]) are the final results, which express I and
I’ in terms of 3 and the elements of A.

[Comments]
The development presented above assumes that all the roots Ay, As,
-++, Ap are real and positive. This is justified by the condition that ¥ is

positive definite.
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